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Abstract 
This paper presents a method for unsupervised partitioning 
of data using kernel methods which offer strength to deal 
with complex data non-linearly separable in input space. 
This work gets inspiration from the notion that a non-linear 
data transformation into some high dimensional feature 
space increases the possibility of linear separability of the 
patterns in the transformed space. Therefore, it simplifies 
exploration of the associated structure in the data. Kernel 
methods implicitly perform a non-linear mapping of the 
input data into a high dimensional feature space by replacing 
the inner products with an appropriate positive definite 
function. Firstly, in this paper, selective kernel-based 
clustering techniques are analyzed and their shortcomings 
are identified especially for spatial data analysis. Finally, we 
present a robust weighted kernel k-means algorithm 
incorporating spatial constraints for clustering spatial data as 
a case study. The proposed algorithm can effectively handle 
noise, outliers and auto-correlation in the spatial data. 
Therefore, this work comes up with new clustering 
algorithm using kernel-based methods for effective and 
efficient data analysis by exploring structures in the data. 
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1.0  Introduction  
Data clustering, a class of unsupervised learning algorithms, 
is an important and applications-oriented branch of machine 
learning. Its goal is to estimate the structure or density of a 
set of data without a training signal. It has a wide range of 
general and scientific applications such as data compression, 
unsupervised classification, image segmentation for 
computer vision, anomaly detection, etc. There are many 
approaches to data clustering that vary in their complexity 
and effectiveness, due to the wide number of applications 
that these algorithms have. While there has been a large 
amount of research into the task of clustering, currently 
popular clustering methods often fail to find high-quality 
clusters.  
 
A number of kernel-based learning methods have been 
proposed in recent years [9, 15, 3, 21, 8, 16, 7]. However, 
much research effort is being put up for improving these 
techniques and in applying these techniques to various 
application domains. Generally speaking, kernel function 
implicitly defines a non-linear transformation that maps the 
data from their original space to a high dimensional space 
where the data are expected to be more separable. 
Consequently, the kernel methods may achieve better 
performance by working in the new space. While powerful 
kernel methods have been proposed for supervised 
classification and regression problems, the development of 
effective kernel method for clustering, aside from a few 
tentative solutions [9, 4, 17], needs further investigation.  

 
Finding good quality clusters in spatial data (e.g, 
temperature, precipitation, pressure, etc) is more challenging 
because of its peculiar characteristics such as auto-
correlation, non-linear separability, outliers, noise, high-
dimensionality, and when the data has clusters of widely 
differing shapes and sizes [18, 22, 11]. With this in view, the 
intention of this paper is, firstly, to analyze selective kernel-
based clustering techniques properly in order to identify how 
further improvement can be made especially for spatial data 
clustering. Finally, we present a weighted kernel k-means 
clustering algorithm incorporating spatial constraints bearing 
spatial neighborhood information in order to handle spatial 
auto-correlation and noise in the spatial data.  
 
This paper is organized as follows. In the next section, it is 
pointed out how kernel methods can be useful for clustering 
non-linearly separable and high-dimensional spatial data. 
The k-means algorithm is briefly described in section 3. In 
this section, two currently proposed kernel-based algorithms 
are also reviewed. In section 4, a weighted kernel k-means 
algorithm with spatial constraints is presented which could 
be useful for handling noise, outliers and auto-correlation in 
the spatial data. Finally, the paper concludes with 
emphasizing the need for an in-depth study for developing a 
real system. 
 
2.0 Kernel-based Methods 
The kernel methods are among the most researched subjects 
within machine-learning community in recent years and has 
been widely applied to pattern recognition and function 
approximation. Typical examples are support vector 
machines [2, 6, 20], kernel Fisher linear discriminant 
analysis[14], kernel principal component analysis [17], 
kernel perceptron algorithm [5], just to name a few. The 
fundamental idea of the kernel methods is to first transform 
the original low-dimensional inner-product input space into 
a higher dimensional feature space through some nonlinear 
mapping where complex nonlinear problems in the original 
low-dimensional space can more likely be linearly treated 
and solved in the transformed space according to the well-
known Cover’s theorem. However, usually such mapping 
into high-dimensional feature space will undoubtedly lead to 
an exponential increase of computational time, i.e., so-called 
curse of dimensionality. Fortunately, adopting kernel 
functions to substitute an inner product in the original space, 
which exactly corresponds to mapping the space into higher-
dimensional feature space, is a favorable option. Therefore, 
the inner product form leads us to applying the kernel 
methods to cluster complex data [9, 15].  
 
