CHAPTER 1

INTRODUCTION

1.1 Research Background

In the aerobic fermentations, sufficient supply of oxygen to the microorganisms is very crucial. Oxygen is sparingly soluble in the water (i.e. 10 ppm at 1 atm) and its transfer rate is always limited particularly through the gasliquid interfaces (Bailey and Ollis, 1986). The limited solubility of oxygen in water is a physical constraint on bioreactor aerobic operation. This problem becomes worse especially in the larger scales since maintaining such homogeneous environment is no longer easy due to increased mixing time. The consequent anaerobic conditions result in lower fermentation performance and yields. Systematic engineering approaches to tackle this problem have been reported by a number of works (Arjunwadkar et al., 1998; Badino Jr et al., 2001, Cooper et al., 1944). The oxygen transfer capacity in a bioreactor depends on the mechanical design and geometry of the air distributor, bioreactor aspect ratio, impeller type, and the agitation rate. All of them can be related to the oxygen transfer coefficient $\left(k_{L} a\right)$.

Cooper and his co-workers (1944) proposed that the k_{L} a may be empirically linked to the gassed power consumption per unit volume of broth $\left(\mathrm{P}_{\mathrm{g}} / \mathrm{V}_{\mathrm{L}}\right)$ and the superficial air velocity $\left(\mathrm{v}_{\mathrm{g}}\right)$ as described by the following equation.

$$
\begin{equation*}
k_{L} a=a^{\prime}\left(\frac{P_{g}}{V_{L}}\right)^{b}\left(v_{g}\right)^{c} \tag{1.1}
\end{equation*}
$$

In this equation, the values of the constants ' b ' and ' c ' may vary considerably, depends on the bioreactor geometry and operating conditions. Data in Table 1.1 summarise the values of constant ' b ' and 'c' from several works. Constant ' b ' represents the level of dependence of $\mathrm{k}_{\mathrm{L}} \mathrm{a}$ on the agitation, while, constant ' c ' represents the level of dependence of $\mathrm{k}_{\mathrm{L}} \mathrm{a}$ on the sparging rate applied to the system.

Table 1.1 Values of parameter 'b' and 'c' from several works that estimated from the empirical relationship proposed by Cooper et al. (1944)

Author	Constant 'b'	Constant 'c'	Type of impeller	Liquid Model	Liquid Volume
Cooper et al. (1944)	0.95	0.67	N/A	Air-water system	66 L
Shukla et al. (2001)	0.68	0.58	Disc turbine and pitched blade turbine	Air-water system	5.125 L
Shukla et al.((2001)	0.725	0.892	Disc turbine and pitched blade turbine	Yeast fermented broth	5.125 L
Badino Jr. et al. (2001)	0.47	0.39	Flat-blade disc style turbine	Aspergillus's fermented broth	10 L
 Vlaev (2002)	0.84	0.4	Narcissus blade	$(2 \%$ w/v) CMC solution	50 L
 Vlaev (2002)	0.82	0.4	Narcissus blade	$(0.5 \%$ w/v) Xanthan gum solution	50 L
Arjunwadkar et al. (1998)	0.68	0.4	Disc turbine and pitched blade	$(0.7 \%$ w/v) CMC solution	5.125 L

As supplying adequate oxygen is the centre of the issue in aerobic fermentation, maintaining a similar oxygen transfer coefficient or $\mathrm{k}_{\mathrm{L}} \mathrm{a}$ has been frequently employed as the basis of scaling up exercises. Scale-up criteria that commonly used to maintain constant $\mathrm{k}_{\mathrm{L}} \mathrm{a}$ are i) the gassed power number per unit liquid volume $\left(\mathrm{P}_{\mathrm{g}} / \mathrm{V}_{\mathrm{L}}\right)$, the superficial air velocity $\left(\mathrm{v}_{\mathrm{g}}\right)$, the sparging rate (vvm) and bioreactor geometrical and operational constants such as ratio of liquid height to tank diameter $\left(H_{i} / D_{T}\right)$, impeller diameter $\left(D_{i}\right)$, impeller rotation number (N), impeller tip
speed $\left(\mathrm{ND}_{\mathrm{i}}\right)$, pump rate of impeller (Q), pump rate of impeller per unit volume $(\mathrm{Q} / \mathrm{V})$ and Reynolds number.

