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Abstract—Intelligent systems based on machine learning techniques, such as classification, clustering, are gaining wide spread popularity in 
real world applications. This paper presents work on developing a software system for predicting crop yield, for example oil-palm yield, from 
climate and plantation data. At the core of our system is a method for unsupervised partitioning of data for finding spatio-temporal patterns in 
climate data using kernel methods which offer strength to deal with complex data. This work gets inspiration from the notion that a non-linear 
data transformation into some high dimensional feature space increases the possibility of linear separability of the patterns in the transformed 
space. Therefore, it simplifies exploration of the associated structure in the data. Kernel methods implicitly perform a non-linear mapping of 
the input data into a high dimensional feature space by replacing the inner products with an appropriate positive definite function. In this paper 
we present a robust weighted kernel k-means algorithm incorporating spatial constraints for clustering the data. The proposed algorithm can 
effectively handle noise, outliers and auto-correlation in the spatial data, for effective and efficient data analysis by exploring patterns and 
structures in the data, and thus can be used for predicting oil-palm yield by analyzing various factors affecting the yield.  
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1.  Introduction 
The contribution of agriculture in the economic growth of 

Malaysia can be substantially improved through better 
management practices. Oil-palm has become an important 
crop in Malaysia. However, oil-palm production potential is 
reduced when trees are exposed to stressful weather 
conditions. Low moisture is the most common stressful 
condition oil-palm faces, so monitoring rainfall and other 
related parameters (e.g. temperature, pressure, soil moisture, 
sun-shine duration, humidity, etc) is useful in predicting oil 
palm yield levels. The lagged effect of weather in Malaysia 
has implications for global vegetable oil prices in general and 
for the palm oil market in particular. Moreover, not enough is 
known about the daily patterns of rainfall or sunshine 
illumination levels to determine what may mitigate the 
expected negative effects of the heavy or below-normal 
rainfall [1]. Keeping this importance in view, this study is 
aimed at investigating the impacts of hydrological and 
meteorological conditions on oil-palm plantation using 
computational machine learning techniques. Resulting 
improved understanding of the factors affecting oil-palm yield 
would not only help in accurately predicting yield levels but 
would also help substantially in looking for mitigating 
solutions.  

Clustering and classification are very useful machine 
learning techniques which can capture meaningful patterns in 
the agro-hydrological data. However, complexity of 
geographic data precludes the use of general purpose pattern 
discovery and data analysis techniques. Data clustering, a 
class of unsupervised learning algorithms, is an important and 
applications-oriented branch of machine learning. Its goal is to 
estimate the structure or density of a set of data without a 

training signal. It has a wide range of general and scientific 
applications such as data compression, unsupervised 
classification, image segmentation, anomaly detection, etc. 
There are many approaches to data clustering that vary in their 
complexity and effectiveness, due to the wide number of 
applications that these algorithms have. While there has been 
a large amount of research into the task of clustering, 
currently popular clustering methods often fail to find high-
quality clusters.  

A number of kernel-based learning methods have been 
proposed in recent years [2-10]. However, much research 
effort is being put up for improving these techniques and in 
applying these techniques to various application domains. 
Generally speaking, a kernel function implicitly defines a non-
linear transformation that maps the data from their original 
space to a high dimensional space where the data are expected 
to be more separable. Consequently, the kernel methods may 
achieve better performance by working in the new space. 
While powerful kernel methods have been proposed for 
supervised classification and regression problems, the 
development of effective kernel method for clustering, aside 
from a few tentative solutions [2,5,11], needs further 
investigation.  

Finding good quality clusters in spatial data (e.g, 
temperature, precipitation, pressure, etc) is more challenging 
because of its peculiar characteristics such as auto-correlation 
(i.e., measured values that are close in time and space tend to 
be highly correlated, or similar), non-linear separability, 
outliers, noise, high-dimensionality, and when the data has 
clusters of widely differing shapes and sizes [12-14]. The 
popular clustering algorithms, like k-means, have some 
limitations for this type of data [14,15]. Therefore, we present 
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a weighted kernel k-means clustering algorithm incorporating 
spatial constraints bearing spatial neighborhood information 
in order to handle spatial auto-correlation, outliers and noise 
in the spatial data.  

