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ABSTRACT 

 

 

 
The presence of disturbances such as bends, contraction, expansion, junction, 

bridge piers in a drainage system is very common in Malaysia. These hydraulic 

structures often cause the channel flow to choke and form standing waves. Numerical 

modelling is a reasonable approach to study these problems. The challenges for this 

numerical model lie in representing supercritical transition and capturing shocks. For 

this purpose, an unstructured two-dimensional finite-element model is used to solve 

the governing shallow water equations. This numerical model utilizes a characteristic 

based Petrov-Galerkin method implemented with shock-detection mechanism. The 

model testing demonstrates the ability of this numerical model to reproduce the 

speed and height of flow with the presence of channel contractions, weir, and bridge 

pier under different flow conditions. The numerical model results are compared 

quantitatively with experimental results, published numerical simulation and 

analytical solution. The model was also applied to Sg Segget and Sg Sepakat 

channels in evaluating the channels performance. In general, the numerical model 

satisfactorily computed the water-surface profiles of the experimental data and exact 

solutions. The results demonstrate that the numerical model provide an alternative 

tool in validating theoretical finding and determining appropriate designs for flood 

channels to meet site-specific criteria. 
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ABSTRAK 

 

 

 
Kehadiran struktur-struktur dalam sistem saluran seperti bengkokan saluran, 

pengecilan dan pengembangan lebar, sambungan saluran, dan tiang jambatan adalah 

amat umum di Malaysia. Struktur hidraulik ini sering mengakibatkan aliran dalam 

saluran bergelora dan mewujudkan gelombang tegak. Model berangka adalah satu 

kaedah yang munasabah untuk mengkaji masalah-masalah ini. Cabaran-cabaran yang 

dihadapi oleh model ini termasuklah memapar semula aliran genting dan juga 

gelombang tegak dalam model. Untuk tujuan ini, satu model berunsur terhingga 

dalam dua dimensi telah digunakan untuk menyelesaikan persamaan ‘shallow water 

equation’. Model ini mempergunakan sifat berdasarkan kaedah Petrov-Galerkin 

beserta dengan mekanisme pengesanan kejutan gelombang. Ujian-ujian model 

mempamerkan kebolehan model berangka ini dalam menghasilkan semula kelajuan 

dan kedalaman aliran di sesuatu saluran yang memiliki struktur pengecilan, 

empangan, atau tiang jambatan di bawah keadaan saliran yang berbeza-beza. 

Keputusan dari model berangka ini dibandingkan kuantitinya dengan keputusan 

eksperimen dan penyelesaian analitik. Model berangka ini juga telah digunakan bagi 

menilai kemampuan saluran konkrit Sg Segget dan Sg Sepakat. Secara umum, model 

berangka berjaya menghasilkan profil permukaan air dari eksperimen dan 

penyelesaian analitikal. Keputusan menunjukkan bahawa model berangka ini telah 

memperkenalkan cara alternatif dalam pengesahan sesuatu penemuan teori, dan juga 

penentuan reka bentuk bagi saliran yang bermasalah banjir dengan memenuhi 

kriteria tentu. 



 

 

xi

 

 

 

LIST OF TABLES 
 

 

 

TABLE NO.    TITLE         PAGE 

 

2.1    Flow parameters (hydraulic jump)            19 

2.2    Flow parameters (junction)             20 

2.3    Flow parameters for three assumptions           21 

3.1    Results comparison among three discharge  

measurement methods              35 

3.2    Flow parameters for weir experiment            37 

3.3    Flow parameters for contraction & 90 degree  

expansion test case              41 

3.4    Flow parameters for aluminium pier test cases          46 

3.5    Flow parameters for wood pier test cases           47 

4.1    Measured flow rate, Q (m3/s)                        64 

4.2    Measured normal depth (unit cm) from experiment          64 

4.3    Manning’s n for flume              65 

4.4    Normal depth for small flow rate, Q = 0.0155 m3/s           70 

4.5    Normal depth for large flow rate, Q = 10.0 m3/s          70 

4.6    Flow parameters for subcritical flow without  

back water (weir)              72 

4.7    Flow parameters for supercritical flow without  

back water (weir)              74 

4.8    Results comparison for weir test case with  

analytical solution              76 

4.9    Input parameters for numerical model  

(weir experiment)              79 

 



 

 

xii

4.10    Input parameters for numerical model  

(expansion experiment)             85 

4.11    Analytical solution results (expansion experiment)          85 

4.12    Input parameters and analytical solution results  

(one side contraction)              89 

4.13    Analytical solution results (one side contraction)          90 

4.14    Input parameters and analytical solution results  

(test2 and test3)              92 

4.15    Constant ratio of water depth             93 

4.16    Flow parameters used by Berger et. al.           95 

4.17    Flow parameters used by Chaudhry et. al.           96 

4.18    Input flow parameters for numerical model  

(contraction & 90 degree expansion)           101 

4.19    Results comparison for contraction & 90 degree  

expansion              101 

4.20    Input flow parameters for numerical model  

(90 degree junction)             109 

4.21    Input flow parameters for numerical model  

(hydraulic jump)             112 

4.22    Input flow parameters for numerical model  

(experiment hydraulic jump)            118 

4.23    Input flow parameters for numerical model  

(aluminium pier)             125 

4.24    Relationship between run up with other parameters  

(aluminium pier)             127 

4.25    Input flow parameters for numerical model (wood pier)        131 

4.26    Relationship between run up with other parameters  

(wood pier)              132 

4.27    Input flow parameters for numerical model  

(gradual contraction)             134 

4.28    Input flow parameters for numerical model (bend)         136 

 



 

 

vii

 

 

 

TABLE OF CONTENTS 

 

 

 
CHAPTER    TITLE         PAGE 

   

  TITLE PAGE           i 

  DECLARATION PAGE          ii 

  DEDICATION PAGE          iii 

  ACKNOWLEDGEMENT          iv 

  ABSTRACT            v 

  ABSTRAK            vi 

  TABLE OF CONTENTS          vii 

  LIST OF TABLES           xi 

  LIST OF FIGURES           xiii 

  LIST OF SYMBOLS          xix 

  LIST OF APPENDICES          xxii 

 

 

 

1 INTRODUCTION           1 

  

1.1 Introduction           1 

1.2 Problem Statement          2 

1.3 Objective of the Study         3 

1.4 Scope of the Study          4 

1.5 Significance of Research         5 

 

 

 



 

 

viii

 2 LITERATURE REVIEW          6 
 

2.1 Numerical Model Review          6 

2.2 Published Experimental Works        18 

2.2.1 Hydraulic Jump (Gharangik et. al, 1991)      18 

2.2.2 90º Channel Junction (Weber et al, 2001)      19 

2.2.3 Both Side Contraction (Ippen et al, 1951)      20 

2.3 Basic Equations and Hypotheses        22 

2.4 Governing Equations          24 

2.5 Finite-element Model          25 

2.6 Shock Detecting          27 

2.7 Numerical Approach          28 

 

 

 
 3 METHODOLOGY           30 

 
3.1 Introduction           30 

3.2 Experimental Works          32 

3.2.1 Preliminary Works         32 

3.2.2 Control Test          36 

3.2.3 Experiment 1 : Weir          37 

3.2.4 Experiment 2 : Contraction and 90         

 Degree Expansion       39 

3.2.5 Experiment 3 : Hydraulic Jump       42 

3.2.6 Experiment 4 : Bridge Pier        43 

3.3 Analytical Solution          48 

3.3.1 Weir           48 

3.3.2 One Side and Both Contraction       50 

3.3.3 Expansion          53 

3.3.4 Gradual Contraction         54 

3.3.5 Bend           54 

 



 

 

ix

3.4 Numerical Model Application        56 

3.4.1 Data Collection for Model Input  

Parameters          56 

3.4.2 Model Geometry        56 

3.4.3 Mesh Grid Generation         57 

3.4.4 Initial Condition         59 

3.4.5 Boundary Conditions         59 

3.4.6 Model Control          60 

3.4.7 Model Run          62 

3.4.8 Results Examination         62 

 

 

 
 4 RESULTS AND ANALYSIS         63 

 

4.1 Introduction           63 

4.2 Control Test            64 

4.2.1 Normal Depth          68 

4.3 Test Cases           72 

4.3.1 Weir           72 

4.3.2 Expansion          85 

4.3.3 Contraction          89 

4.3.3.1 One Side Contraction        89 

4.3.3.2 Both Sides Contraction       93 

4.3.3.3 One Side Contraction and  

90 Degree Expansion        97 

4.3.4 Junction         107 

4.3.5 Hydraulic Jump        112 

4.3.6 Bridge Pier         121 

4.3.7 Gradual Contraction        134 

4.3.8 Bend          136 

 

 



 

 

x

 5 MODEL APPLICATION          139 

 

5.1 Segget River           139 

 

  

 

 

 6 DISCUSSION AND CONCLUSION        146 

 

6.1 Model Performance          146 

6.2 Modelling           148 

6.3 Experimental work          150 

6.4 Conclusion           151 

 

 

 

REFERENCES             152 

 

 

 

APPENDIX A              

APPENDIX B 

 



 

 

xiii

 

 

 

LIST OF FIGURES 
 

 

 

FIGURE NO.    TITLE         PAGE 

 

2.1   Water depth increased four times within a short  

distance                8 

2.2   (a) Spatial grids, (b) Geometry of flume            9 

2.3   Comparison results reported by Katapodes           10 

2.4   “S” shape open channel             13 

2.5   “U” shape of rectangular flume            13 

2.6   270 degree curved rectangular flume            14 

2.7   Test facility for hydraulic jump            18 

2.8   Test facility for 90 degree junction             19 

2.9   Test facility for contraction, reported by Ippen          21 

2.10   Example error case in Newton-Raphson iterative  

method               29 

3.1   Methodology Flow Chart             31 

3.2  Rectangular flume in UTM laboratory           32 

3.3  Point gauge and grid paper             33 

3.4   Valve in front of flume             34 

3.5   Checking smoothness of slope            35 

3.6   Mortal weir               37 

3.7   Slope checking in weir test case            38 

3.8   Contraction & 90 degree expansion test case           39         

3.9   Slope checking for contraction & 90 degree  

expansion test case              40 

3.10   Plan view for contraction & 90 degree expansion  

test case               41 



 

