brought to you by CORE provided by Universiti Teknologi Malaysia Institutional Repository

viii

TABLE OF CONTENTS

CHAPTER

1

TITLE`

PAGE

i
iv
v
vi
vii
viii
xii
xiii
xiv
xiii

INTRODUCTION		
1.1	Introduction	1
1.2	Background of the Problem	2
1.3	Objectives	4
1.4	Scope of Study	4
1.5	Significance of the study	4
1.6	Problem Statement	4

LITERATURE REVIEW 5				
2.1	Introduction			
2.2	Coordin	ate System	6	
2.3	Sign Co	nvention of Ship Oscillation	8	
2.4	Boundar	ry Value Problem	9	
2.5	Pressure	and Forces	12	
	2.5.1	Pressure Acting on 2D ship section	12	
	2.5.2	2D Hydrodynamic Force Coefficients	15	
	2.5.3	Force and Moment Acting on 2D Ship	16	
		Section		
RESI	FARCH	METHODOLOGY	19	
3.1	Introdu	ction	19	
3.2	Research Methodology			
3.3	Offset Data			
3.4	Modific	cations of Mathematical Equations	22	
3.5	Modific	cations of Computer Programming	23	

2

3

3.6

4	MAT	THEMA	FICAL FORMULATION	24
	4.1	Introdu	iction	24
	4.2	Coordi	nate Systems	25
4.3 Sign Convention of Ship Oscillation		27		
	4.4	4 Boundary Value Problem		28
	4.5	Pressur	re and Forces	31
		4.5.1	Pressure Acting on 2D Ship Section	31

Computational Results

23

	4.5.2	2D Hydrodynamic Force Coefficients	34
	4.5.3	Force and Moment Acting on 2D Ship	34
		Section	
4.6	Equation	a of Motions	39
	4.6.1	Heaving Motion	39
	4.6.2	Pitching Motion	40
	4.6.3	Swaying Motion	40
	4.6.4	Yawing Motion	41
	4.6.5	Rolling Motion	41
4.7	Motion I	Equations in Frequency Domain	42

5	NUMERICAL METHODS	44

5.1	Introduc	ction	44
5.2	The 2D	Green Function	44
5.3	Integral Equation Method		46
	5.3.1	2D Integral Equation for Velocity Potential	46

5.4 Discretization of the Integral Equation 47

6 **RESULTS AND DISCUSSION**

6.1	Introduction		50
6.2	2D Half-immersed Cylindrical Body Computational Result		50
6.3	Solutions of 3D Problem		60
	6.3.1	Subject Ship	60
	6.3.2	Roll Damping Coefficient	60
	6.3.3	Hydrodynamic Force Coefficients	61

7	CON	CLUSION	100
	7.1	Concluding Remarks	100
REFERENC	CES		102
Appendix A			103-107

LIST OF TABLES

TABLE NO	TITLE	PAGE
3.1	Principle Dimensions of SR108	20

LIST OF FIGURES

FIGURE NO	TITLE	PAGE
1.1	Lateral drift effects on ship's movement	2
2.1	Coordinate systems	7
2.2	Sign convention of ship oscillation	9
3.1	The Alternative Strip Method (ASM) offset reading	21
3.2	Half-breadth view of the ship	22
4.1	Coordinate systems	25
4.2	Sign convention of ship oscillation	27
5.1	Integration point on 2D ship section	47
6.1	Symmetrical 2D half-immersed cylindrical body	51
6.2	Small unsymmetrical 2D half-immersed cylindrical	51
	body	
6.3	Large Unsymmetrical 2D half-immersed cylindrical	52
	body	
6.4	Comparison of the added mass coefficients for a 2D	54
	half-immersed cylinder between the usual strip	
	method and the Alternative Strip Method (ASM)	
6.5	Comparison of the wave damping coefficients for a	55
	2D half-immersed cylinder between the usual strip	
	method and the Alternative Strip Method (ASM)	
6.6	Added mass coefficients for the Alternative Strip	56
	Method for a 2D half immersed cylinder	
6.7	Wave damping coefficients for the Alternative Strip	57
	Method for a 2D half-immersed cylinder	