2.1 Support Vector Machines and Kernel-based 

Methods 
Support vector machines (SVM), having its roots in machine 
learning theory, utilize optimization tools that seek to 
identify a linear optimal separating hyperplane to 
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discriminate any two classes of interest [20, 19]. When the 
classes are linearly separable, the linear SVM performs 
adequately. 
 
There are instances where a linear hyperplane cannot 
separate classes without misclassification, relevant to our 
problem domain; however, those classes can be separated by 
a nonlinear separating hyperplane. In this case, data may be 
mapped to a higher dimensional space with a nonlinear 
transformation function. In the higher dimensional space, 
data are spread out, and a linear separating hyperplane may 
be found. This concept is based on Cover’s theorem on the 
separability of patterns. According to Cover’s theorem on 
the separability of patterns, an input space made up of 
nonlinearly separable patterns may be transformed into a 
feature space where the patterns are linearly separable with 
high probability, provided the transformation is nonlinear 
and the dimensionality of the feature space is high enough. 
Figure 1 illustrates that two classes in the input space may 
not be separated by a linear separating hyperplane, a 
common property of spatial data, e.g. rainfall patterns in a 
green mountain area might not be linearly separable from 
those in the surrounding plain area. However, when the two 
classes are mapped by a nonlinear transformation function, a 
linear separating hyperplane can be found in the higher 
dimensional feature space.  
 
Let a nonlinear transformation function φ maps the data into 
a higher dimensional space. Suppose there exists a function 
K, called a kernel function, such that, 

( ) ( ) ( )jiji xxxxK φφ ⋅=,  

A kernel function is substituted for the dot product of the 
transformed vectors, and the explicit form of the 
transformation function φ is not necessarily known. In this 
way, kernels allow large non-linear feature spaces to be 
explored while avoiding curse of dimensionality. Further, 
the use of the kernel function is less computationally 
intensive. The formulation of the kernel function from the 
dot product is a special case of Mercer’s theorem [16]. 

 
         Input Space                                Feature Space 

 
 
 
 
 
 
 
FIGURE 1:  Mapping nonlinear data to a higher dimensional 
feature space where a linear separating hyperplane can be 
found. When mapped into a feature space via the non-linear 
map ( ) ( ) [ ] [ ] [ ] [ ]( )21
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Examples of some well-known kernel functions are given in 
below: 

Polynomial, ( ) d

jiji xxxxK ,, =  ; d is a positive integer 

Radial Basis Function, ( ) )
2

exp(,
2

2

σ
ji

ji

xx
xxK

−
−=  ; σ is a 

user defined value 
Sigmoid, ( ) ( )βα +×= jiji xxxxK ,tanh,  ; α and β are user 
defined values 
 
3.0 K-Means and Kernel Methods for Clustering 
Clustering has received a significant amount of renewed 
attention with the advent of nonlinear clustering methods 
based on kernels as it provides a common means of 
identifying structure in complex data [9, 15, 4, 2]. Before 
discussing two kernel-based algorithms [4, 2] here, the 
popular k-means algorithm is described in the next 
subsection, which is used as predominant strategy for final 
partitioning of the data. 
 
3.1 K-Means 
First we briefly review k-means [12] which is a classical 
algorithm for clustering. We first fix the notation: let X = 
{ xi }i=1, . . .,n be a data set with xi ∈ RN . We call codebook 
the set W = { wj }j=1, ., ., .,k with wj ∈ RN  and k << n. The 
Voronoi set (Vj ) of the codevector wj is the set of all vectors 
in X for which wj  is the nearest vector, i.e. 

}min{
,...,1 jikjij wxargjXxV −=∈=

=
 

For a fixed training set X the quantization error E(W ) 
associated to the Voronoi tessellation induced by the 
codebook W can be written as 

2

1

)( ∑∑
= ∈

−=
k

j Vx
ji

ji

wxWE   (1) 

K-means is an iterative method for minimizing the 
quantization error E(W ) by repeatedly moving all 
codevectors to the arithmetic mean of their Voronoi sets. It 
can be proved [10] that a necessary condition for a codebook 
W to minimize the quantization error in eq. (1) is that each 
codevector wj fulfills the centroid condition. In the case of 
finite data set X and Euclidean distance, the centroid 
condition reduces to 

∑
∈

=
ji Vx

i

j

j x
V

w 1   (2) 

where |Vj | denotes the cardinality of Vj . Therefore, k-means 
is guaranteed to find a local minimum for the quantization 
error. 
 