 

xiv

3.11    Hydraulic jump test case with steep slope           42 

3.12   Plastic gate at the end of flume            42 

3.13   Triangular nose and tail for aluminium bridge pier           44 

3.14   Plan view (1st test case)             44 

3.15   Side view (1st test case)             45 

3.16   Side view (2nd and 3rd test case)            45 

3.17   Rectangular nose and tail for wood bridge pier          46 

3.18   Plan view (wood pier)              47 

3.19   3D view (wood pier)              47 

3.20   Side view of weir test case             49 

3.21   Inward deflection in boundary            50 

3.22   Channel design for contraction            52 

3.23   Expansion               53 

3.24   Gradual contraction              54 

3.25   Maximum difference depth in bend            55 

3.26   Example geometry shown in model            57 

3.27   Example meshing grid shown in model           58 

3.28   Input for boundary conditions             60 

3.29   Input for Manning’s n              61 

4.1  Bed surface of flume (mild slope)            65 

4.2  Bed surface of flume (steep slope)            66 

4.3  Comparison water depths for different flow rate  

with S = 1/500               66 

4.4  Comparison water profiles for different n and β  

with S = 1/1500              67 

4.5(a)  Water depth contours from numerical model  

at t = 300s               68 

4.5(b)  Water depth contours from numerical model  

at t = 300s               69 

4.6  Velocity distribution when steady state           71 

4.7  Mesh grids (weir)              73 

4.8  Result for subcritical flow without back water  

(weir)                73 

4.9  Result for subcritical flow with back water (weir)          74 



 

 

xv

4.10(a)  Water profile for supercritical flow without  

back water (weir)              75 

4.10(b)  Result for supercritical flow without  

back water (weir)              75 

4.11(a)  Water profile for supercritical flow with  

back water (weir)              75 

4.11(b)  Result for supercritical flow without  

back water (weir)              76 

4.12  Front view of mortal weir             77 

4.13  Side view of water profile on the weir           78 

4.14  Flow pattern on the weir             79 

4.15  Initial condition (weir experiment)            80 

4.16  Mesh grids (weir experiment)             80 

4.17(a)  Water depth (weir experiment)            81 

4.17(b)  Water depth (downstream just after weir)           82 

4.18  Back water in front of weir             83 

4.19  Back water in front of weir (numerical model)          84 

4.20  Geometry and mesh grid for expansion            85 

4.21  Water depth (expansion)             86 

4.22  Velocity distribution (expansion)            86 

4.23  Velocity distribution (frictionless expansion)           88 

4.24  Water depth (frictionless expansion)            88 

4.25  Parameters in one side contraction            89 

4.26  Mesh grid in one side contraction            90 

4.27  Water depth (one side contraction)            90 

4.28  Water depth (frictionless one side contraction)          91 

4.29  Water depths (test2 one side contraction)           92 

4.30  Water depths (test3 one side contraction)           92 

4.31  Water depth (both side contraction from     

Ippen et. al.)               94 

4.32  Water depth (both side contraction from   

Berger et. al.)               94 

4.33  Mesh grid (both side contraction)            95 

4.34  Simulated Water depth (Berger assumption)           96 



 

 

xvi

4.35  Simulated Water depth (Chaudhry assumption)          96 

4.36  Simulated Water depth (new assumption)           97 

4.37  Shock wave in experiment             98 

4.38  Wavefront angles in experiment            98 

4.39  90 degree expansion              99 

4.40  Flow pattern after 90 degree expansion           99 

4.41  Increasing water depth (point A)           100 

4.42  Mesh grid (contraction and 90 degree expansion)         100 

4.43   Plan view for contraction & 90 degree expansion  

test case              101 

4.44(a)  Water depth (contraction & 90 degree expansion)         102 

4.44(b)  Water depth (contraction & 90 degree expansion)         103 

4.44(c)  Water depths (contraction & 90 degree expansion)         104 

4.45  Comparison between simulated water depths and measured  

water depths (contraction & 90 degree expansion)         105 

4.46  h* contours for q* = 0.250 and 0.750  

(experiment 90 degree junction)           107 

4.47  u*-v* vector field for q* = 0.250  

(experiment 90 degree junction)           108 

4.48  Schematic of flow structure for q* = 0.250          109 

4.49  Mesh grid (90 degree junction)           110 

4.50(a)   h* contours for q* = 0.250 from model  

(90 degree junction)             110 

4.50(b)  h* contours for q* = 0.750 from model  

(90 degree junction)             111 

4.51(a)   u*-v* vector field for q* = 0.250 from model  

(90 degree junction)             111 

4.51(b)  u*-v* vector field for q* = 0.750 from model  

(90 degree junction)             112 

4.52  Analysis of grid resolution in hydraulic jump         113 

4.53(a)  Fr1 = 6.71              114 

4.53(b)  Fr1 = 5.71              114 

4.53(c)  Fr1 = 4.21              115 

4.53(d)  Fr1 = 2.30              115 



 

 

xvii

4.54    Hydraulic jump test case with steep slope          116 

4.55(a)   Undular jump (front view)            116 

4.55(b)  Undular jump (side view)            117 

4.56    Oscillations              117 

4.57  Mesh grid (Hydraulic jump)            118 

4.58(a)   Water depth (Hydraulic jump)           119 

4.58(b)  Water depth (Hydraulic jump)           120 

4.59  Sluice gate              121 

4.60(a)  3D view (1st test case in aluminium pier)          122 

4.60(b)  3D view (2nd test case in aluminium pier)          123 

4.60(c)  3D view (3rd test case in aluminium pier)          123 

4.61   Plan views for test case 1 (top), 2 (middle) and 3 (bottom)        124 

4.62  Mesh grid (triangular nose and tail)           125 

4.63(a)  Comparison water depth between experiment and  

numerical model (1st test case)           126 

4.63(b)  Comparison water depth between experiment and  

numerical model (2nd test case)           128 

4.63(c)  Comparison water depth between experiment  

and numerical model (3rd test case)           129 

4.64   Run up at rectangular nose of wood pier          130 

4.65  Mesh grid (rectangular nose and tail)           131 

4.66   Comparison water depth between experiment         

and numerical model (1st test case for wood pier)         133 

4.67  Mesh grid (gradual contraction)           134 

4.68  Water depth for Fr = 2.0, 3.0, 4.0, 5.0 and 6.0   

(gradual contraction)             135 

4.69  Mesh grid (bend)             136 

4.70(a)  Water depth for Fr = 0.25  (bend)           137 

4.70(b)  Water depth for Fr = 1.20  (bend)           137 

5.1(a)  Pictures of Sg Segget Channel and Affected Areas         140 

5.1(b)  Pictures of Sg Segget Channel and Affected Areas                141 

5.1(c)  Pictures of Sg Segget Channel and Affected Areas         142 

5.2  Grid System for Sg Segget Channel           142 

5.3  Bottom Channel Elevation Contour Profile for Channel        143 



 

 

xviii

5.4  Water Surface Elevation Profiles for Channel         143 

5.5  New Geometry for Improved Channel          144 

5.6  Water Surface Elevation Profiles for Improved Channel        144 

5.7  Water Surface Elevation Profiles for Improved Channel        145 

6.1  Wave (side view)             146 

 



 

 

xix

 

 

 

LIST OF SYMBOLS 
 

 

 

E  - Average element energy over the entire grid 

iE  - Average energy of element i  

iψ  - Equal to ii I ϕφ +  

iφ  - Galerkin part of the test function 

iϕ  - Non-Galerkin part of the test function 

∆l  - Element length  

∆t  - Time step size 

ai - Area of element i  

B - Width 

B.C. - Boundary Contition 

C0  - Conversion coefficient (C0 =1 for SI units and 2.208 for non-SI units); 

CFL - Courant-Friedrichs-Lewy 

di - Water depth at section i 

E - Mechanical energy distribution within the element 

E’ - Error = Luapprox – f(xj) 

EDi - Element i energy deviation 

f(xj) - Function in x variable, it can be a constant 

F1θ - Shock number 

Fi -  Froude number at section i 

Fr - Froude number 

g  - Acceleration due to gravity; 

h  - Depth;  

h*  - h/B 

Hmin - Minimum head energy 

I - Identity Matrix 



 

 

xx

L - Differential operator in finite-element model 

L - Length for a object in experiment 

n - Manning’s coefficient 

Nr - Weighting functions 

of depth-averaged velocity; 

p - uh, x-direction discharge per unit width where u being x-component 

  of depth-averaged velocity; 

Q - Discharge rate 

q - vh, y-direction discharge per unit width where v being y-component  

q* - Ratio of Qm/Qt 

Qb - Branch channel flow 

Qm - Main channel flow 

Qt - Total flow 

R - Radius of curvature of the centreline of the channel 

S - Slope gradient 

SD - Standard deviation of all EDi 

Sub - Subcritical flow 

Super - Supercritical flow 

t - Time 

u*  - Dimensionless velocity along y-axis 

uapprox
  - Approximate of dependent variable 

ui - Longitudinal velocity 

V - Flow velocity 

v*  - Dimensionless velocity along x-axis 

x - Longitudinal direction 

x* - x/B 

y - Lateral direction 

y - Vertical water depth 

y* - y/B 

yo - Normal depth 

z - Vertical direction 

z* - z/B 

Z0  - Channel bed elevation; 

β - Dissipation coefficient 



 

 

xxi

β1,β2 - Wavefront angles 

θ - Angle of deflection 

ρ    - Fluid density; 

Σ - Reynolds stresses due to turbulence 

 



 

 

xxii

 

 

 

LIST OF APPENDIX 
 

 

 

APPENDIX    TITLE    PAGE 

 

A   Example laboratory data       158 

B   Detail about numerical model       164 



 

 

 

 

CHAPTER 1 

 

 

 

INTRODUCTION 
 

 

 

1.1 Introduction 

 

The design of structures to control waterways in Malaysia is a major concern 

for engineers. The options for flood control in urban areas, however, are limited. A 

large fraction of the ground surfaces is paved causing concentrated flood flow peaks. 

