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Abstract

Orthometric heights are normally derived using the spirit levelling. This requires the spinit
level equipment to be set up from point 1o point along a levelling line which is a time
consuming and tedious task. GPS offers a new alternative in orthometric height
determination very accurately over a comparatively short period. The ellipsoidal height
derived from GPS technique can be transformed into orthometric heigin if we know the
geoidal height normally detived from a gravimetric geoid of the area. Unfortunately, we
have vet 10 compute an accurate gravimetric geoid for such purpose, largely due to non-
existence of gravity data for a larger part of the tountry. As an alternative, a study was
undertaken to look into the feasibility of using a simple focal gecid solution and a global
geopotential geoid model solution. The data used in this study consist of GPS data and
known orthometric height of several GPS points. This paper present some of the results
obtained 50 far in estimating orthometric height ffom GPS data in local environment.

1.0 INTRODUCTION

The positior of points derived from GPS measurements are usually computed in a three-
dimensional Cartesian coordinate system, and are then transformed into the more recognisable
geodetic latitudes (¢), longitudes (A), ellipsoidal heights (h) or in term of geodetic coordinate
differences Ad, AX and Ab. GPS ellipsoidal heights are very useful for deformation and
subsidence studics and other applications where the emphasis is not so much in locating a precise
point in space as in the relative change of height from one time epoch to another. It is, however,
the case that the ellipsoidal heights delivesed by GPS are not the same as those historically
obtained with spirit levelling (providing orthometric heights). Conventionally, topographic maps,
engineering desigh and construction project pians, usually depict relief by means of orthometric
height. Thus, the application of GPS will be further extended if accurate transformations between
GPS ellipsoidal heipht differences and the orthometric height differences can be realised. This can
be accomplished on the condition that we know the geoidal height, or rather, the geoidal height
difference which relates the orthometric height difference to the GPS ellipsoidal height difference.
Hence today, a great deal of interest is being shown in the development of the geoid models which
are¢ important to provide the necessary geoid height to transform GPS ellipsoidal hesghts to
orthometric heights.

2.0 GPS HEIGHTING

The basic results of the precise differential GPS survey of a baseline are the Cartesian coordinate
differences AX, AY and AZ. Baselines connecting the observed GPS points are then put through a
network adjustment such as L.3D-HEIGHT (Khairul, 1994). The resulting X, Y, and 7 coordinates
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of the GPS points are then transformed, using a ré_ference ellipsoid, into geodetic coordinates in
terms of latitude (¢), longitude (1) and ellipsoidal height (h). The orthometric height (H) is related
to the ellipsoidal height (h) by the following relation:

H=h-N or, N

H = hgps - NMODEL [2]
where,

hgpg is the GPS derived ellipsoidal height, and,
NaropEL 18 the geoidal height derived from a chosen geoid model,

or by the relative approach, the orthometric height difference between two GPS points may be
deduced from:

AH = Ahgps ~ ANMODEL 3]

From the expressions above, the errors in H in eqn. {2] will depend upon the accuracy of the
parameters used in its evaluation, Tt is generally known that, the differences in h between two
points measured simuitaneously by GPS are much rnore precise than h at either of the points. This
is because of the presence of systematic errors which, being significantly the same at the two
points, cancels in the difference. Similarly, ANysongL, 1S much more precise than the geoid

height at either points. This means that for determination requiring highest precision, the approach
implied in eqn. [3] 1s preferred to that in eqn. [2].

3.0 DERIVATION OF GEOIDAL HEIGHT

The most precise method of obtaining accurate geoidal height is using gravimetric observations.
Numerical integration of gravimetric observations using Stokes integral equation provides us with
a local gravimetric geoid solution. Unfortunately, we have yet to compute our very own precise
gravimetric geoid. The reasons behind it are many but the most significant one is related to the
difficulties encountered in observing gravity values in large parts of the country due to the
topography. However, plans are underway to wtilised modern approach in gravimetric
measurement such as using an airbormn gravimeter. So when no local gravimetnc geoid solution is
available, a local geoid surface fitting solution may be employed as an alternative for small area of
gentle undulation, but for large area, a global geoid solution should be used instead.