 
2.  Application Area and Methods 

This work is focusing on clustering spatial data, e.g. for 
finding patterns in rainfall, temperature, pressure data so that 
their impact on other objects like vegetation (specifically oil-
palm yield) etc could be explored. A very simplified view of 
the problem domain looks as shown in Figure 1. The data 
consists of a sequence of snapshots of the earth areas taken at 
various points in time. Each snapshot consists of measurement 
values for a number of variables e.g., temperature, pressure, 
precipitation, crop yield, etc. All attribute data within a 
snapshot is represented using spatial frameworks, i.e., a 
partitioning of the study region into a set of mutually disjoint 
divisions which collectively cover the entire study region. 
This way we would be dealing with spatial time series data. 

 

Temperature 

Precipitation 

… 

Plantation 

Temperature

Precipitation

… 

Plantation

Longitude 

Latitude 

Time 
grid cell zone

. 
. 
. 

 
Fig. 1. A simplified view of the problem domain 

 
Clustering, often better known as spatial zone formation in 

this context, segments land into smaller pieces that are 
relatively homogeneous in some sense. A goal of the work is 
to use clustering to divide areas of the land into disjoint 
regions in an automatic but meaningful way that enables us to 
identify regions of the land whose constituent points have 
similar short-term and long-term characteristics. Given 
relatively uniform clusters we can then identify how various 
phenomena or parameters, such as precipitation, influence the 
climate and oil-palm produce (for example) of different areas. 

The spatial and temporal nature of our target data poses a 
number of challenges. For instance, such type of data is noisy. 
And displays autocorrelation In addition, such data have high 
dimensionality (for example, if we consider monthly 
precipitation values at 1000 spatial points for 12 years, then 
each time series would be 144 dimensional vector), clusters of 
non-convex shapes, outliers. 

Classical statistical data analysis algorithms often make 
assumptions (e.g., independent, identical distributions) that 
violate the first law of Geography, which says that everything 
is related to everything else but nearby things are more related 
than distant things. Ignoring spatial autocorrelation may lead 
to residual errors that vary systematically over space 
exhibiting high spatial autocorrelation [13]. The models 
derived may not only turn out to be biased and inconsistent, 
but may also be a poor fit to the dataset [14]. 

One way to model spatial dependencies is by adding a 
spatial autocorrelation term in the regression equation. This 
term contains a neighborhood relationship contiguity matrix. 

Such spatial statistical methods, however, are computationally 
expensive due to their reliance on contiguity matrices that can 
be larger than the spatial datasets being analyzed [13].  

If we apply a clustering algorithm to cluster time series 
associated with points on the land, we obtain clusters that 
represent land regions with relatively homogeneous behavior. 
The centroids of these clusters are time series that summarize 
the behavior of these land areas, and can be represented as 
indices. Given relatively uniform clusters we can then identify 
how various parameters, such as precipitation, temperature 
etc, influence the climate and oil-palm produce of different 
areas using correlation. This way clustering can better help in 
detailed analysis of our problem. 

A simplified architecture of the agro-hydrological system 
looks as shown below: 
 

 
 
 
 
 
 
 

Fig. 2. A simplified architecture for the system 
 

It is worth mentioning that we use Rough sets approach for 
handling missing data in the preprocessing stage of the 
system. However, in order to contain the contents, the main 
component of the system, namely clustering algorithm, is 
elaborated in this paper. 