One of the practical methods of routing the water through the urban areas is via the 

use of high-velocity channels. 

 

Hydraulic engineers often use the term “high-velocity channel” when 

referring to a control flood channel which was designed to discharge water as fast as 

possible to discharge point such as river or sea (Berger et. al. 1995). High-velocity 

channels are often used for drainage purposes in urban regions where real estate is 

expensive. This kind of channels are normally constructed at a sufficient slope so 

that the flow is supercritical, thus reducing the flow area and concentration time. 

 

The designer of these high-velocity channels is faced with many problems 

that cannot be solved easily. At the design level, two main concerns are the water 

depth and velocities of the flow.  The depth must be known to determine sidewall 

heights and minimum bridge span elevations. Normally, a designer simply applies an 

empirical equation such as Manning equation to obtain water depth with known 

discharge rate. However, determining the depth of flow is complicated by side 
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inflows and boundary features such as contractions, expansions, curves, and 

obstructions. These boundary features in a supercritical channel cause flow 

disturbances that can result in a significant oscillation in flow.  

 

Besides water depth, consideration should be given to flow velocity when 

designing a channel section. For safety purpose, flow velocity should be controlled 

within range 0.6 – 4.0 m/s to prevent sediments and to protect channel from bank 

corrosion. 

 

For these design purposes, many methods have been used such as empirical 

equations, physical models and numerical model. A numerical model in handling 

shock capturing will be tested through this study. 

 

 

 

1.2 Problem Statement 

 

Open channel especially high-velocity channels are used for drainage in 

urban regions, since urban sprawl increase rainfall runoff due to altered land use. 

Flood control channels are designed and built to safely manage the anticipated 

hydrologic load. The desire is to minimize the water’s time of residence in the urban 

area. The channels are designed to carry supercritical flow to reduce the water depths 

and the required route. Structures, such as bends and transitions cause flow to choke 

and form jumps. These hydraulic conditions generally necessitate higher walls, 

bridges and other costly containment structures. A poorly designed channel can 

cause bank erosion, damaged equipment, increased operating expense, and reduced 

efficiency (Berger et. al.1995). Furthermore, crossings may be washed out, and the 

town may flood.  

 

Predicting the potential location of shocks and determining the elevation of 

water surface in channel are necessary to evaluate and decide the required sidewall 

heights. Normally empirical equations are often used in the channel design due to its 

simple application. However, the presence of bends, contractions, transitions, 
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confluences, bridge piers and access ramps can cause the flow to choke or to produce 

a series of standing waves and these all will complicate channel design.  

 

In the past, applications of physical models are common for this water profile 

evaluation. Although physical model can reproduce a channel if properly conducted, 

but great care must be taken in model dimension and scale. A major drawback of 

physical models is the problem of scaling down a field situation to the dimensions of 

a laboratory model. Phenomena measured at the scale of a physical model are often 

different from conditions observed in the field. Though physical models can 

reproduce details of actual hydraulic structures, they are still subjected to the 

limitation of scale modeling because sometimes it is impossible to reproduce the 

physical problem to scale. 

 

Changes to the physical model require a “cut and try” technique that involves 

tearing down the unwanted sections of the channel and rebuilding them with the new 

desired design. Due to the time and cost constraints of physical models, it is not 

practical to examine a wide range of designs. This could result in hydraulic 

performance that is only acceptable over a limited range.  

 

 Mathematical models have been developed to overcome the problem 

mentioned above. A mathematical model consists of a set of differential equations 

that are known to govern the flow of surface water. The reliability of predictions of 

models depends on how well the model approximates the field situation. Inevitably, 

simplifying assumptions must be made because the field situation is too complex to 

be simulated exactly. Usually, the assumptions necessary to solve a mathematical 

model analytically are fairly restrictive. To deal with more realistic situations, it is 

usually necessary to solve the mathematical model approximately using numerical 

techniques. Therefore, an inexpensive and a readily available model for evaluating 

these channels are needed. A numerical model is a logical approach.  

 

An area of engineering design that can benefit the use of numerical model is 

the design and modification of high-velocity channels essential for the routing of 

floodwater through urban areas. The proper design of new channels and re-design of 

existing channels is required to avoid such things as bank erosion, damaged 
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equipment, increased operating expenses, flooding, and higher construction costs. By 

using numerical model, a better channel design can be produced with minimum cost 

and time.  

 

 

 

1.3 Objective of the Study 

 

The primary purpose of the research is to develop a methodology and 

ascertain the effectiveness of using numerical model for open channel modeling. The 

challenges for this numerical model lie in representing supercritical transitions and 

capturing the potential location and movement of the shocks. The specific objectives 

of the study are listed as followed: 

 

1. To assess the practicality of using two-dimensional numerical model to aid in 

the design of a realistic open channel. 

2. To evaluate the performance of numerical model in handling shock capturing 

in various test cases through comparison with published results, laboratory 

tests and analytical solutions. 

 

 

 

1.4 Scope of the Study 

 

The purpose of this research is to describe the numerical flow model and to 

illustrate typical open flow fields that the model is capable of simulating. Only 

rectangular channel is focused in this research. Few test cases are conducted in 

laboratory using simple geometries. Numerical models are developed for comparison 

with published laboratory results. Model parameters are tested to determine the 

model sensitivities. This reduces the number of parameters to only those that have 

major impact on the design. The model verification consists of comparing results 

computed using numerical model with laboratory results and analytical solutions. 

However, comparison results will only focus on steady state flow. Model limitations 

will also be discussed. The results can be used to determine the appropriate 
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parameters to be optimized in the future. Finally, the numerical will be applied to 

two selected channels to examine the channels’ performance and the applicability of 

the model as a design tool for improving the channels.  

 

 

 

1.5 Significance of Research 

 

In surface water modelling, the most challenging part is to detect the location 

and water elevation of hydraulic jump or shock. The height of the jump is critical to 

the design of channel walls and bridges within high-velocity channel. And through 

this prediction also, we can define easily the critical location within existing channel 

so that improvement can be done quickly before flood happen in that location. A lot 

of flow models used recently not able to perform this task accurately. However, there 

are still some flow models were developed specially for this shock capture purpose 

but most of them in one-dimensional (1D) mode. 

 

There was some concern to the adequacy of a one-dimensional (1D) analysis 

of the flow conditions such as contractions, expansions, bends, hydraulic jumps and 

bridge piers which commonly found in high-velocity channels. There was a question 

as to whether computing cross-sectional averaged flow variables provided a 

sufficiently accurate estimate of flow depths and velocities within these boundary 

features. Thus, a two-dimensional (2D) analysis was deemed necessary to evaluate 

these flow conditions which always cause overhead trouble in high-velocity channels. 

 

A numerical model HIVEL2D used to assess the design computationally 

before the construction of the physical model begins and to screen alternatives. Using 

a numerical model would accelerate this design process and lead to an improved 

initial physical model thus reducing the time spent on the physical model. This 

would allow for exploration of more design alternatives in a shorter length of time 

resulting in a more cost-effective solution. 

 



 

 

 

 

CHAPTER 2 

 

 

 

LITERATURE REVIEW 

 

 

 
2.1 Numerical Model Review 

 

 Recently there are several types of numerical models that developed to 

predict water profile for high velocity channels. The challenges for these models lie 

in representing sub- and supercritical transitions and capturing the location and 

movement of shocks. A lot of research papers were published to show the model 

simulation and verification of open-channel flows in various test cases. Different 

techniques had been applied such as finite-difference method and finite-element 

method. In most cases, any one of these methods requires a special technique to 

analyze subcritical and supercritical flows without a separate computational 

algorithm. Their performances were then enhanced by various schemes including 

Petrov-Galerkin scheme. However, hydrostatic pressure distribution almost becomes 

the most common hypothesis that was assumed in lot of numerical models. 

 

Among finite-difference method community, MacCormack and Gabuti 

explicit finite-difference scheme were introduced by Fennema et. al. (1990) to 

integrate the equations describing 2D, unsteady gradually varied flows, by assuming 

hydrostatic pressure distribution, small slope and uniform velocity distribution in 

vertical direction.  
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The MacCormack scheme consists of a two step predictor-corrector sequence. 

It means that flow variables which are known at t time level will be used to 

determine the variables at t+1 time level in correction step. Reflection boundaries 

were incorporated in this scheme, where the fictitious points in the solid wall will be 

replaced by immediate interior points.  

 

The Gabutti scheme is an explicit scheme based on the characteristic relations, 

which consists of three sequential steps (predictor step part 1, predictor step part 2 

and corrector step). In subcritical flow, both positive and negative characteristics are 

used while in supercritical flow the information is carried only along the 

characteristics from the direction of flow. Boundary conditions are based on 

characteristic principles.  

 

Two typical hydraulic flows problem: partial dam breach and passage of a 

flood wave through a channel contraction were tested. Specified end conditions are 

needed to analyze steady flows by letting the computations converge to a steady state 

if both sub and supercritical flows are present simultaneously. In partial dam breach 

problem, a small flow depth was assumed initially to simulate dry bed condition. 

Besides, a frictionless, horizontal channel was used to prevent damping. Boundary 

conditions were found incorporated in both scheme, but the finite-difference 

formulation of sharp corners needs additional investigation according to writers.  

 

The same finite-difference scheme (MacCormack) was used to simulate 

contraction cases (Jimenez et. al. 1988). Here, the shallow water equation was used 

as a basic equation. For boundary condition, Abbett procedure was applied. The 

basic idea of this procedure is to apply the numerical scheme up to the wall using 

one-sided differences as a first step. Then to enforce the surface tangency 

requirement, a simple wave is superimposed on the solution to make the flow parallel 

to the wall. The detail explanation can be referred in the paper. 

 

The comparison between computed and measured results indicated that there 

are some cases for which the assumption of hydrostatic pressure distribution is too 

restrictive. In these situations, the use of more general equations, e.g., Boussinesq-

type equations that include vertical acceleration effects, becomes desirable. In that 
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study, computed results were compared with contraction test cases which conducted 

by Ippen et. al. (1951). The simulated water depth increased four times within a short 

distance. The disagreement between the experimental and computed results becomes 

large. 