However, the k-means does not have mechanism to deal 
with issues such as: 
 
• Outliers; one of the drawbacks of k-means is lack of 

robustness with respect to outliers, this problem can be 
easily observed by looking at the effect of outliers in the 
computation of the mean in eq. (2).  

• non-linear separability of data in input space,  

• auto-correlation in spatial data,  

• noise, and high dimensionality of data. 
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3.2 One Class SVM 
Support vector clustering (SVC) [2], also called one-class 
SVM, is an unsupervised kernel method based on support 
vector description of a data set consisting of positive 
examples only. In SVC, data points are mapped from data 
space to a high dimensional feature space using a Gaussian 
kernel. In feature space, SVC computes the smallest sphere 
that encloses the image of the input data. This sphere is 
mapped back to data space, where it forms a set of contours, 
which enclose the data points. These contours are interpreted 
as cluster boundaries. Points enclosed by each separate 
contour are associated with the same cluster. (For details 
about the algorithm, please see [2]). 
 
The clustering level can be controlled by changes in the 
width parameter of the Gaussian kernel (σ). As this 
parameter is increased, the number of disconnected contours 
in data space increases too, leading to an increasing number 
of clusters. The SVC algorithm can also deal with outliers by 
employing a soft margin constant that allows the sphere in 
feature space not to enclose all points. Large values of this 
parameter, can also deal with overlapping clusters. 
 
Since SVC is using a transformation to an infinite dimension 
space, it can handle clusters of practically any shape, form or 
location in space. This is probably its most important 
advantage. It can easily identify cluster combination, which 
will cause most other clustering algorithms to fail. A simple 
example could be concentric ring-like clusters, which will 
pose a huge problem to the common algorithms (such as k-
nearest neighbors, k-means). However, the algorithm has the 
following drawbacks: 
 
• One problem though, which makes the algorithm hard to 

tune, is its extreme dependence on the width of the 
Gaussian σ. Finding the right value of σ is time-
consuming and very delicate.  

 
• Another disadvantage of the algorithm is its complexity. 

Although the calculation of the sphere parameters and the 
support vectors is relatively rapid, the separation of the 
sphere to different clusters and determining the 
adjacency matrix is extremely complicated.  

 
• As the number of dimensions increases, the running time 

of the algorithm grows dramatically. For a large number 
of attributes, it is practically not feasible to use this 
algorithm. 

 
3.3 Mercer Kernel k-Means 
In [4], F. Camastra and A. Verri report on extending the 
SVC algorithm and give a kernel k-means algorithm. The 
kernel k-means algorithm uses k-means like strategy in the 
feature space using a one class support vector machine. The 
algorithm can find more than one clusters. For details about 
the algorithm, please see [4]. 
Although the algorithm [4] gives nice results and can handle 
outliers but it has some drawbacks:  
 
• The convergence of this procedure is not guaranteed and 

is an open problem. The algorithm does not aim at 

minimizing the quantization error because the Voronoi 
sets are not based on the computation of the centroids. 

• Another main drawback is the heavy computation time 
required by the algorithm. The algorithm requires the 
solution of a quite number of quadratic programming 
problems.  

• Because of the computational overheads, the algorithm 
might become unstable for high-dimensional data. 

• Moreover, there is no mechanism for handling spatial 
auto-correlation in the data. 

 
4.0 Proposed Weighted Kernel k-Means 

Incorporating Spatial Constraints 
As we have illustrated above, there exist many problems in 
the current k-means method, especially for handling spatial 
and complex data. Among these, the important 
issues/problems that need to be addressed are: i) non-linear 
separability of data in input space, ii) outliers and noise, iii) 
auto-correlation in spatial data, iv) high dimensionality of 
data. Although kernel methods offer power to deal with non-
linearly separable and high-dimensional data but the current 
methods have some drawbacks as identified in section 3. 
Both [2, 4] are computationally very intensive, unable to 
handle large datasets and autocorrelation in the spatial data. 
The method proposed in [2] is not feasible to handle high 
dimensional data due to computational overheads, whereas 
the convergence of [4] is an open problem. With regard to 
addressing these problems, we propose an algorithm—
weighted kernel k-means with spatial constraints, in order to 
handle spatial autocorrelation, noise and outliers present in 
the spatial data. 
 