1.2 Motivation

The oxygen transfer coefficient, k_{L} a plays an important role towards carrying out the design, scaling up and economic of the process. Efforts have been focused in improving the design and scaling up studies to achieve adequate supply of oxygen at higher scales (Martinov \& Vlaev, 2001, Juarez \& Orejas, 2001, Arjunwaadkar et al., 1998). Their works employed the correlation proposed by Cooper et al. (1944) and demonstrated the effects of agitation and aeration at different combination of impellers in prediction of $\mathrm{k}_{\mathrm{L}} \mathrm{a}$ values at the laboratory scales. The most commonly methods in determining the $\mathrm{k}_{\mathrm{L}} \mathrm{a}$ are the static and the dynamic gassing-out techniques. As contrast to the static gassing-out technique, the live culture was used in the dynamic gassing-out technique. Both of these techniques have been employed by Martinov \& Vlaev (2001), Juarez \& Orejas (2001), Arjunwaadkar et al. (1998) and Shukla et al. (2001).

Scaling up studies performed in this work used the correlation developed by Cooper et al. (1944). The $\mathrm{k}_{\mathrm{L}} \mathrm{a}$ values achieved at 16 liter scale were compared with the values at 150 liter scale. Since the scaling up factor is not proportionally increasing, the 'trial-and-error' within predicted range was performed. The effectiveness of this scaling up protocol was tested in the real E.coli fermentation. Identical growth profiles at both scales conclude that comparable oxygen transfer at 150 liter was successfully achieved. There has been a significant advance in the understanding of scale-up of stirred aerated bioreactors as reported by several authors. Shukla et al. (2001) works highlight on the performance of the impeller used upon scaling up of yeast biotransformation medium on a basis of constant $\mathrm{k}_{\mathrm{L}} \mathrm{a}$. Wong et al. (2003) employed the correlations proposed by Wang et al. (1979) in scaling up on a basis of constant k_{L} a and air flow rate per unit volume, $(\mathrm{Q} / \mathrm{V})$. The work by Hensirisak (1997) concerned more on the performance of microbubble dispersion to improved oxygen transfer upon scale-up. The work by Wernesson \&

Tragardh (1999) reported the influence of power input per unit mass on the hydrodynamics of the bioreactor.

In spite of these observations, the engineering focus continued to be on maintaining the volumetric oxygen transfer constant on scale-up. Humphrey et al. (1972) addressed that; researchers still do not have an absolute basis for scale-up. As a matter of fact, biochemical engineers still practice scale-up a black art in which they attempt to maintain constant and operating the aeration rate well below gas flooding conditions. In this study, scale-up strategy proposed by Shukla et al. (2001) and Garcia-Ochoa et al. (2000) will be further improved. The challenge and aims of this study is to manipulate the constant in the empirical correlation proposed by Cooper et al. (1944) and provide a scaling-up factor upon scale-up from 16 liter to 150 liter scale in a basis of constant $\mathrm{k}_{\mathrm{L}} \mathrm{a}$.

1.3 Research Objectives and Scope

The objectives of this research are:

1) To investigate the significance of hydrodynamic difference between Rushton turbine and marine impellers on the oxygen transfer in 16 liter bioreactor.
2) To develop a simple approach that provides a reliable protocol for scaling-up exercise based on constant oxygen transfer rate in stirred aerated bioreactor.
3) To evaluate the potential of employing the scaling-up protocol developed in this study in the actual fermentation.

In order to achieve these objectives, the following scope of work shall be covered:

1) Evaluation of oxygen transfer coefficient, k_{L} a by using static and dynamic gassing-out techniques.
2) Study the effect of fermentation system and operational parameters by:
i) Vary impeller speeds, volumetric air flow rate and temperature in 16 liter bioreactor.
ii) Mimic a pseudoplastic behaviour by using carboxy methyl cellulose (CMC) to compare the effect of Newtonian and non-Newtonian fluids on $\mathrm{k}_{\mathrm{L}} \mathrm{a}$.
3) Investigate the dependence of oxygen transfer coefficient on superficial air velocity and volumetric gassed power input at 16 liter bioreactor using Rushton turbine and marine impeller.
4) Investigates the effect of impeller type on the dependence of oxygen transfer coefficient on superficial air velocity and volumetric gassed power input in:
i) $\quad 16$ liter and 150 liter at different viscosities namely $0.25,0.5$ and 1 $\%(\mathrm{w} / \mathrm{v})$ of CMC solutions.
ii) 16 liter and 150 liter bioreactor at different temperatures namely 30°, 40° and $50^{\circ} \mathrm{C}$.
5) Graphically determine, compare, and analyze the coefficients in the empirical correlation proposed by Cooper et al. (1944) at:
i) 16 liters for Rushton turbine and marine impeller.
ii) $\quad 16$ liter and 150 liter at different viscosities namely $0.25,0.5$ and 1 $\%(\mathrm{w} / \mathrm{v})$ of CMC solutions.
iii) 16 liter and 150 liter bioreactor at different temperatures namely 30°, 40° and $50^{\circ} \mathrm{C}$.
6) Compare time-course profiles of growth, glucose consumption, specific oxygen uptake rate (OUR), and k_{L} at 16 liter and 150 liter bioreactor.