 

 
Figure 2.1 Water depth increased four times within a short distance 

 

In 1991, one-dimensional Boussinesq equations were used to solve hydraulic 

jump problem in a horizontal rectangular channel (Gharangik et. al. 1991). Again, 

MacCormack and two-four explicit finite-difference schemes were used for solution 

until a steady state was reached. Experiments with the Froude number upstream of 

jump ranging from 2.3 to 7.0 were conducted for model verification. The importance 

of the Boussinesq terms was investigated. Results show that the Boussinesq terms 

have little effects in determining the jump location. However, results from this study 

will be used for model simulation in this study, as discussed in the following section. 

 

In solving open-channel flows problem, shallow water equations are very 

often used by researchers together with finite-element method and Galerkin scheme. 

Schwanenberg et. al. (2004) had developed a total variation diminishing Runge Kutta 

discontinuous Galerkin finite-element method for 2D depth-averaged shallow water 

equations. In his study, the smooth parts using the second order scheme for linear 



 

 

9

elements and third order for quadratic shape functions both in time and space. In that 

model, shocks were normally captured within two elements. 5 test cases including 

the actual dam break of Malpasset, France, indicated a well performance of the 

scheme. 

 

Hicks et. al. (1997) proved that a 1D formulation also can provides an 

excellent solution in modelling dam-break floods in natural channels. St. Venant 

equations were used in the model, which solved with the characteristic dissipative 

Galerkin finite-element method (CDG). The computational simulations were 

conducted using both varied and uniform spatial discretizations. Verification was 

made by comparing dam break experiment from Bellos et. al. (1992), which was 

performed in a rectangular channel of varying widths.  

 

 
Figure 2.2 (a) Spatial grids, (b) Geometry of flume 

 

The experiment from Bellos was repeated for both dry and wet bed 

conditions at downstream of the dam gate. Hicks input constant water levels 

upstream (Hu) and downstream (Hd) of the dam location as initial condition. Between 
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the nodes around the gate, the initial water depth dropped linearly across the element, 

as approximation to the water level discontinuity across the dam in the actual 

laboratory test. The effect of ratio Hu/Hd was studied.  

 

Hicks found that the variable distance grid produced results indistinguishable 

from those obtained with uniform grid. Besides, results which solved by the “box” 

(BFD) finite-difference method were presented. Writers concluded that the BFD 

scheme is not capable of handling a mixed subcritical-supercritical flow and become 

unstable in that transition flow if compare to CDG scheme. 

 

A variance of the Galerkin scheme for conservation laws in 2D, nearly 

horizontal flow, which exhibits a remarkable shock-capturing ability, was presented 

(Katopodes 1984). The method was based on discontinuous weighting functions 

which introduce upwind effects in the solution while maintaining central difference 

accuracy. However, the fundamental hypothesis concerns the vertical distribution of 

pressure is hydrostatic.  

 

 
Figure 2.3 Comparison results reported by Katapodes 

 

Katapodes presented comparison results between analytical solution, classical 

Galerkin solution and Pseudo-viscosity solution in a sudden water release test case. 

The finite-element Galerkin was found very disappointing, although not worse than 

non-dissipative finite-difference methods. In Galerkin solution, the problems such as 
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parasitic waves behind the front and the spreading of discontinuity over elements 

were found. However, the study demonstrated that better results can be obtained by a 

variation of the Galerkin technique known as the Petrov-Galerkin formulation. The 

verification was made by compare to analytical solutions for 4 test cases (1D surge, 

surge through symmetric gradual constriction, surge through asymmetric abrupt 

constriction and expansion). 

 

Another Dam-break problem which tested by Fennema et. al. (1990) was 

simulated by Fegherazzi et. al. (2004) using a discontinuous Galerkin method in 1D 

and 2D. The scheme solved the shallow water equation with spectral elements, 

utilizing an efficient Roe approximate Riemann solver in order to capture bore waves. 

The discontinuous Galerkin method was found flexible and very suitable to model 

systems of hyperbolic equations such as shallow water equations. The weak 

formulation and the discontinuous bases utilize in the discontinuous Galerkin method 

were straight forward in treating shock waves. 

 

A numerical model using finite-element and finite-volume methods with 

Gumensky’s empirical formula was presented by Unami et. al. (1999). Integration of 

the Euler’s equations from the channel bottom to the flow surface with the 

hypotheses of hydrostatic pressure distribution and negligible Coriolis acceleration 

results the 2D free surface equations, which was used in the study. Apart from the 

standard Galerkin scheme used for the continuity equation, the upwind finite-volume 

scheme was developed to solve the momentum equation.  

 

The test problem in spillway was solved for model verification by Unami. In 

the discretized model, the domain was divided into 1,852 triangular elements in mesh 

grid. The inlet discharge was specified at a rate which is the maximum design flood 

discharge of the dam site. Courant-Friedrichs-Lewy condition (CFL) was used in 

model stability checking. The numerical model was found able to represent the 

transition flow and hydraulic jump was captured within a few elements. In the real 

case of spillway, the direction of flow suddenly changes and a large spiral was 

formed which is unable to be captured by 2D numerical model. The numerical model 

was further examined by evaluating the residual term, and the model proved to be 

valid as a primary analysis tool in design practice. 
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There are some researches that try to apply non-hydrostatic assumption in 

numerical model. A three-dimensional numerical method without the hydrostatic 

assumption was developed to simulate hydraulic flow (Lai et. al. 2003). It solves the 

three-dimensional turbulent flow equations and utilizes a collocated and cell-centered 

storage scheme with a finite-volume discretization and this allows a wide range of 

applications utilizing different cell shapes for the mesh.  

 

The Reynolds-averaged Navier-Stokes equations were used as governing 

equations. These governing equations were discretized using the finite-volume 

approach. The domain was divided into number of cells with all dependent variables 

stored at the cell geometric centres. The shape of cells and cell faces must be 

uniquely defined because all geometric quantities such as cell volume and normal 

vector were calculated from this definition. The study demonstrated the use of 

numerical model with prismatic, hexahedron and tetrahedral meshes. 

 

An S-shaped open-channel flow was used as a test case in that research and 

the results with different meshes compared favourably with experimental data. The 

results concluded that prismatic mesh is as efficient and accurate as a hexahedral 

mesh, and it may be a good choice for flows in natural rivers. Detail explanation 

about the effect of non-hydrostatic in numerical model was not found. 

 

The two-dimensional vertically averaged and moment equations model, 

developed by Ghamry et. al. (2002) was used to study the effect of applying different 

distribution shapes for velocities and pressure on the simulation of curved open 

channels. Linear and quadratic distribution shapes were assumed for the horizontal 

velocity meanwhile a quadratic distribution shape was considered for vertical 

velocity. Linear hydrostatic and quadratic non-hydrostatic distribution shapes were 

suggested for pressure. The finite element hybrid Petrov-Galerkin and Bubnov-

Galerkin schemes were used.  

 

Comparisons of the model predictions were made with the experimental 

results obtained in “S” shape open channel, “U” shape of rectangular flume and 270 

degree curved rectangular flume. Note that only subcritical flows were simulated in 

all experiment with Fr < 5.0. In all comparison, only the longitude velocity 
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distribution was focused. Results suggested that pre-assumed velocity distribution 

shapes are not very sensitive; further more the attained higher accuracy on applying 

the non-hydrostatic assumption model is insignificant compared to linear hydrostatic 

model. 

 

         
Figure 2.4  “S” shape open channel 

 

 
Figure 2.5  “U” shape of rectangular flume 
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Figure 2.6  270 degree curved rectangular flume 

 

A total variation diminishing Runge Kutta Discontinuous Galerkin (RKDG) 

finite-element method for two-dimensional depth-averaged shallow water equations 

has been developed by D.Schwanenberg and M.Harms in year 2004. The explicit 

time integration, together with the use of orthogonal shape functions, makes it as 

efficient as comparable finite-volume schemes. The method was shown to have 

second or third order of convergence in time and space for linear and quadratic shape 

functions in smooth parts of the solution and sharp representation of shocks. The test 

indicate an excellent performance of the scheme and giving suggestion that advanced 

analysis using full 3D Navier-Stokes equation is possible and can be conducted. 

 

Models commonly face difficulty in handling jumps. One of the methods 

called “shock tracking” that track the jump location and impose an internal boundary 

there. The shallow water equation then allows weak solutions in which a 

discontinuity represents the hydraulic jump. This is referred as “shock capturing” as 

originated by von Neumann and Richtmyer (1950). Note that this might be not easy 

for researchers to track shock location accurately. Further more, great care must be 

taken to ensure that the errors only local to the jump (discontinuity location). 

 

 Normally a model with continuous depths will conserve mass and momentum 

through the jump but will also produce oscillation at the shortest wavelengths to 

conserve energy. Energy dissipation which should appear in jumps does not exist. In 
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fact, when jumps happen, energy is being transferred into vertical motion. And since 

vertical motion is not included in shallow water equation, it causes some lost in 

model. Therefore, a scheme is needed to address this problem will be dissipative and 

can satisfy the need of shock capturing as well. 

 

 In 1995, a 2D finite-element model for the shallow-water equations was 

produced using an extension of the streamline upwind Petrov-Galerkin (SUPG) 

concept. A mechanical was implemented which detects the presence of a jump by 

calculating the mechanical energy variation per element and so allows the model to 

increase the degree  of upwinding in the shock vicinity while maintaining more 

precise solutions in smoother flow regions (Berger et. al. 1995).  

 

Results from Berger demonstrated the ability of model to reproduce the speed 

and height of a moving hydraulic jump and the ability of the shock-detection 

mechanism to follow the jump. This was a comparison with an analytical solution. A 

2D example of a supercritical contraction was then demonstrated by comparison with 

flume results by Ippen and Dawson (1951). Finally, the data from the study of 

Margarita Channel was used for model verification too. Results showed that the 

model is adequate to address hydraulic problems involving jumps and oblique shocks. 