 
3.  Kernel-Based Methods 

The kernel methods are among the most researched 
subjects within machine-learning community in recent years 
and have been widely applied to pattern recognition and 
function approximation. Typical examples are support vector 
machines [16-18], kernel Fisher linear discriminant analysis 
[25], kernel principal component analysis [11], kernel 
perceptron algorithm [20], just to name a few. The 
fundamental idea of the kernel methods is to first transform 
the original low-dimensional inner-product input space into a 
higher dimensional feature space through some nonlinear 
mapping where complex nonlinear problems in the original 
low-dimensional space can more likely be linearly treated and 
solved in the transformed space according to the well-known 
Cover’s theorem. However, usually such mapping into high-
dimensional feature space will undoubtedly lead to an 
exponential increase of computational time, i.e., so-called 
curse of dimensionality. Fortunately, adopting kernel 
functions to substitute an inner product in the original space, 
which exactly corresponds to mapping the space into higher-
dimensional feature space, is a favorable option. Therefore, 
the inner product form leads us to applying the kernel 
methods to cluster complex data [5,7,18]. 
Support vector machines and kernel-based methods. Support 
vector machines (SVM), having its roots in machine learning 
theory, utilize optimization tools that seek to identify a linear 
optimal separating hyperplane to discriminate any two classes 
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of interest [18,21]. When the classes are linearly separable, 
the linear SVM performs adequately. 

There are instances where a linear hyperplane cannot 
separate classes without misclassification, an instance relevant 
to our problem domain. However, those classes can be 
separated by a nonlinear separating hyperplane. In this case, 
data may be mapped to a higher dimensional space with a 
nonlinear transformation function. In the higher dimensional 
space, data are spread out, and a linear separating hyperplane 
may be found. This concept is based on Cover’s theorem on 
the separability of patterns. According to Cover’s theorem on 
the separability of patterns, an input space made up of 
nonlinearly separable patterns may be transformed into a 
feature space where the patterns are linearly separable with 
high probability, provided the transformation is nonlinear and 
the dimensionality of the feature space is high enough. Figure 
3 illustrates that two classes in the input space may not be 
separated by a linear separating hyperplane, a common 
property of spatial data, e.g. rainfall patterns in a green 
mountain area might not be linearly separable from those in 
the surrounding plain area. However, when the two classes are 
mapped by a nonlinear transformation function, a linear 
separating hyperplane can be found in the higher dimensional 
feature space.  
Let a nonlinear transformation function φ maps the data into a 
higher dimensional space. Suppose there exists a function K, 
called a kernel function, such that, 

)()(),( jiji xxxxK φφ ⋅=  
A kernel function is substituted for the dot product of the 
transformed vectors, and the explicit form of the 
transformation function φ is not necessarily known. In this 
way, kernels allow large non-linear feature spaces to be 
explored while avoiding curse of dimensionality. Further, the 
use of the kernel function is less computationally intensive. 
The formulation of the kernel function from the dot product is 
a special case of Mercer’s theorem [8]. 
 

 
Fig. 3. Mapping nonlinear data to a higher dimensional feature space 
where a linear separating hyperplane can be found, eg, via the 
nonlinear map [ ] [ ] [ ] [ ]( )21
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Examples of some well-known kernel functions are given in 
table 1. 
 
 
 
 
TABLE 1. Some well-known kernel functions 

Polynomial d
jiji xxxxK >=< ,),(  d is a positive integer 

Radial Basis 
Function (RBF) )2/exp(),( 22

σjiji xxxxK −−=  
σ is a user defined 
value 

Sigmoid ),(tanh),( βα +><= jiji xxxxK  α, β are user defined 
values 

 

4.  Proposed Weighted Kernel K-Means with 
Spatial Constraints 
It has been reviewed in [19] that there are some limitations 

with the k-means method, especially for handling spatial and 
complex data. Among these, the important issues/problems 
that need to be addressed are: i) non-linear separability of data 
in input space, ii) outliers and noise, iii) auto-correlation in 
spatial data, iv) high dimensionality of data. Although kernel 
methods offer power to deal with non-linearly separable and 
high-dimensional data but the current methods have some 
drawbacks. Both [16,2] are computationally very intensive, 
unable to handle large datasets and autocorrelation in the 
spatial data. The method proposed in [16] is not feasible to 
handle high dimensional data due to computational overheads, 
whereas the convergence of [2] is an open problem. With 
regard to addressing these problems, we propose an 
algorithm—weighted kernel k-means with spatial 
constraints—in order to handle spatial autocorrelation, noise 
and outliers present in the spatial data.  