3.1 Local Geoid Surface Fitting Solutions
This solution involves the use of a local geoid surface model using a surface fitting procedure. The
fundamental theory of this solution is based on the following three assumptions:

(1) the adjusted GPS obscrvations are of very high quality and considered to be exact,

(ii) the orthometric heights of at least threc GPS stations in the network are known and also
considered to be exact,

(iti) the area involved is smail and that the geoid features does not vary rap:dly,

If we have three or more GPS points with known orthometric heights (referred here as Height
Control Point, (HCP), then a local geoid surface solution using a surface fiting model can be
employed. This is accomplished by taking Nj as a function of the position of each HCP in the

network. The surface fitting model would take the following mathematical form:




Nj=F( g Aj) =ap +ayx; +agyj +agxjy + ... [4]
where;

ag, a1, a3, a3 are the unknown model coefficients,

xi = (§i - ¢o)Pm/1t

¥i = (A - Aog)viy €08 $ppy/ti

bm = (9i 7 $g)/2
and:

¢;. A are the latimmde and longitude of station i,

do: Ap are the latitude and longitude of a point chosen as the origin,

P is the prime vertical radius of curvature at mid-latitude,

Vyn is the meridian radius of curvature at mid-latitude,

$m is the mid-latitude between ¢; and ¢, and,

u=206264.806" _
When using 3 HCPs, eqn. [4] will represent a simple plane surface passing through all the three
points on the surface of the geoid. The east-west and the north-south tilt of the plane surface are
designated by the model coefficients ag, ay and a3. Once these coefficients are computed using

the least squares method, the unknown orthometric height of the other GPS points can then be
derived. If more than three HCPs are available, a more complex (curve) surface can be modelled
in place of the plane surface.

3.2 Global Geoid Solutions :

Global geoid solutions are obtained from global geopotential models which are given as a set of
coefficients consisting of a series of sphenical harmonic functions. The coefficients of the various
terms in the series are determined using a combination of satellite orbit analyses (for the long
wavelength geoid features), terrestrial gravity (medium to short wavelength features) and geoidal
heights measured by satellite altimetry over the ocean (medium to short wavelength features).

Some global geopotential models are derived from sateilite observations only and are known as
satellite-only solutions. These models such as GEM9(Lerch et al., 1979), GEM-L2(Lerch et al.,
1982) and GEM-T2(Marsh et al., 1989) involve only low-order spherical harmonics and thus
contain relatively few coefficients. Other global geopotential models which are known as
combined solutions are obtained by adding surface gravimetry and altimetry data to the satellite-
only solutions and they usually contain mor¢ coefficients. For example, the development of the
GEM10B(Lerch et al.,1981) model are based on the GEM-9 satellite-only model. OSU86F(Rapp
and Craz, 1986) is based on the GEM-L.2 model, while OSU89B(Rapp and Pavlis, 1990) and
OSU91A(Rapp et al,, 1991) are based on the GEM-T2 model.

The geoidal height Nga from a global geoid solution is computed from a set of normalised
geopotential coefficients using the following equation:

NGM: f}’ n=2 T

GM ™ 3]“i[*c";,,cosmm“s;msinm,z]ﬁm(sinqs) (5]
m=0

where,
npfA X is the maximum degree at which the coefficients are known.
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Cnm are the Cpy, less the zonal coefficients of the the normal potential of the

selected reference ellipsoid.

G is the gravitational constant.

M is the mass of the earth, including the atmosphere.

a is the carth's equatorial radius.

1 is the distance from the earth’s centre of mass.

$, A are the geocentric latitude and longitude.

P_ (sin @) is the normalised associated Lagendre function.
g s the normal gravity.

n, m are the degree and order respectively.

Generally, the more coetficients there are in a model, the more detailed the model usually is since
it contains shotter wavelength information of the earth's gravity field. This means that in general,
the best solution to use is one that has determined up to the maximum degree and order of 360. In
this study, the global geopotential model adopted is the OSU91A which was developed using 30’
by 30" mean gravity anomalics derived from terrestrial and altimetric data (Rapp et al., 1991},
From previous study conducted by Ahmad and Kearsley(1994), it was found that this model is
‘best suited for Malaysia. One of the reason for this may be due to the utilization of gravity data
obsérved over various parts of Malaysia in the OSU91A solution. Once the geoidal heights Ngas

have been derived, the orthometric height of GPS stations in the network can simply be computed
‘using eqn. [1].

4.0 THE EXPERIMENT

4.1 The GPS/Height Network

In order to test and evaluate the proposed method of height determination, a network of points
with known heights is clearly needed. As such a network of 10 points with known heights was
established within UTM campus for this purpose. The distribution of the points is shown in
Figure{1.0]. The heights of the 10 points are derived using the conventional levelling method from
two bench marks (i.e., N184 and N185) previously established in the campus and this is shown in
Table[2.0]. The GPS observations were made using three Ashtech™ and one Topcon™ receivers.
A total of 24 baselines were processed using the GPPS™ post-processing softwares.

