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Production planning and scheduling play a prominent role in any kind of 
manufacturing activities that require resources input in terms of men, 
materials, machines and money (capital). It is a process of developing good 
relationship between market demands and production capacity in such a 
way that customers demand are satisfied and at the same time production 
activities are carried out in an economic manner. A reliable and efficient 
production planning and scheduling is essential in order to manage the 
production operations effectively. In a rolling horizon setting, the frequency 
with which a master production schedule (MPS) is updated or replanned 
can have a significant impact on MPS stability, productivity, production and 
inventory costs and customer service. Hence, one of the important decisions 
in the design of a rolling horizon MPS is the frequency of replanning. In this 
paper, we propose the possibility to establish a method for planning the 
MPS under demand uncertainty. A stochastic lot sizing algorithm is used to 
test the effectiveness of the rolling horizon MPS construction and extension. 
Therefore, a computer model was built to simulate the MPS activities under 
rolling horizon requirement. This model use a combination of an 
autoregressive fractionally integrated moving average (ARFIMA) 
forecasting model and fractional differencing method. The advantages of 
the ARFIMA time series model with fractional differencing method will 
benefits in planning the MPS under demand uncertainty. 
 
 
Production planning and scheduling play a prominent role in any kind of 
manufacturing activities that require resources input in terms of men, 
materials, machines and money (capital). It is a process of developing good 
relationship between market demands and production capacity in such a way 
that customers demand are satisfied and at the same time production 
activities are carried out in an economic manner. A reliable and efficient 
production planning and scheduling is essential in order to manage the 
production operations effectively.  
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Master Production Scheduling (MPS) is a very important activity in 
manufacturing planning and control. The MPS is essential in maintaining 
customer service levels and stabilizing production planning within a 
Manufacturing Resource Planning  (MRP II) environment and a JIT based 
production systems. 
 
Statement Of The Problem 
 
Zhao, Xie and Jiang,  (2001) studied the impact of MPS freezing parameters 
on the performance of multi item single level production systems with a 
single resource constraint and deterministic demand. They found that some 
of the conclusions without considering capacity constraints could not be 
generalized to the more realistic capacitated situations. However they did 
not examine the problem under demand uncertainty. In reality, many 
companies do not know their future demands and have to rely on demand 
forecasts to make production planning decision. They often use the same 
capacity to manufacture several products.  Developing and maintaining 
MPS under capacity constraints and demand uncertainty is far more 
challenging because it may significantly influence the selection of the MPS 
freezing parameters. 
 
 In this paper, the researcher investigates the problems according to 
these questions: 
 
 i. What is a method for planning the MPS under demand 
uncertainty? 

ii. What is a model to be used for replanning MPS assuming the 
lower-level    schedule? 

 
Objective Of The Study 

 
The objectives of this research are as follows:  
 

i. Establish a method for planning the MPS under stochastic 
demand based on Fractional ARIMA model. 

ii. Provide a model for replanning MPS assuming the lower-
level schedule change cost is known. 

 
Literature Review 
 
A rolling planning horizon is to replan MPS each period whenever 
information is updated. In industry, though, running a plant until it is empty 
is rare. Instead, plants usually contain many different orders, with new 
orders arriving as older ones are completed. Scheduling is often performed 



 

on some regular basis i.e. hourly, daily, weekly or monthly. The best 
schedule is implemented until the plant is rescheduled. Thus, scheduling 
occurs on a rolling horizon basis(Thoney et al 2002).  In practice, a planner 
would probably deal with the situation described above on a ‘rolling 
horizon’ basis in that the planner would get an initial production plan based 
on current data and then after one time period the planner would update the 
linear programming and resolve production equation system to get a revised 
production plan.  

 
Usually, an MPS planner will face the pressure to replan because of 

the changes of operational circumstances. Tang and Grubbstrom (2002) said 
that there are basically two conditions which lead to replanning. First, there 
is a rolling effect due to extension of the planning period. Secondly, when 
demand is uncertain, there is always a forecast error, and, therefore the old 
plan has to be modified to adapt a new information to keep the production 
cost low and maintain the service level.  
 