Clustering has received a significant amount of renewed 
attention with the advent of nonlinear clustering methods 
based on kernels as it provides a common means of 
identifying structure in complex data [2,3,5,6,16,19,22-25]. 
We first fix the notation: let X = { xi }i=1, . . .,n be a data set with 
xi ∈ RN . We call codebook the set W = { wj}j=1, ., ., .,k with wj ∈ 
RN  and k << n. The Voronoi set (Vj ) of the codevector wj is 
the set of all vectors in X for which wj  is the nearest vector, 
i.e. 

}min{
,...,1 jikjij wxargjXxV −=∈=

=  
Input space Feature space 

For a fixed training set X the quantization error E(W ) 
associated with the Voronoi tessellation induced by the 
codebook W can be written as 

2

1
)( ∑ ∑

= ∈

−=
k

j Vx
ji

ji

wxWE        (1) 

K-means is an iterative method for minimizing the 
quantization error E(W) by repeatedly moving all codevectors 
to the arithmetic mean of their Voronoi sets. In the case of 
finite data set X and Euclidean distance, the centroid condition 
reduces to 

∑
∈

=
ji Vx

i

j

j x
V

w 1           (2) 

where |Vj| denotes the cardinality of Vj . Therefore, k-means is 
guaranteed to find a local minimum for the quantization error 
[26,27].  

The k-means clustering algorithm can be enhanced by the 
use of a kernel function; by using an appropriate nonlinear 
mapping from the original (input) space to a higher 
dimensional feature space, one can extract clusters that are 
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non-linearly separable in input space. Usually the extension 
from k-means to kernel k-means is realised by expressing the 
distance in the form of kernel function [8]. The kernel k-
means algorithm can be generalized by introducing a weight 
for each point x, denoted by u(x). This generalization would 
be powerful for making the algorithm more robust to noise 
and useful for handling auto-correlation in the spatial data. 
Using the non-linear function φ, the objective function of 
weighted kernel k-means can be defined as: 

2

1
)()()( ∑ ∑

= ∈

−=
k

j Vx
jii

ji

wxxuWE φ  (3) 

where, 
∑

∑

∈

∈=

jj

jj

Vx
j

Vx
jj

j xu

xxu
w

)(

)()( φ
                (4) 

Why weighting? As the weather station readings or 
agriculture related attribute values do not often represent 
equal areas, in such cases the use of weighted means instead 
of means becomes necessary. A ‘weight’ attributed to a mean 
or other value usually signifies importance. If weighting is not 
used, then each value that enters into a calculation of mean 
would have the same importance. Sometimes this is not a 
realistic or fair way to calculate a mean. Individual 
observations often, for various reasons, are of varying 
importance to the total, or average value. 

The Euclidean distance from )(xφ  to center  is given 
by (all computations in the form of inner products can be 
replaced by entries of the kernel matrix) the following eq.  

jw
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  (5) 

In the above expression, the last term is needed to be 
calculated once per each iteration of the algorithm, and is 
representative of cluster centroids. If we write 
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With this substitution, eq (5) can be re-written as 
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For increasing the robustness of fuzzy c-means to noise, an 
approach is proposed in [28]. Here we propose a modification 
to the weighted kernel k-means to increase the robustness to 
noise and to account for spatial autocorrelation in the spatial 
data. It can be achieved by a modification to eq. (3) by 
introducing a penalty term containing spatial neighborhood 
information. This penalty term acts as a regularizer and biases 
the solution toward piecewise-homogeneous labeling. Such 
regularization is also helpful in finding clusters in the data 

corrupted by noise. The objective function (3) can, thus, be 
written, with the penalty term, as: 

∑ ∑ ∑∑ ∑
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      (8) 

where Nk stands for the set of neighbors that exist in a window 
around xi and NR is the cardinality of Nk. The parameter γ  
controls the effect of the penalty term. The relative importance 
of the regularizing term is inversely proportional to the 
accuracy of clustering results. 