Table 1.0 Height of Known Points

STATION HEIGHT (m)
BM 02 18.478
BM 03 25.897
BM 04 32.139
BM 05 39.412
BM 06 33.958
BM 07 13.813
BM 08 09.315
BM 09 28.893
BM 10 25.638
BM 11 18.969
BC 10 145.190

D




4.2 The Tests
Two approaches described previously in (3.1) and (3.2) were tested using the GPS network.

Using peoid surface fitting technigue

With reference to eqn.[4], a number of sarface fitting models can be formed subject to the number
of kmown HCP available. For this study three models were used. The models takes the following
form:

Model P1: N;=ag + apx; + agy;j . [61
Model P2 : Nj = ag + apx; + azy; + a3%jy; (7
Model P3 : Nj =ag + apxj + apyj + agAh; [8]

In the model P3, Ah;= hj - hg, h; being the ellipsoidal height of the GPS point and hy is the

ellipsoidal height at the pomt selected as the origin. The rational of adding the height term Ah in
the model is based on the assumption that the geoid undulation generally follow approximately
the topography of the area.

The first model (P1) requires at least 3 HCP to form the surface model. This model is basically a
plane surface that passes throught all the three points on the surface of the geoid. It is generally
cxpected that this kind of model is most suitable for small area where the terrain is considered flat
in nature. Table [2.0] shows the estimated orthometric height derived using this model. The HCPs
used cousist of BC10, BM08 and BM11 selected according to their location and forming a
triangle enclosing the test area. The r.m.s calculated from the difference between the true and
estimated height for six points is found to be 10.8 cm.

Table 2.0 Solution using model P1 and three known heights

GEODETIC COORDINATE TRUE ESTIMATED | DIFF.
STATION (WGS 34) ORTH. HEIGHT(m) | (m)
HEIGHT
b A h (m)
BM 03 0133 34.1931 | 103 3801.1370 | 32.0257 25.897 25.906 0.009
| BMo4 01 33 54.6876 | 103 37 43.2444 | 38.1366 32.139 31947 0.192 |
BM 05 01 33 54.0404 | 103 38 01.8391 | 45.4659 39.412 39.327 0.085 |
BM 06 01 3329.9165 | 103 38 13.1441 | 40.4659 33.958 34.037 0.079 |
BM 07 0133 22.0442 | 103 38 26.5890 | 19.9838 13.813 13.945 0.132
T BMID 0133 46.2812 | 103 3821.2902 | 31.8193 25.688 25.740 0.052
| _RMS= 10.8cm

The second model P2 was tested to see if it fits more closely with the actual geoid surface of the
arca. This is made apparent from the use of the fourth term in the model which will represent any
curvature of the geoid surface. In this model at least four known heights are needed to fit the geoid
surface. The four points chosen are BC10, BM02, BM09 and BM11. The computed orthometric
heights are shown in Table[3.0]. The rm.s computed from this model is 3.5 cm which is an
improvement over model P1.




Table 3.0 Solution using model P2 and four known heights

GEODETIC COORDINATE TRUE. | ESTIMATED | DIFF.
STATION (WGS 34) ORTH. | HEIGHT(m) | (m)
HEIGHT
¢ A .k (m)

| BMO03 | 013334.1931 | 103 3801.1370 | 32.0257 25.897 25.908 0011

BM 04 | 013354.6876 | 1033743.2444 | 38.1366 32.139 32.187 0.048

BM 05 0133 54.0404 | 10338 01.8391 | 454659 39412 39.459 0.047

BMO06 | 0133299165 | 10338 13.1441 | 40.4659 31.958 33.961 0.003

| BMO7 | 0133220442 | 103 3826.5890 | 19.9838 13.813 13.773 0.040
BM10 | 0133462812 | 10338212902 | 31.8193 25.688 25.723 0.035 |
| _RMS=35cm ]

The third model P3, which is a slight variation from model P2 was also used n this experiment.
Thus model contain the term  Ah; which refers to the difference between the ellipsoidal height of

each GPS point and the average ellipsoidal height within the test network. This is to reflect the
assumption suggesting the geoid generaily follows the terrain. Again similar computation steps as
above were taken. Table [4.0] shows the result computed using 4 HCPs consisting of BC UG,
BM02, BM09 and BM11. The r.m s computed is found to be 6.6 cm and it is apparent that the use
of a beight term in the model does not confribute any significant improvement to the result

compared to those given by model P2,

Table 4.0 Solution using model P3 and four known heights

e e e M e L m emarr E  snE e b

(ilobal geopotential model as discussed previously can be used to derive the geoidal height to
correct the ellipsoidal height to give us the orthometric height. The geoidal height is computed
using eqn.[5] using a set of coefficients. As discussed previously there are quite a number of
global geopotential model available that can be utilised but for this study OSU91A(Rapp et al.)
coefficients were used. Table[5.0} shows the orthometric heights derived using the OSU9IA
coefficients. The r.m.s computed from this model is about 82 cm and this accuracy is not suitable
for most engineering application.