When the MPS is further used for material requirements planning 
(MRP), numerous changes in the MPS lead to schedule adjustments in the 
system. Such adjustments of plans also have an amplified effect in an 
assembly system, and this is often referred to as system nervousness. 
Nervousness may become an barrier in the implementation of MRP and 
even cause a breakdown of the whole system. Xie, Zhao and Lee (2003) 
studied that frequent adjustments to the MPS can induce major changes in 
the detailed MRP schedules. These changes can lead to increases in 
production and inventory costs and deterioration in customer service level. 
This phenomenon is called ‘‘schedule instability’’ or ‘‘MRP nervousness’’. 
Maintaining a stable MPS in view of changing customer requirements, 
adjustments in sales forecasts, and unforeseen suppliers or production 
problems is a difficult proposition for many firms (Sridharan, Berry and 
Udayabhanu, 1988). Therefore, to decrease the instability of the schedule 
becomes an important objective in planning the MPS. 
 

Blackburn, Kropp and Millen (1986,) has suggested several methods 
to reduce schedule instability in MRP systems. One frequently used method 
involves the freezing of the MPS. Zhao and Lee (1993) examined the impact 
of different parameters for freezing the MPS upon total cost, schedule 
instability and service level in multi-stage systems. Zhao and Lam (1997),  
Zhao, Goodale and Lee  (1995), Zhao and Xie (1998) also studied the 
impact of lot-sizing rules and forecasting models on the selection of MPS 
freezing parameters. 
 

Although these studies address an important managerial issue in 
manufacturing planning and control and provide guidelines to help 



 

managers in their selection of MPS freezing parameters, they do not 
consider capacity constraints. Xie, Zhao and Lee (2003) examine even most 
production systems have capacity constraints and the master production 
scheduler has to take into consideration these constraints in developing the 
MPS, it is important to include capacity constraint in MPS studies. 
Therefore, it is of significant academic and practical value to know whether 
the conclusions and guidelines drawn under the assumption of unlimited 
capacity can be applied in the more realistic cases of having limited 
capacity. Investigations of the impact of capacity constraint on the selection 
of MPS freezing parameters will provide guidelines for practitioners to 
choose the proper set of MPS freezing parameters to enhance system 
performance. 
 
Research Methodology 
 
This section explains the methodology that the researcher intended to use in 
the research. It provides a description of  the data sources and the 
instruments of data collection. The method of  data analysis is described and 
the assumption made in the study are considered. The research methodology 
that will be used are in accordance with stages in Operational Research 
(OR) methodology as established by other OR practitioners such as Lucey 
(1994), Taha (1992) and Ravindran, Philips and Solberg (1987). The 
research methodology to be followed consists of the following phases: 
  
Identifying the problems mathematically 

 
The existence of a problem in developing models and solution methods for 
lot-sizing problems in general production systems with demand uncertainty 
in a rolling horizon environment. In a rolling horizon setting, the frequency 
with which a master production schedule (MPS) is updated or replanned can 
have a significant impact on MPS stability, productivity, production and 
inventory costs and customer service. In this project, the researcher will 
provide a model for replanning MPS assuming the lower-level schedule 
change cost is known. A method for planning the MPS under stochastic 
demand will be establish based on Fractional ARIMA model. 

 
Data collection and Analysis 

 
Relevant data is collected through observations and discussions with 
management staffs of the organization. The followings are the data that 
obtained : 

 
i. Process flow and process sequence 

ii. Production loading rules 



 

iii. Production capacity 
   iv.        Current system of creating production schedule 

v.        Current production and future demand forecast 
vi.       Analyze and identify product that is popular.  
 

The main secondary resources for this research are printed and on-line 
journals. Journal and books review to identify previous and latest 
development in rolling horizon requirements and in particular the 
forecasting model development. 
 
Model Building  
 
(Fractional Differencing : ARIMA model) The modeling task is to come up 
with an autoregressive fractionally integrated moving average (ARFIMA) 
forecasting model, which combines the advantages of the ARIMA time 
series model and fractional differencing method. ARIMA models are 
homogenous nonstationery systems that can be made stationary by 
successively differencing observations. The more general ARIMA (p,d,q) 
model could also include autoregressive  and moving average components, 
either mixed or separate. The differencing parameter, d, was always an 
integer value. Hosking (1981) further generalized the original ARIMa(p,d,q) 
value for fractional values. ARFIMA model can generate persistent and 
anti-persistent behavior in the manner of fractional noise.  
 

Fractional differencing sounds strange. Conceptually, it is an attempt 
to convert a continuous process, fractional brownian motion into a discrete 
one by breaking the differencing process into smaller components. Integer 
differencing, which is only a gross approximation, often leads to incorrect 
conclusions when such a simplistic model is imposed on real process.  
 