Using the non-linear function φ, the objective function of 
weighted kernel k-means can be defined as: 
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The Euclidean distance from )(xφ  to center  is given by 
(all computations in the form inner products can be replaced 
by entries of the kernel matrix) 
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In [1], an approach is proposed to increase the robustness of 
fuzzy c-means to noise. Similarly we propose a modification 
to the weighted kernel k-means to increase the robustness to 
noise and to account for spatial autocorrelation in the spatial 
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data. It can be achieved by a modification to eq. (3) by 
introducing a penalty term containing spatial neighborhood 
information. This penalty term acts as a regularizer and 
biases the solution toward piecewise-homogeneous labeling. 
Such regularization is helpful in finding clusters in the data 
corrupted by noise. The objective function (3) can, thus, be 
written as: 

∑∑ ∑

∑∑
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j Vx
jii

ji k

ji

wxxu
N

wxxuWE
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2

)()(
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φγ

φ
  (6) 

where Nk stands for the set of neighbors that exist in a 
window around xi and NR is the cardinality of Nk . The 
parameter γ  controls the effect of the penalty term. The 
relative importance of the regularizing term is inversely 
proportional to the accuracy of clustering results. 
 
If we adopt the Gaussian radial basis function (RBF), then 
K(x, x) = 1, so we can simplify eq. (6) as 
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The distance in the last term of eq.(6), can be calculated as 
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For RBF, eq. (5) becomes, 
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We have to calculate the distance from each point to every 
cluster representative. For cluster Vj, incorporating the 
penalty term containing spatial neighborhood information, 
this can be obtained from eq. (6) by using eq. (8) and (9). 
Hence, the effective distance to be calculated is: 
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We can examine how eq. (10) makes the algorithm robust to 
outliers. As  measures the similarity between 

, and when x
),( ji xxK

ji xandx i is an outlier, i.e., xi is far from the 
other data points, then  will be very small. So, the 
second term in the above expression will get very low value 
or, in other words, the weighted sum of data points will be 

suppressed. The total expression will get higher value and 
hence results in robustness by not assigning the point to the 
cluster. For details of the algorithm, please see [13]. 

),( ji xxK

 
Now, the algorithm, weighted kernel k-means with spatial 
constraints (SWK-means: Spatial Weighted Kernel k-means), 
can be written as in Figure 2. 
 
 
Algorithm SWK-means: Spatial Weighted Kernel  
k-means (weighted kernel k-means with spatial constraints) 
 
SWK_means (K, k, u, N,γ , ε, w1, ...,wk) 
Input: K: kernel matrix, k: number of clusters, u: weights for 
each point, set ε>0 to a very small value for termination, N: 
information about the set of neighbors around a point,γ : 
penalty term parameter,  
Output: w1, ...,wk: partitioning of the points 
 
1.  Initialize the k clusters: w1=0, ..... , wk =0 

2.  Set i = 0. 

3.  For each point x, find its new cluster index as 
2

)()( jj wxminargxj −= φ  using eq. (10), 

4.  Compute the updated clusters as 
)1( +i

jw  = {x : j(x)=j} 

5.  Repeat steps 3-4 until the following termination criterion 
is met: 

ε<− oldnew WW 

where, },....,,,{ 111 kwwwwW =  are the vectors of cluster 
centroids. 

 
FIGURE 2: Algorithm SWK-Means (weighted kernel k-
means with spatial constraints) 
 
5.0 Discussion and Conclusions 
In this paper, a few challenges especially related to 
clustering spatial data are pointed out. There exist some 
problems that k-means method cannot tackle, especially for 
dealing with spatial and complex data. Among these, the 
important issues/problems that need to be addressed are: i) 
non-linear separability of data in input space, ii) outliers and 
noise, iii) auto-correlation in spatial data, iv) high 
dimensionality of data.  
 
The strengths of kernel methods are outlined, which are 
helpful for clustering complex and high dimensional data 
that is non-linearly separable in input space. Two of the 
currently proposed kernel based algorithms are reviewed and 
the related research issues are identified. Both [2, 4] are 
computationally very intensive, unable to handle large 
datasets and have no mechanism to deal with autocorrelation 
in the spatial data. The method proposed in [2] is not 
feasible to handle high dimensional data due to 
computational overheads, whereas the convergence of [4] is 
an open problem. With regard to addressing these problems, 
we presented weighted kernel k-means incorporating spatial 
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constraints. Theoretically the proposed algorithm has the 
mechanism to handle spatial autocorrelation, noise and 
outliers in the spatial data. The implementation, testing and 
evaluation of the algorithm are underway. It is very much 
hoped that the algorithm would prove to be robust and 
effective for spatial data analysis. However, it needs further 
exploration. In future we plan to investigate the estimation 
of optimal number of clusters automatically. 
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