The following can be written for kernel functions, using 
the kernel trick for distances [29] 

),(),(2),()(
2

jjjiiiji wwKwxKxxKwx +−=−φ  
If we adopt the Gaussian radial basis function (RBF), then 
K(x, x) = 1, so eq. (8) can be simplified as 
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The distance in the last term of eq. (8), can be calculated as 
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As first term of the above equation does not play any role for 
finding minimum distance, so it can be omitted, however.  
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For RBF, eq. (7) can be written as 

k

Vx
j

Vx
jij

Vx
j

Vx
jj

i C
xu

xxKxu

xu

xxu
x

jj

jj

jj

jj +−=−
∑

∑

∑

∑

∈

∈

∈

∈

)(

),()(
21

)(

)()(
)(

2
φ

φ   (12) 

As first term of the above equation does not play any role for 
finding minimum distance, so it can be omitted.  
We have to calculate the distance from each point to every 
cluster representative. This can be obtained from eq. (8) after 
incorporating the penalty term containing spatial 
neighborhood information by using eq. (11) and (12). Hence, 
the effective minimum distance can be calculated using the 
expression: 
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Now, the algorithm, weighted kernel k-means with spatial 
constraints, can be written as follows. 
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Algorithm SWK-means: Spatial Weighted Kernel k-means 
(weighted kernel k-means with spatial constraints) 
 
SWK_means (K, k, u, N, γ , ε) 
Input: K: kernel matrix, k: number of clusters, u: weights for 
each point, set ε > 0 to a very small value for termination, N: 
information about the set of neighbors around a point, γ : 
penalty term parameter,  
Output: w1, ...,wk: partitioning of the points 

1.  Initialize the k clusters: w1=0, ..... , wk =0 

2.  Set i = 0. 

3.  For each cluster, compute C(k) using expression (6) 

4.  For each point x, find its new cluster index as 

2
)()( jj wxminargxj −= φ  using expression (13), 

5.  Compute the updated clusters as 

)1( +i
jw

 = {x : j(x)=j} 

6.  Repeat steps 3-4 until the following termination criterion is 
met: 

ε<− oldnew WW  

    where,  are the vectors of cluster 
centroids. 

},....,,,{ 111 kwwwwW =

 

4.1  Handling Outliers 
This section briefly discusses about spatial outliers, i.e., 

observations which appear to be inconsistent with their 
neighborhoods. Detecting spatial outliers is useful in many 
applications of geographic information systems and spatial 
databases, including transportation, ecology, public safety, 
public health, climatology, location-based services, and severe 
weather prediction. Informally, a spatial outlier is a local 
instability (in values of non-spatial attributes) or a spatially 
referenced object whose non-spatial attributes are extreme 
relative to its neighbors, even though the attributes may not be 
significantly different from the entire population.  

We can examine how eq. (13) makes the algorithm robust 

to outliers. As  measures the similarity between 
, and when x

),( ji xxK

ji xx and
i is an outlier, i.e., xi is far from the other 

data points, then  will be very small. So, the second 
term in the above expression will get very low value or, in 
other words, the weighted sum of data points will be 
suppressed. The total expression will get higher value and 
hence results in robustness by not assigning the point to the 
cluster.  

),( ji xxK

 
 

4.2  Scalability 
The pruning procedure used in [30,31] can be adapted to 

speed up the distance computations in the weighted kernel k-

means algorithm. The acceleration scheme is based on the idea 
that we can use the triangle inequality to avoid unnecessary 
computations. According to the triangle inequality, for a point 

xi, we can write, . The distances 

between the corresponding new and old centers,  for 
all j, can be computed. And this information can be stored in a 
k × k matrix. Similarly, another k × n matrix can be kept that 
contains lower bounds for the distances from each point to 
each center. The distance from a point to its cluster centre is 
exact in the matrix for lower bounds. Suppose, after a single 
iteration, all distances between each point and each center, 

, are computed. In the next iteration, after the centers 
are updated, we can estimate the lower bounds from each 

point x

),(),(),( n
j

o
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o
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n
ji wwdwxdwxd −≥

),( n
j

o
j wwd

),( o
ji wxd

i to the new cluster center, , using  
calculations and the distances from the previous iteration, i.e., 

we calculate the lower bounds as . The 

distance from x

n
jw ),( n

j
o
j wwd

),(),( n
j

o
j

o
ji wwdwxd −

i to  is computed only if the estimation is 
smaller than distance from x

n
jw

i to its cluster center. This 
estimation results in sufficient saving in computational time. 
Once we have computed lower bounds and begin to compute 
exact distances, the lower bound allows us to determine 
whether or not to determine remaining distances exactly. 
 