In addition, there is a direct relationship between the Hurst exponent 
and the fractional differencing operator, d: 
 d = H- 0.50       (3.0) 
  
Thus, 0<d<0.50 corresponds to a persistent black noise process, and -0.50 < 
d < 0 is equivalent to an antipersistent pink noise system. White noise 
corresponds to d = 0, and brown noise corresponds to d = 1 or an ARIMA 
(0,1,0) process, aw well known in the literature. Brown noise is the trail f a 
random walk, not the increments of random walk, which are white noise. 
 
 It is common to express autoregressive processes in terms of a 
backward shift operator, B. for discrete time with white noise, B(xt ) = x 1-1 , 
so that 
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where the at are IID random variables. Fractionally differenced white noise, 
with parameter, d, is defined by the following binomial series: 
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Characteristics of ARFIMA (0,d,0) 
 
Hosking (1981) developed the characteristics of the ARFIMA equivalent of 
fractional noise processes, ARFIMA (0,d,0) an ARFIMA process with no 
short-memory effects from p and q. The relevant characteristics as follows: 
 
Let { xt }  be an ARFIMA (0,d,0) process, where k is the time lag and at is a 
while noise process with mean zero and variance . These are the 
characteristics: 

2
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1. When d < 0.50, { xt } is a stationary process and has the infinite 
moving average representation:  

      (3.2) kt

x

k
ktt aaBx −

=
∑Ψ=Ψ= *)(

0

       where: 

  
)!1(!
)!1(

!
)1)...(1(

−
−+

=
+−+

=Ψ
dk
dk

k
dkdd

k  

        As 
)!1(

~,
1

−
Ψ∞→

−

d
kk

d

k      (3.3) 

 
2. When d > -0.50, { xt } is invertible and has the infinite 

autoregressive representation: 
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3. The spectral density of { xt} is: 
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4. The covariance function of { xt } is : 
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5. The correlation of { xt } is:  
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  as k approaches infinity 
   
6. The inverse correlations of { xt } are: 
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7. The partial correlations of { xt } are:   
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ARFIMA (p,d,q) 
 
ARFIMA (p,d,q) process includes short memory AR and MA processes. 
The result is short frequency effects superimposed over the low-frequency 
or long memory process. Examining the simplest examples, ARFIMA 
(1,D,0) and ARFIMA (0,d,1) processes are good illustrate of the mixed 
systems. These are the equivalent of short memory AR(1) and MA(0,1) 
superimposed over a long memory process.  
 
 An ARFIMA (1,d,0) process is defined by: 
             (3.11) tt

d ayB =∆− )*1( ϕ
 

Where  at   is a white noise process. Include the fractional 
differencing process in equation (3.2), where  , so we have  tt

a ax =∆

tt yBx *)*1( ϕ−=   . The ARIMA (1,d,0) variable,  y1, is a first order 
autoregression with ARIMA (0,d,0) disturbances; that is, it is an ARFIMA 
(1,d,0) process. y1 will have short term behavior that depends on the 
coefficient of autoregression, ϕ  , just like a normal AR(1) process. 
However, the long term behavior of y1 will be similar to y1 . It will be 



 

similar to xt. It will exhibit persistence or antipersistence, depending on the 
value of d. For stationarity and invertibility, assume |d| < 0.50, and 1|| <ϕ  
 
 Of most value is the correlation function of the process,  . Using  y

kρ
F (a,b,c,z) as the hypergeometric function, as k –> ∞  
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By comparing the correlation functions for the ARFIMA (1,d,0) and 

AR(1) processes for longer rags, we can see the differences after even a few 
periods. Remember that an AR(1) process is also an infinite memory 
process. 
 

Hosking (1981) described an ARFIMA (0,d,1) process as a first 
order moving average of fractionally different white noise. The MA 
parameter , θ  , is used such that  1|| <θ  ,  again  |d|<0.50, for stationarity 
and invertibility. The ARFIMA (0,d,1) process id defined as : 
 tt xBy *)*1( θ−=       (3.13) 
 the correlation function is as follows, as k ∞→ : 
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Procedure for ARFIMA (p,d,q) model 
 
Hosking (1981) gave the following procedure for identifying and estimating 
an ARFIMA (p,d,q) model: 
 

i. Estimate d in the ARIMA(0,d,0) model  tt
d ay =∆

ii. Define  t
d

t yu ∆=
iii. Using Box-Jenkins modeling procedure, identify and estimate 

the ϕ  and θ   parameters in the ARFIMA (p,0,q) model 

tt aBuB )*** θϕ =  
iv. Define  )**(*)*( 1

tt yBBx ϕθ −=

v. Estimate d in the ARFIMA(0.d.0) model  tt
d ax =∆

vi. Check for the convergence of the d, ϕ   and  θ   parameters, if 
not convergent, go to step 2. 