GEODETIC COORDINATE TRUE- ESTIMATED | DIFF.
STATION (WGS 84) ORTH. HEIGHT(m) | (m)
HEIGHT
¢ A h (m)
BM 03 01 33 34.1931 10338 01,1370 | 32.0257 25897 25924 0027
BM 04 01 33 54,6876 | 1033743.2444 | 38.1366 32.139 32.200 0.061 ]
| BMOS 01 33 54,0404 | 103 3801 8391 | 454659 38412 39.499 0087 |
" BMO6 0133299165 | 103 38 13.1441 40 4659 33.958 33.960 0.002
- BM 07 0133220442 | 103 38 26.5890 199838 13.813 13.793 0.020
BM 10 0133 46.2812 | 10338212902 [ 31.8193 25.688 25806 | 0118 |
RMS = 6.6cm
Using Global tential Model




Table 5.0 Solution using global geopotential model (OSU91A) only

GEODETIC COORDINATE TRUE | ESTIMATED | DIFF.
STATION (WGS 84) ORTH. | HEIGHT(m) | (m)
, HEIGHT '
¢ L3 h (m)

BMO3 | 013334.1931 | 103 3801.1370 | 32.0257 25.897 25.109 0.788
BM 04 | 0133546876 | 103 37432444 | 38.1366 32.139 31.242 0.897
BM 05 | 0133 54.0404 | 103 38 01.8391 | 454659 39.412 38.550 0.862
BMO06 | 013329.9165 | 10338 13.144] | 40.4659 33.958 33.188 0.770
BMO07 | 0133220442 | 103 38 26.5890 | 199838 13.813 13036 | 0.777
BM 10 | 0133462812 | 10338 21.2902 | 318193 25.688 24880 | 03808 |
RMS = 81.8 cm

A strategy to improve the orthometric height estimation using the global geopotential model was
atternpted. This is because the geoidal height computed using the solution described above may
contain biases due to several factors, such as the problem ansing from the differences in the GPS
and geoid model datums. These biases can be reduced or absorbed by implementing some kind of
transformation procedure such as that used by Forsberg et al. (1990). The geoid change (N' -
NMODEL) due to these biases can be expressed in geodetic coordinates in the form of a

regression formula (ibid.):
N’-Nyope =8, +3, C0s@cosi +a;cosgsind+a,sing  [9]

By using at least four known geoidal heights, N, in the above equation, the four coefficients in the
regression model can be computed. These coefficients are then used in computing the "correction’
that will be applied to NyfoDEL in deriving the geoid height and the orthometric heights at the
other points. Table[6.0] shows the orthometric heights of GPS points computed in this manner
using 4 HCPs(BC10, BM02, BM09 and BM11). The resulting rm.s of 10.4 cm signifies a
significant improvement in the height estimation.

Table 6.0 Solution using OSU91A and four known heights

[ GEODETIC COORDINATE TRUE ESTIMATED | DIFF.
STATION (WGS 84) - ORTH. HEIGHT(m) (m)
HEIGHT
$ A h (m)

BM 03 0133341931 | 1033801.1370 | 32.0257 25 897 25 895 0.002 |
BM 04 01 33 54.6876 | 103 37 43.2444 | 38.1366 32.139 32.048 0.091
BM 05 01 33 54,0404 | 103 38 01.8301 | 45.4659 39.412 39237 0.175
BM 06 0133299165 | 10338 13.1441 | 40.4659 33.958 33.049 0.009
BM 07 01 3322.0442 | 103 3826.5800 | 19.9838 13.813 13.831 0.018
BM 10 0133462812 | 103 38212902 | 31.8193 25638 25525 0.163
RMS = 104 cm




Figure 1.0 The Test GPS Network

5.0 CONCLUSIONS .
Based on the tests described above, the following conclusions can be made:

For small area such as that used in this study, the use of a simple polynomial model (such as
model P2) to it the local geoid surface is adequate in providing estimated orthometric height.
The expected accuracy in height determination using this approach is about 10 ecm or better.
This level of accuracy is more than adequate for most engineering applications.

For small area, using geoidal height from a global geopotential model may give an accuracy
of about 80 cm to 1 metre to the height determination. This level of accuracy is below the
requirement of many engineering applications.

Using a linear regression to overcome biases that may arise from asing a global geopotentail
model does contribute a significant improvement on the height estimation, but the accuracy
level gained is almost on par with that using a simple plane model depicted by model Pi.

For some engineering applications, the use of GPS data in conjunction with additional known
height of several points has the potential of replacing the conventional spirit levelling for
height determination.
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