LIST OF SYMBOLS

o-xyz	-	body axis
Z_G	-	centre of gravity
O - XYZ	-	space coordinate system
t	-	time factor
ψ_0	-	yaw angle
$X_0(t)$	-	ship position in longitudinal direction
$Y_0(t)$	-	ship position in transverse direction
χ	-	angle of incidence wave
g	-	acceleration of gravity
G(P,Q)	-	Green's function
L	-	ship length
В	-	ship breadth
D	-	ship draft
$L_{_{pp}}$	-	length between perpendicular
ϕ_{I}	-	time dependent incident waves potential
R	-	real number
3D	-	three dimensional
2D	-	two dimensional
A	-	amplitude of incident waves
i	-	complex number
ω	-	wave frequency of incident waves
V	-	wave number of incident waves
P(t)	-	phase shift due to lateral drift
\dot{X}_{0}	-	time differentiation due of longitudinal position

$\dot{Y_0}$	-	time differentiation of transverse position
$\dot{\psi}_0$	-	time differentiation of yaw angle
ω_{e}	-	frequency of encounter
ω_{e0}	-	frequency of encounter due to change in lateral drift
\overline{U}^{*}	-	averaged forward velocity
eta_0	-	drift angle
${U}_0$	-	forward velocity
V_0	-	lateral velocity
\dot{U}	-	time differentiation of forward Velocity
\dot{V}	-	time differentiation of lateral Velocity
$arphi_w$	-	time independent incident waves potential
arphi	-	scattering and radiation potential due to ship motion
$\Phi(x, y, z, t)$	-	perturbation potential around the ship
Φ_r	-	time dependent radiation potential
ξ_i	-	time independent ship oscillation
ξ_i'	-	nondimensionalized time independent ship oscillation
α	-	vector of motion displacement
Ξ_i	-	time dependent motion displacement
ϕ_1	-	time dependent roll motion
$ heta_{1}$	-	time dependent pitch motion
ψ_1	-	time dependent yaw motion
n _i	-	outward normal unit vector of ship hull
N_{i}	-	outward normal unit vector in 2D
k	-	order of ship motion problem
μ	-	coefficient due to change in lateral drift
υ	-	Rayleigh viscosity coefficient
$arphi^{(1)}$	-	velocity potential O(1)
$oldsymbol{eta}_j$	-	motion coefficient
$arphi_{j}$	-	radiation potential

$arphi_4$	-	scattering potential
$arphi_S$	-	simplified scattering potential
φ_{I}	-	simplified time independent incident waves potential
${M}_{_{\ell j}}$	-	2D added mass coefficient
${N}_{\ell j}$	-	2D damping coefficient
E_{j}	-	2D exciting force
\overline{A}_{ij}^{2D}	-	2D nondimensionalized added mass coefficient
\overline{B}_{ij}^{2D}	-	2D nondimensionalized damping coefficient
A_{ij}	-	3D added mass coefficient for motion equation
B_{ij}	-	3D damping coefficient for motion equation
C_{ij}	-	3D hydrostatic restoring force coefficient for motion
		equation
\overline{A}_{ij}	-	3D nondimensionalized added mass coefficient
\overline{B}_{ij}	-	3D nondimensionalized damping coefficient
F_{2c}	-	3D real exciting force for sway
F_{2s}	-	3D imaginary exciting force for sway
F_{3c}	-	3D real exciting force for heave
F_{3s}	-	3D imaginary exciting force for heave
F_{4s}	-	3D imaginary exciting force for roll
T_{ϕ}	-	roll period
∇	-	ship displacement
\overline{KM}	-	vertical distance between keel and metacentre
k _{xx}	-	moment of inertia about x-axis
k_{yy}	-	moment of inertia about y-axis
$H_{_W}$	-	wave height

LIST OF APPENDICES

APPENDIX	TITLE	PAGE
А	Hydrodynamic Force Coefficients	103