 

Previously, finite-element methods were found cannot conserve mass locally. 

However, Berger et. al. (2002) demonstrated that, by using the flux inherent in the 

discrete, finite-element conservation statement, the sum of the fluxed around an 

element or group of elements precisely matches the internal mass change. These 

finding were supported by calculations in one and three dimensional (see Berger et. 

al. 2002). 

 

A two-dimensional numerical flow model for trapezoidal high-velocity 

channels which having slopping sidewall was developed by Stockstill et. al. (1997). 

This model was developed after improving the model introduced by Berger et. al. 

(1995). When treat with slopping sidewall where the depth is unknown, an approach 

involve updating the moving boundary displacement only once each time step was 

applied. For interior nodes, large displacement of the moving boundary nodes can 
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lead to element shape distortions. This problem was solved by regridding the side 

slopes each time step as a function of the boundary nodal displacement. 

 

A trapezoidal flume with horizontal curve was conducted in U.S. Army 

Engineer Waterways Experiment Station, Hydraulic Laboratory for model 

verification (Stockstill et. al. 1997). The first test condition demonstrated that the 

model accurately solved the water lines through the transition where the flow 

accelerated from subcritical to supercritical. The experiment was then repeated by 

adding piers. The model was found unable to describe undular jumps which were 

formed in the test, but accurately represented the choked flow condition and the 

maximum depth. Overall results showed that this method is useful in subcritical flow 

but not so efficient in supercritical flow. However, it was proved to be stable at 

significant Courant numbers. 

 

The numerical model which introduced by Berger and Stockstill was further 

extended its application on simulating barge drawdown and currents in channel and 

backwater areas (Stockstill et. al. 2001). Vessel effects were modelled numerically 

by using a moving pressure field to represent the vessel’s displacement. Verification 

model included real field data such as Illinois State Water Survey, Mississippi River 

and Sundown Bay where located along Texas coast between Aransas Bay and San 

Antonio Bay. The model was shown able to reproduce main channel return currents 

in straight reaches of small channels (Illinois Waterway) and in the off-channel areas 

of wide rivers (Mississippi River). 

 

Another unpublished report from Army Engineer Waterways Experiment 

Station showed application of 2D numerical model which was introduced by Berger, 

in San Timoteo Creek which is tributary of Santa Ana River. The proposed design 

within the reach studied includes a sediment basin, a concrete weir followed by a 

chute having converging sidewalls, a compound horizontal curve consisting of 

spirals between a circular curve and the upstream and downstream tangents with a 

banked invert, and a bridge pier associated with the San Timoteo Canyon Road. The 

test had been conducted using two different discharge value, 19000 cfs and 12000 cfs. 

These series of tests demonstrated the application of the numerical model in site. 
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The sensitivity of simulated results to the choice of dissipation coefficient and 

grid resolution was presented. The report concluded that the solution of flow field is 

not significantly influenced by the dissipation coefficient and grid refinement. 

Another test parameter was the roughness coefficient. Different Manning’s n ( n = 

0.012 and 0.014) were applied in the test and it was found that the maximum depth 

was reduced and  the wave crests were located further downstream large smaller 

Manning’s n. 

 

The San Timoteo Creek report also proved that hydrostatic assumption is 

appropriate in the area of the oblique standing wave initiated at the pier nose. The 

vertical acceleration in this vicinity was calculated to be 0.4 relative to gravity. It 

proved that the hydrostatic assumption is reasonable even in regions where the flow 

is rough. 

 

In this research, the application of two-dimensional finite-element model for 

the shallow water equations derived by Berger (1995), is demonstrated in various test 

cases such as hydraulic jump, contraction, expansion, open-channel junction, gradual 

contraction, bridge pier and weir structure. The model is produced using an extension 

of the Petrov-Galerkin scheme. A mechanism which detects the present of shocks by 

calculating the mechanical energy variation per element is implemented. Model 

results will be compared with analytical solution and published laboratory data. A 

few laboratory tests were carried out for model simulation. Data from these 

experimental studies will be presented and the general performance of flow under 

various test cases will be described. Through this research, the performance of 

numerical model will be evaluated and the model can provide another alternative tool 

in designing open-channel structure. 
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2.2 Published Experimental Works 

 

There are three published papers have been selected for comparison with 

numerical model simulation. Complete experimental data are presented in the papers. 

Before using their results, a brief description about their experimental detail or test 

facilities will be explained. The three published test cases are hydraulic jump 

(Gharangik et al, 1991), 90 degree open channel junction (Weber et al, 2001) and 

both side contraction (Ippen et al, 1951) which had been simulated by Berger et al 

(1995) and   Jimenez et al (1988). The experimental results of the papers are 

discussed briefly in chapter 4. 

 

 

 

2.2.1 Hydraulic Jump (Gharangik et. al, 1991) 

 

The test facility comprised of a horizontal 14.0 m long, 0.915 m high, and 

0.46 m wide rectangular metal flume is shown in figure 2.7. The water entered the 

flume through a sharp-edged sluice gate and discharged into a weighing tank for flow 

rate measurement. The water depths in the section of flume with metal walls were 

measured at equally spaced intervals by a point gauge having the accuracy of 0.3 mm. 

Meanwhile the rectangular grids on glass-walled section were used to measure depth 

and jump location. The average levels were considered the water depth. The 

Manning’s n was found varied from 0.008 to 0.011.  

 
Figure 2.7 Test facility for hydraulic jump 
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The experiment was conducted with a range of Froude number from 2.30 to 

7.00. However, only results for Froude number equal to 2.30, 4.21, 5.71 and 6.71 

were selected in this research for model comparison. Important flow parameters such 

as depth, velocity and Froude number are listed in table 2.1, where d1, u1 and Fr1 are 

referred as parameters for incoming flow. The parameters d2, v2 and Fr2 after the 

jump were computed using continuity equation.  

 

Table 2.1 : Flow parameters (hydraulic jump) 

test no. d1 (m) u1 (m/s) Fr1 d2 (m) u2 (m/s) Fr2 q=Q/B Q (m3/s)
     1 0.031 3.831 6.95 0.265 0.448 0.28 0.119 0.534 

2 0.024 3.255 6.71 0.195 0.401 0.29 0.078 0.352 
3 0.040 3.578 5.71 0.286 0.500 0.30 0.143 0.644 
4 0.043 2.737 4.21 0.222 0.530 0.36 0.118 0.530 
5 0.055 2.127 2.90 0.189 0.619 0.45 0.117 0.526 
6 0.064 1.826 2.30 0.168 0.696 0.54 0.117 0.526 

 

 

 

2.2.2  90º Channel Junction (Weber et al, 2001) 

 

The experiment was performed in a sharp-edged, 90º combining flow flume 

with horizontal slope (figure 2.8). The type of material for the flume was not 

available. Volumetric measurements were made with monometer readings from 

calibrated 0.203 m orifices in each of the 0.305 m supply pipes.  

 

 
Figure 2.8  Test facility for 90 degree junction  
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Two head tanks on the main and branch channels supplied the discharge into 

the flume. The upstream main channel, branch channel, and combined tailwater flow 

are denoted as Qm, Qb and Qt, respectively. The ratio q* is defined as the upstream 

main channel flow Qm to the constant total flow Qt which is equal to 0.170 m3/s. 

The tailwater depth in the downstream channel was controlled by an adjustable 

tailgate and it was held constant at 0.296 m. The flow conditions tested are listed in 

table 2.2. Only q* equal to 0.250 and 0.750 were selected for model simulation. 

 

Table 2.2 : Flow parameters (junction) 

Qm (m3/s) Qb (m3/s) q* = Qm/Qt 
0.014 0.156 0.083 
0.042 0.127 0.250 
0.071 0.099 0.417 
0.099 0.071 0.583 
0.127 0.042 0.750 
0.156 0.014 0.917 

 

 

In this study, a Sontek three-component acoustic Doppler velocimeter (ADV) 

was used in velocity measurements; meanwhile point gauge method with an accuracy 

of 1.0 mm was implemented in depth measurements. The testing grid which was 

applied in the experiment produced approximately 2,850 measurement locations for 

each flow condition studied. The results presented in the paper composed of 3D 

velocity and turbulence measurements along with a water surface mapping in the 

immediate vicinity of the channel junction. 

 

 

 

2.2.3 Both Side Contraction (Ippen et al, 1951) 

 

The test was conducted in a 40 ft long flume. The long approach length of 

20ft was used to ensure uniform flow conditions at the contraction. The straight-wall 

contraction was a 2 ft wide channel, transitioning to a 1 ft wide channel at a 

convergence angle of 6 degree at both sides within contraction length of 4.78 ft. The 

reported discharge rate was 1.44ft3/s. The tests were conducted for an approach 

Froude number of 4.0, and upstream depth of 0.1 ft. 
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Figure 2.9  Test facility for contraction, reported by Ippen 

 

Berger (1995) assumed a Manning’s roughness n of 0.0107 for the flume. 

The bed slope producing uniform depth of 0.1 ft was computed to be 0.05664. 

However, for the same test case, Chaudhry assumed zero friction and slope. To show 

the importance of approach depth, another assumption was made in this research and 

it is listed with flow parameters in table 2.3. The β1 and β2 are the expected wave 

front angles due to sudden inward boundaries; while d1, d2 and d3 are the computed 

water depths along the contraction. 

 

Table 2.3 : Flow parameters for three assumptions 

Asssumptio
n 

Q 
(ft3/s) Slope n 

β1(degree
) 

β2(degree
) d1 (ft) d2 (ft) d3 (ft)

Berger 1.44 
0.0566

4 
0.010

7 19.7 23.6 0.1 
0.14

7 
0.20

3 

Chaudhry 1.44 0 0 19.7 23.6 0.1 
0.14

6 
0.20

4 

Trial run  1.44 0.01 
0.004

1 19.7 23.6 0.1 
0.14

6 
0.20

4 
 

Three numerical models were conducted by using the assumption listed 

above. Water depth contours presented in the papers will be used for model 

comparison. 
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2.3 Basic Equations and Hypotheses 

 

Solutions of open-channel problems often involve prediction of three 

components of flow velocities and depths, which can be solved by the continuity and 

momentum equations of motion, along three orthogonal directions. After making 

certain reasonable assumptions, the complete one or two-dimensional differential 

equations of motion can be derived by integrating the three-dimensional equations 

over the channel cross section. 