5.  Experimental Results 

The system is implemented in C++. We get very hopeful 
results regarding analyzing various factors impacting oil-palm 
yield. Because of space constraints, here we mention the 
results in a brief manner, especially of the clustering algorithm 
as the SWK algorithm is at the core of the overall system.  

Given a data matrix, whose rows consists of time series 
from various points on the land (rainfall stations), the 
objective is to discover temporal and/or spatial patterns in the 
data. If we apply clustering algorithm to the rainfall time 
series associated with points on the land (surroundings of 
rainfall stations), we obtain clusters that represent land regions 
with relatively homogeneous behaviour. The centroids of 
these clusters are time series that summarize the bahaviour of 
those land areas. 

For experimentation we selected 24 rainfall stations. A 12-
month moving average is used for removing seasonality from 
the data. For monthly rainfall values for 5 years, we get a data 
matrix of 24×60. SWK-means partitioned it into 2 clusters. 
We also applied the algorithm to the monthly average rainfall 
values of this period, for easy visualization of results. Its 
results are shown in Figure 4. As the locations of rainfall 
stations are known, the clustering results can be easily mapped 
on the physical locations on the map. Actually the clusters will 
summarize the time series associated with relevant regions, 
and when results are plotted for a longer period, it will form 
some contiguous regions. 
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Fig. 4. Clustering results of SWK-means algorithm showing two 
clusters of monthly rainfall (average) of 24 stations 
 
Since the kernel matrix is symmetric, we only keep its upper 
triangular matrix in the memory. For the next five year periods 
of time for the selected 24 rainfall stations we may get data 
matrices of 48×60, 72×60 and so on. The algorithm 
proportionally partitioned the data into two clusters. The 
corresponding results are shown in table 2 (a record represents 
5-year monthly rainfall values taken at a station). It also 
validates proper working of the algorithm. 
 
 
TABLE 2. Results of SWK-means on rainfall data at 24 stations for 
5, 10, 15, 20, 25, 30, 35 years 

No. of Records No. of records in 
cluster 1 

No. of records in 
cluster 2 

24 
48 
72 
96 
120 
144 
168 

10 
20 
30 
40 
50 
60 
70 

14 
28 
42 
56 
70 
84 
98 

 
For the overall system, the information about the 

landcover areas of oil palm plantation is gathered. The yield 
values for these areas over a span of time constitute time 
series. The analysis of these and other time series (e.g., 
precipitation, temperature, pressure, etc) is conducted using 
clustering technique. Clustering is helpful in analyzing the 
impact of various hydrological and meteorological variables 
on the oil palm plantation. It enables us to identify regions of 
the land whose constituent points have similar short-term and 
long-term characteristics. Given relatively uniform clusters we 
can then identify how various parameters, such as 
precipitation, 
temperature etc, influence the climate and oil-palm produce of 
different areas using correlation. Our initial study shows that 
the rainfall patterns alone affect oil-palm yield after 6-7 
months. This way we are able to predict oil-palm yield for the 
next 1-3 quarters on the basis of analysis of present plantation 
and environmental data. 

 
6.  Conclusions 

It is highlighted how computational machine learning 
techniques, like clustering, can be effectively used in 
analyzing the impacts of various hydrological and 
meteorological factors on vegetation. Then, a few challenges 
especially related to clustering spatial data are pointed out. 
Among these, the important issues/problems that need to be 
addressed are: i) non-linear separability of data in input space, 
ii) outliers and noise, iii) auto-correlation in spatial data, iv) 
high dimensionality of data. 

The kernel methods are helpful for clustering complex and 
high dimensional data that is non-linearly separable in the 
input space. Consequently for developing a system for oil-
palm yield prediction, an algorithm, weighted kernel k-means 
incorporating spatial constraints, is presented which is a 
central part of the system. The proposed algorithm has the 
mechanism to handle spatial autocorrelation, noise and 
outliers in the spatial data. We get promising results on our 
test data sets. It is hoped that the algorithm would prove to be 
robust and effective for spatial (climate) data analysis, and it 
would be very useful for oil-palm yield prediction. 
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