 

 
Hosking specifically suggested using R/S analysis to estimate d in steps 1 
and 5, using equation (3.0). 
 
R/S Mehodology Analysis 
 
This analysis consists from 2 processes. They are pre processing and 
calculation for H value. Data processing start by taken time series data with 
M length. For analysis that will be done in economic factor, data is more 
appropriate to change in algorithm close price. Peters (1994) suggested an 
old data will be changed to basic 10 algorithm with length for N = M-1 as 
follows: 

 
Ni = log(M(i+1)/Mi), i = 1,2,3,…,(M-1)  
 

 Result for processing data will be used to calculate value of H. this 
time series divided to sub time series A with length n, as A*n = N and for 
each sub time series, average will be calculated like the formula below. 
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after mean value have been calculate,  the value of range for R(A) and 
variance S(A) for each sub time series will be calculated as follows:  

 
with Yj is an element data in sub period involve. 
 
R(A) = (Max∑(Yj – ea) - Min∑(Yj – ea) dengan s≥j≥1 

…..…….……..(3.17) 
 
S(A) = (1/n(∑(Yj – ea)2)0.5 

…………...…………………………………(3.18) 
 
Calculation for value R(A) and S(A) will be repeated for another 

sample to find average value for R(A)/S(A) as equation 3.19. 
 
(R/S)n = (1/A) * 

(∑(R(A)/S(A)))………….……………………………(3.19) 
 
Equation 3.19 will be calculated with a small sample and one H 

value will be get. Calculation will be repeated with a big sample. This 
process will be repeated until value H achieve peak value and decrease. 
Value H will be find from equation 3.20 
 



 

 log(R/S)n = log(c) + H*log(n) 
…………………………………………..(3.20) 

 
Each data will be assumed to have a long term memory structure 

when H in the range of 0.5<H<1. If H in the range of 0<H<0.5 so anti-
persistence structure exist in that data. If H=0.5 so the habit for that data in 
white noise condition. 

 
Developing heuristic Rolling Horizon Scheduling 
 
The steps for constructing rolling horizon scheduling as follows: 
 Step 1: Smooth raw data and construct the MPS based on MRP lot 
size. 
 Step 2: Let product proceed according to step 1 until new 
requirement arrive at day n. Add new demand to current MPS. Expand MPS 
until T+n. Go to step 1. 
 The steps in designing a heuristic rolling horizon scheduling is 
shown by the following table 1 : 

 
Table 1: Rolling Horizon Scheduling 

 
Period 1 2 3 4 5 6 7 8 
MPS 21 0 31 4 12 3   
Product 
A 

21 0 50 0 0 0   

Add A    5 7    
MPS   50 5 7 0 α β 
Product 
A 

  63 0 0 0 α + β 0 

3.5  Testing the Model Validity 
   
After the rolling horizon scheduling is created, testing and validating are 
carried out to determine the feasibility and relevance of the system. Redesign 
is carried out whenever is required.  
 
The assumption to be made in the research will only be known when the 
actual data are available and suitable models are to be constructed based on 
the data and information. 
 
Model Implementation 
 
Results of the study will be presented to the management and production 
department at MSG Berhad in the hope that it will be significant impact on 



 

MPS stability, productivity, production and inventory costs and customer 
service in their organisation.  
 
Instrumentation 
 
Generally, the instrumentation involves in developing the system can be 
divided into two types: software and hardware. 
 
All the pseudo codes and procedures are translated into working programs 
written in Java 2 utilizing jdk 1.3.1 Compiler. The integrated development 
environment of choice is a licensed version of Kawa CodeWright Enabled 
Version 4.01. Hardware platforms employed by the researcher is 1 personal 
computer with a Pentium III 450 MHz processor with 128MB of memory and 
running Windows 98 Second Edition. 
 
Conclusion 
 
The steps that are used to obtain the fluent production model that is going to 
be included inside the MPS are based on the methodology of the ARFIMA 
forecasting model. This method to be used is the Box Jenkins methodology.  
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