 

The vertical water depth and lateral dimensions are considered small for most 

problems in open channel if compare to longitudinal dimension. Further more, the 

changes in cross section along the longitudinal direction are very gradual. For one-

dimensional equation, it normally assumes that the main component of flow (velocity 

or acceleration) is only along longitudinal direction. But for two-dimensional 

equation, only vertical components which normal to bed channel are negligible. 

These assumptions will be reasonable when apply in a streamline that have small 

curvatures, and the pressure is hydrostatic. The continuity and momentum equations 

derived below are also based on the following assumptions: 

 

1. The rate of change of shear stress with x and y is small and assume zero where, 

x-axis is along the longitudinal direction (parallel to average bottom slope) and y-

axis is along lateral direction. 

2. The components of velocity and acceleration along z-axis (vertical direction 

parallel to water depth) are zero. This assumption leads to hydrostatic pressure 

distribution. 

3. The density of water is constant. This is true for most of time except at deep 

water, where large pressure result in increased density. 

4. The channel bottom slope is small, so that the flow depths measured normal to 

the channel bottom and measured vertically are approximately the same. 

5. The flow velocity over the entire channel cross section is uniform. 

6. The friction in unsteady flow may be simulated using the steady-state resistance 

laws, such as Manning equation. 
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The principle of mass conservative states that the rate of increase of fluid 

mass within a control volume must equal to the difference between the mass influx 

into and mass efflux out of the control volume (Jain 2001). The equation can be 

given in conservation form as shown below: 
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The momentum equations are based on Newton’s second law of motion, which states 

that the sum of all external forces acting on a system is equal to the product of the 

mass and acceleration of the system. This actually is a vector law which valid for 

three different axes. Since vertical components are neglected, only the conservation 

of momentum along the x-direction and y-direction are derived and given 

respectively as: 
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where,  

h = depth;  

p = uh, x-direction discharge per unit width where u being x-component of depth-

averaged velocity; 

q = vh, y-direction discharge per unit width where v being y-component of depth-

averaged velocity; 

g = acceleration due to gravity; 

C0 = conversion coefficient (C0 =1 for SI units and 2.208 for non-SI units); 

ρ   = fluid density; 

Z0 = channel bed elevation; 

σ = Reynolds stresses due to turbulence 



 

 

24

 The individual terms in the conservation equations above are consisting of 

acceleration force, pressure force, body force and bed shear stresses which 

influenced by Manning’s n. Stresses are modeled using the Manning’s formulation 

for boundary drag and the Boussinesq relation for Reynolds stresses. 

 

 

 

2.4 Governing Equations 

 

The shallow water equation, also referred to as the St. Venant equations, 

describe two-dimensional unsteady free-surface flows. These equations are derived 

assuming hydrostatic pressure distribution, which is usually valid except when the 

water surface has sharp curvatures. They are nonlinear first-order, hyperbolic partial 

differential equations for which closed-form solution are not available except in very 

simplified 1D cases (Fennema, R. et. al. 1990). Therefore, these equations are solved 

numerically. The dependent variables of the two-dimensional fluid motion below are 

defined by the flow depth, h, and the volumetric discharge per unit width in the x-

direction, p, and the volumetric discharge per unit width in the y-direction, q. These 

variables are functions of the independent variables x and y, the two space directions 

and time t (Berger et al. 1995). The shallow-water equations in vector form are given 

as: 
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2.5 Finite-element Model 

 

One of the solution methods for differential equation is to convert it into an 

integral equation. For this purpose, three finite-element approaches are available to 

convert the governing equation into integral equations, which are direct method, 

variational method and weighted residual method. The weighted residual method is 

general method that can be applied in cases where direct and variational methods do 

not work (Jain, 2001).  

 

Galerkin method is one of the weighting residual methods which widely used 

together with finite-element model. In this Galerkin method, the error is forced to 

zero by making it orthogonal to a set of r linearly independent weighting functions, 
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Nr. Nr in finite-element term is called shape function that they span the solution space 

(domain). An inner product is formed between error and weighting functions as 

shown below (Chaudhry, 1993): 

 

( ) 0cos, '' == θENrENr       (2.9) 

or in integral form, 

 

[ ] 0)( =−∫ dRxfLuN japprox
R

r                  (2.10) 

 

where  R = domain 

 Nr = weighting functions 

 E’ = error = Luapprox – f(xj) 

 L = differential operator 

 uapprox
 = approximate of dependent variable 

 f(xj) = function in x variable, it can be a constant. 

 

Refer to equation (2.9), if Nr and E’ are nonzero, then for the inner product to 

be zero, cos θ must be zero. It means that Nr is orthogonal to E’. 

 

The shallow water equations above are solved using the finite element 

method by using Petrov-Galerkin formulation approach. Integration by parts 

procedure is used to develop the weak form of the equations which facilitates the 

specification of boundary condition is: 
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      (2.11) 

 

Note that sidewalls are enforced as no mass or momentum flux through these 

boundaries. A detailed explanation of variables is given in Berger et al (1995). 
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2.6 Shock Detecting 

 

The Petrov-Galerkin test function is defined (Berger et. al 1995) as: 

iii I ϕφψ +=        (2.12) 

where,  

iφ  = Galerkin part of the test function 

  I  = Identity Matrix 

 iϕ  = non-Galerkin part of the test function 

and, 
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where β is a dissipation coefficient varying in value from 0 to 0.5. The ∆ terms are 

the linear basis functions, and ∆x and ∆y are grid intervals. 

 

 Strength of upwinding is controlled by the parameter β. In smoother regions 

this upwinding is unnecessary and the lower values of β produce a more accurate 

result. Therefore, a shock-detection method could be used to determine where a large 

β is implemented and elsewhere a small value can be used. The model developed by 

Berger employs a mechanism that detests shocks and increases β automatically. In a 

similar manner, the eddy viscosity coefficient C varies from Csmooth to Cshock depend 

the mechanism. 

 

 As shown by Berger et al (1995), the method detects energy variation for 

each element and flags element that has a high variation in needing a larger β for 

regions near the shock. According to Berger, for an element i, if |Tsi| > constant 

(through trial a value of constant = 1.0 was chosen), the shock capturing is 

implemented. Where 
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Refer to the formula listed above,  

EDi = element i energy deviation 

E  = average element energy over the entire grid 

SD = standard deviation of all EDi 

E = mechanical energy distribution within the element 

iE = average energy of element i  

ai = area of element i  

 

 

 

2.7 Numerical Approach 

 

In solving the finite-element approach which is consisting of Petrov-Galerkin 

formulation, additional complications occur due to complicated formula. These 

complications include the presence of second or higher-order derivatives, nonlinear 

terms, and the need for numerical integration. 

 

A finite-difference expression is used for the temporal derivatives. The 

general expression for the temporal derivative of a variable Qj is: 
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where j is the nodal location and m is the time step. And α equal to 1 result in a first 

order backward difference approximation; α equal to 2 results in a second-order 
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backward difference approximation of the temporal derivative. A first order 

difference is used for the spin-up to a steady flow condition, whereas a second-order 

difference is more appropriate for unsteady flow simulation (Berger et. al. 1995). 

 

 Meanwhile the system of nonlinear equations is solved using the Newton-

Raphson iterative method. For a nonlinear equation, 
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f(x) is forced to zero at starting and an initial value is assumed for x0. With the known 

x0, and after obtained f(x0) and f’(x0), unknown ∆x  (that is x-x0) can be calculated. 

Then an improved estimate for x is obtained from x = x0 + ∆x.  This procedure is 

continued until convergence to an acceptable residual error is obtained for ∆x.  

Note that f’(x0) might be quite complicated and need others method to calculate the 

answer. In this case, finite-difference method will be applied. And sometimes f’(x0) 

might gives zero value while f(x0) is not zero (example is shown in figure 2.10). 

Iteration will be terminated and cause error to model. 

 

 
Figure 2.10 Example error case in Newton-Raphson iterative method 

 



 

 

 

 

CHAPTER 3 

 

 

 

RESEARCH METHODOLOGY 

 

 

 
3.1 Introduction 

 

The purpose of this research is to describe the numerical flow model and to 

illustrate typical high-velocity flow fields that the model is capable of simulating. 

Various hydraulic test cases using this numerical model were conducted. Results of 

test cases point out flow conditions that are not accurately modelled by numerical 

model. Besides using published flume and numerical simulations data, results 

comparisons also were made with data obtained from experiments. Research 

procedures were summarized in the following flow chart (Figure 3.1). 

 

A through literature review had been carried out for gathering information on 

flume studies. Before applying a numerical model in a real field work, the validity of 

model predictions should be tested through comparison using laboratory data.  

 

Generally research methodology can be divided into two parts: experimental 

work and computer modelling using an existing numerical model. Both of them were 

carried out so that any correction or improvement can be made immediately. Besides, 

brief descriptions about analytical solution for each case will be explained in this 

chapter.  
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Figure 3.1  Methodology Flow Chart 
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3.2 Experimental Works 

 

Four different hydraulic cases were conducted in Hydraulic and Hydrology 

Laboratory, University Teknologi Malaysia, Skudai. The test cases consist of weir, 

contraction & 90 degree expansion, hydraulic jump and bridge piers. These features 

are commonly found in high-velocity channels which will form shock wave in open 

channel. In the experimental work, preliminary works were conducted for setting up 

the rectangular flume in the laboratory and for the control test. 

 

 

 

3.2.1 Preliminary Works 

 

A rectangular flume, 15 m long, 0.457 m wide, and 0.40 m height which 

located in Hydrology and Hydraulic Laboratory, University of Technology Malaysia 

(UTM), was selected in this study (Figure 3.2).  

 

 
Figure 3.2 Rectangular flume in UTM laboratory 

 

The coordinate x refers to the longitudinal direction where starts from zero at 

the entrance; y is the lateral direction; and z is in vertical direction. The length of the 

flume is long enough so that normal depth can be obtained. The bed was made of 

metal which had been re-painted. Grid lines were marked on bed surface for every 
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0.5 m longitudinal direction, as a bench marks during measuring process. The side 

walls were made of glass. Rectangular grid papers were pasted on both sidewalls for 

every 0.5 m. The slope of the flume is adjustable within a range. 

 

Depth measurements for this study were made by using a point gauge with an 

accuracy of 1.0 mm for critical flow region, but grids on side walls were used for 

smooth region.  

 

 
Figure 3.3 Point gauge and grid paper 

 

The water was supplied from a large tank located on roof floor. Unfortunately 

only one pump was still functioning. Because of this, the head of water tank was not 

constant. As a result, discharge rate will reduce slowly after certain period until the 

discharge rate equal to the water pump rate, which is about 0.009m3/s. Note that the 

discharge rate was controlled by turning the valve in front of flume (figure 3.4) and 

the range of flow rate should be determined before test cases. For this purpose, flow 
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rates were recorded for every quarter round when turning the valve, starting with 1.0 

round, 1.25 rounds, 1.5 rounds, till 3.0 rounds.  

 

 
Figure 3.4  Valve in front of flume 

 

For initial trial run, the discharge was measured by using three methods. A 

known volume of tank was placed at the downstream end of the flume and the time 

to fully fill up the tank was recorded using digital time recorder. Thus the discharge 

can be easily obtained after dividing the volume with times. For second method, a 

half-submerged ball was dropped into the upstream of flume and the time for the ball 

to travel a distance of 14.0 m was recorded. Discharge can be computed by 

multiplying the normal depth and the average flow velocity, which is equal to 

distance over times. And for the third method, flow velocities was measured by using 

current meter with an accuracy of 0.01 m/s, and multiplying the water depth which 

was measured at the same point to compute discharge rate. Experiments were 

repeated at least 3 times for each method. Computed flow rates from those methods 

were compared as shown in table 3.1. Since there are not much different, therefore 

the third method had been selected for the rest of test cases. 
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Table 3.1 : Results comparison among three discharge measurement methods 

1st Method 2nd method 3rd method 

Valve 
turn  

depth 
(cm) 

time 
for 

tank(s) 
Q = 

Volume/t

time 
for 

ball(s)
V = 

Distance/t
Q = 
AV 

V 
(m/s) 

y 
(cm) Q=AV

1.00 2.2 42.29 0.006 22.2 0.63 0.006     
1.25 3.0 26.91 0.010 16.26 0.86 0.011 0.75 2.8 0.010 
1.50 3.8 17.02 0.015 14.44 0.97 0.016 0.91 3.6 0.015 
1.75 4.5 12.76 0.021 12.7 1.10 0.023 1.03 4.6 0.022 
2.00 5.5 10.05 0.026 11.75 1.19 0.030 1.16 5.5 0.029 
2.25 6.5 7.54 0.035 13.18 1.06 0.031 1.2 6.3 0.035 
2.50 7.0 6.62 0.040 12.36 1.13 0.037 1.26 7.1 0.041 
2.75 8.1  -  - 11.75 1.19 0.042 1.35 7.7 0.048 
3.00 8.9  -  - 11.73 1.19 0.046 1.45 8.4 0.056 

 

Before starting the control test, the flume base was adjusted so that the flume 

is laterally horizontal. The water depth measured from left side should be the same as 

the right side. However, after the adjustment, the flume still gives a maximum error 

about 2.0 mm. 

 

Smoothness of the flume slope was also studied. The flume was blocked and 

filled with water. The depths were measured for every 0.5 m as shown in figure 3.5. 

The bed condition of flume was plotted and these will be discussed in the following 

section. The test shows that the flume’s bed is not smooth especially in the entrant 

part. However, the bed surface seems to be quite smooth at x = 6.0 till 9.0 m, which 

provides ideal location to locate hydraulic structure for various test cases. For this 

reason, all slopes that are mentioned in the following sections will be referred as 

average slope gradient. 

 

 
Figure 3.5  Checking smoothness of slope 
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For the following experimental work, the railing above the flume is assumed 

parallel to the bottom surface so that the depth measured from gauge point is normal 

to the bottom surface. 

 

 

 

3.2.2 Control Test 

 

The main objective of control tests is to determine normal depth which can be 

used for model design. This is the simplest case in hydraulic study and model 

calibration can be carried out easily through control test.  

 

At the same time, a few flow parameters can be determined through this 

effort, such as the flow rate for every valve turning, and slope checking. Besides, it 

also provides the information on the range of Manning’s n  roughness for the flume. 

This is very important because Manning’s n is needed as numerical model input for 

every test case. Another significant study of control test is that it shows the location 

where the normal depth can be obtained, which provides an ideal place to locate 

hydraulic structure such as weir for various test case. 

 

In this test, any obstacle inside the flume was removed and water was 

allowed to flow freely. In such case, the flow profile oscillated at the entrance but 

slowly converged to a normal depth after 3 or 4 m and decreased near the outlet. 

Control tests were carried out in four slope conditions (1/65, 1/150, 1/500 and 

1/1500) with various discharge rates by changing the valve turn. Water depths were 

recorded for a distance interval of 0.5 m in the longitudinal direction at both side 

walls. The point distance x = 0.6 m represented the upstream boundary in the 

numerical model. The maximum and minimum surface levels were measured and an 

average of these levels was considered the depth at that location. Measurements were 

repeated to ensure the accuracy of the test results. Meanwhile the flow velocities 

were measured for discharge calculation.  
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3.2.3 Experiment 1 : Weir  

 

This experiment was performed in the same flume. A mortal weir with 0.5 m  

long, 0.45 m wide and 13.5 mm thick was placed in the flume at x = 8.1 m, and end 

at x = 8.6 m as shown in figure 3.6. Both weir edges consist of 34 degree sharp edge 

so that flow reflection can be minimized. In this experiment, 1.5 valve turn was 

selected which was approximately 0.015 m3/s discharge rate. Flow parameters are 

summarized in table 3.2. 

 

Table 3.2 : Flow parameters for weir experiment 

Parameters Valve 
turn  

Discharge 
rate, Q 
(m3/s) 

Flume 
wide, 
B (m) 

Slope 
gradient, 

S 

n 

average 
weir 

height 
(m) 

weir 
length 

(m) 

weir 
wide 
(m) 

Lab test 1.5 0.015 0.457 
near 

to(1/65) 
0.0094-
0.010 0.0135 0.50 0.45

 

 

 
Figure 3.6  Mortal weir 
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Slope checking was carried out and it was found near to be 1/65 as shown in 

figure 3.7. However, this average slope gradient was used to calculate Manning’s n 

only; meanwhile the real slope condition was applied when constructing the 

numerical model.  

 

The size of weir was well designed before the experiment. With Q = 

0.015m3/s and S = 1/65, control test showed that the normal depth should be 0.030 

m. By using simple calculation, weir height should be less than 0.020 m to prevent 

back water. Water depth on the weir was computed first by using simple energy 

equations. 

 

S = 1 : 65
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Figure 3.7  Slope checking in weir test case 

 

Because of the non-smooth bed surface, the point gauge was set to zero when 

touching the bed surface for every measurement. The water depth measurements for 

each test case were carried out by the same individual without changing any flow 

setting. These precautions ensured that the same measuring procedures and 

measurement techniques were employed. 
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3.2.4 Experiment 2 : Contraction and 90 Degree Expansion 

 

Figure 3.8 shows the test facility of this experiment. The width of the 

rectangular flume was reduced from 0.457 m to 0.337 m by using painted wood 

plates. The contraction start at x = 8.1 m to provide enough distance for the flow to 

converge to normal depth. At x = 11.13 m, there is a 90 degree expansion and water 

depth was expected to drop rapidly at that location. A simple geometry of this test 

case is shown in figure 3.10. 

 

Similar to weir test case, 1.5 valve turn was selected (0.015 m3/s) as 

discharge rate. Other flow parameters are given in table 3.3. During the experiment, 

water depths were recorded using the same method and this time the measurement 

was focused on the contraction and expansion location where the shock wave will 

occur. Referring to figure 3.10, the locations of point A, C, D and E were recorded 

for later comparison with numerical model. 

 

 
Figure 3.8  Contraction & 90 degree expansion test case 
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After finishing the test, the average channel slope was checked again by 

filling water inside the flume and it was found to be 1/78 as shown in figure 3.9. 
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Figure 3.9  Slope checking for contraction & 90 degree expansion test case 

 

Again, the contraction was well designed before experiment so that no back 

water should occur in laboratory test. By using analytical solution (Subhash C. Jain, 

2001), angles of deflection and water depths after contraction can be computed. 

Based on the analytical solution, the result of experiment should be similar to figure 

3.10. 



 

Table 3.3 : Flow parameters for contraction & 90 degree expansion test case 

Parameters Q (m3/s) (Q/B) B1 (m) B2 (m) B3 (m) L1 (m) L2 (m) 
θ 

(contraction)
θ 

(expansion) S n 
Lab test 0.0153 0.03348 0.457 0.337 0.457 1.134 1.900 6.042 90 lab (1/78) 0.0085-0.0092 

 

 

 

 

 
Figure 3.10  Plan view for contraction & 90 degree expansion test case 
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3.2.5 Experiment 3 : Hydraulic Jump 

 

Several studies have been conducted to study the location of hydraulic jump 

and the amount of energy dissipated (Chaudhry, 1993). Extensive amounts of data 

have been reported in the literature on this topic, providing a complete set of data 

which is suitable for model verification. However, the selected slopes in their 

experimental works are mostly mild or horizontal slope. Therefore, in this research, 

an experiment for hydraulic jump test case was conducted by using steep slope, 

which is around 1/78 as shown in figure 3.11. 

 

 
Figure 3.11   Hydraulic jump test case with steep slope 

 

A 0.045 m wide plastic plate was used as a sluice gate at the downstream of 

flume as shown in figure 3.12. The supercritical flow was found within the steep 

flume and formed a moving hydraulic jump when blocked by the sluice gate. 

 

 
Figure 3.12  Plastic gate at the end of flume 
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By adjusting the opening of gate, the jump location was pushed forward until 

reaching a steady condition, which was located within x = 6 m till x = 9 m. The 

approach Froude number depends on the normal depth of the flume. Because of the 

pump problem, Froude number is difficult to be increased. Furthermore, the 

steepness of flume was unable to be increased due to the fix end connection of pipe 

problem. 

 

The roughness of the flume was obtained through control test. During the 

experiment, gauge point method was used to measure water depth and it was difficult 

to precisely measure the water profile in the jump because the flow is very unstable. 

For this reason, the water depths shown in this research are the average values 

computed from maximum and minimum surface elevations.  

 

Since the discharge rate was controlled by the valve, this is very difficult to 

obtain consistent flow rate for every new test. Thus, the test case was not repeated 

but measurement was repeated more than three times for every different test case. 

 

 

 

3.2.6 Experiment 4 : Bridge Pier 

 

Two different types of pier were tested in the experiment to provide data for 

comparison with numerical model simulation. Three experiments were tested by 

using aluminium pier and wood pier. Figure 3.13 shows the geometry of the test case 

together with the pier dimensions in plan view for the aluminium pier. The F1 

represents the approach Froude number. Instead of semicircular shape, the pier was 

designed with triangular nose and tail. 
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Figure 3.13  Triangular nose and tail for aluminium bridge pier  

 

The aluminium pier was placed at x = 6.6 m. In the first test case, entrance 

flow was allowed to flow freely and converge to normal depth before reaching the 

pier structure. A flow rate about 0.015m3/s was selected and the slope gradient was 

approximately 1/78 to obtain supercritical flow. Through control test, the normal 

depth for this flow rate was found approximately 0.030 m and the approach Froude 

number was approximately 2.0 (F1 = 2.0). The following figures show the plan view 

and side view which were captured in laboratory. 

 

 
Figure 3.14  Plan view (1st test case) 
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Figure 3.15  Side view (1st test case) 

  

For second and third test cases, the aluminium pier was remained at the same 

location. The flow rate and slope were also maintained. However, a control gate was 

placed at the upstream which is close to the pier (at x = 6.10 m). This control gate 

was used to control the approach Froude number. Figure 3.16 below illustrates the 

side view of these test cases. 

 

 

  
Figure 3.16  Side view (2nd and 3rd test case) 

 



 46

 The only different between second and third test case was the approach 

Froude number as listed in table 3.4. The supercritical flow in the third test case was 

much stronger than the second test case. Run up at nose of pier was found 

overtopping for any Froude number which more than 3.5. 

 

Table 3.4 : Flow parameters for aluminium pier test cases 

Test Flow parameters at x = 6.30 m 
   d (m) v (m/s)  Fr 
1 0.030 1.06 2.0 
2 0.023 1.20 2.5 
3 0.029 1.50 2.8 

 

 After testing with aluminium pier, the experiments were repeated again by 

using wood pier, which has rectangular nose and tail. The geometry flume and 

dimensions of wood pier are shown in figure 3.17. Here, the relation between 

approach Froude number and run up on the upstream face of pier is a concern. The 

clearance space on both sides of the pier will be studied by using two different pier 

sizes.  

 

 
Figure 3.17 Rectangular nose and tail for wood bridge pier 

 

Similar to aluminium test cases, three test cases for wood pier will be 

conducted with three different approaches Froude numbers as listed in table 3.5. 

Figure 3.18 and 3.19 show some photographs which were captured in laboratory.  
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Figure 3.18  Plan view (wood pier) 

 

 
Figure 3.19  3D view (wood pier) 

 

Table 3.5 : Flow parameters for wood pier test cases 

Test 
Flow parameters at x = 6.30 

m 
   d (m) v (m/s)  Fr 
1 0.031 1.08 2.0 
2 0.020 1.27 2.9 
3 0.025 1.19 2.4 
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3.3 Analytical Solution 

 

Analytical solution provides a direct comparison to the numerical model 

without relying on hydraulic flume data. Test cases were well designed first and 

results were computed using analytical solution. The numerical model simulations 

then will be conducted. Comparison will be carried out to demonstrate the 

application of the numerical model in open channel flow analysis.  

 

The chosen test cases are weir, one side and both side contraction, expansion, 

and gradual contraction. For additional work, channel bend was conducted for sub 

and supercritical flow to see the capability of model in solving bending problem for 

open-channel flows. 

 

 

 

3.3.1 Weir 

 

Weir is a quite common structure in hydraulic channel and it might cause 

some disturbance including hydraulic jump in flow. Therefore, weir problem had 

been selected as one of the simulation case for numerical model. There are four flow 

conditions:  

 

1. sub-critical flow without back water  

2. sub-critical flow with back water 

3. supercritical flow without back water 

4. supercritical flow with back water 

 

All cases above were simulated in numerical model and the results were 

compared with analytical solution. Figure 3.20 shows the side view of weir problem. 

Other detailed parameters will be presented in chapter four for each case. 
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Figure 3.20  Side view of weir test case 

 

The design steps for weir problems can be summarized as listed below: 

1. A discharge rate equal to 0.0155m3/s with channel wide 0.457 m was 

selected. Roughness coefficient equal to 0.012 was fixed. 

2. To obtain subcritical flow, slope gradient equal to 1/1500 was selected while 

slope 1/50 was used for supercritical flows. 

3. By using the Manning equation, normal depths for each flow condition were 

computed. The weir was placed far enough so that approach depth will 

become a normal depth. With known normal depth, specific energy E can be 

obtained. 

4. Using the specific-energy curve, the minimum total head, Hmin was 

determined. The height of weir then can be decided. 

5. Finally, water depths on the weir and after weir can be computed. The effect 

of backwater will be investigated. 

 

Keep in mind that, the energy equation used in the design is not an 

independent equation as it is derived from the momentum equation (Jain, 2001). The 

latter requires pressure forces on the bottom and sides of the transition, which cannot 

be correctly estimated due to non-hydrostatic pressure distribution within the 

transition. Thus, the following assumptions are made in the design: 

 

1. Section 0 and 2 (figure 3.20) are located sufficiently upstream and 

downstream from the weir where the pressure distribution is hydrostatic. 

2. The small energy loss in transition is neglected. 
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3.3.2 One Side and Both Contraction 

 

The oblique wavefront produced by a vertical channel wall deflected towards 

the flow through an angle θ as shown figure below:  

 
Figure 3.21  Inward deflection in boundary 

 

Hydraulic engineers often interested in the determination of angle β of the 

wavefront in additional to depth and velocity downstream (Jain, 2001). The solution 

for three unknown variables requires three equations, which are continuity equation, 

and the momentum equation along and normal to wavefront.  

 

Continuity equation:  

( )θββ −= sinsin 2211 VyVy        (3.1) 

 

Momentum equation normal to wavefront: 
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Momentum equation along the wavefront: 

( )θββ −= coscos 21 VV        (3.3) 
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 Three equations above are made base on a few acceptable assumptions as 

shown below: 

 

1. The gravity forces and boundary resistance can be neglected in momentum 

equations. 

2. The unit discharges normal to the wavefront are equal. 

3. The net momentum flux along the wavefront is zero.  

4. Distribution velocity of flow is uniform. 

 

Some manipulations of the terms in the three basic equations above give 

equation (3.4) and (3.5) for small θ with assumption that specific energy, E remains 

constant (Jain, 2001). These two equations can be used to calculate some flow 

parameters after contraction such as Froude number, F2 and water depth, y2. 
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The procedures to design one side contraction and both side contraction are 

summarized below: 

 

1. Flow rate (0.0155 m3/s), slope gradient (1/25) and Manning’s n (0.012) were 

fixed. 

2. Normal depth was computed, which is approximately 0.025 m with F1 close 

to 2.74. 

3. A deflection angle, θ = 10 degrees was tried for one side contraction and 5 

degrees for both side contraction.  

4. By using equation (3.4) and (3.5), expected results (F2 and y2) were computed 

and used in results comparison. Besides, the predicted angle β was concerned 

too. 
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The common design for lateral transition is to ensure the positive wave from 

the beginning of the converging walls cancel the negative wave originating at the 

point where the walls change back to parallel (figure 3.22). By this way, the flow 

will turn to smooth again after contraction instead of diamond-shape flow. To do 

that, a trial-and-error procedure was carried out to obtain the sufficient length of 

contraction, L as demonstrated by Jain (2001). However, some modifications might 

be needed in one side contraction when calculating L.  

 

 

 
Figure 3.22  Channel design for contraction 
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3.3.3 Expansion 

 

Expansion is caused by sudden outward deflection in the side boundary as 

shown in figure 3.23. A number of wavefronts that originate from point A, diverge 

from the convex boundary (Jain, 2001). Water depth decreases gradually from line 

AB to AC. In this case, the angle β1 and β2 were computed using equations 3.6, 

where Fi is Froude number at section i. 
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⎝

⎛
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i
i F

1sin 1β        (3.6) 

 
Figure 3.23  Expansion 

 

Same as weir problem, the expansion was well designed first after 

determining parameters such as flow rate (0.0155 m3/s), channel width (from 0.35 m 

expand to 0.457 m), angle of deflection (-5 degrees), Manning’s n (0.009) and slope 

(1/75). The expansion was located far enough so that water depth can converge to 

normal depth, which is approximately 0.035 m with Froude number, F1 equal to 2.16. 

Finally, the water depth and Froude number at the channel downstream were 

calculated using equation (3.4) and (3.5). Detailed calculations can be referred to Jain 

(2001). 
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3.3.4 Gradual Contraction 

 

Problems with gradual change in the boundary were conducted for a range of 

Froude number, varies from 2.0 to 6.0. The relation between approach Foude number 

and the flow will be studied. 

 

One side of the channel wall was replaced by a sequence of short chords, 

each one deflected 4 degrees relative to the preceding one as indicated in figure 3.24. 

The length for each short chord was 0.05 m and there were 6 of them. The channel 

was contracted from 0.5 m to 0.337 m. The first wave front was expected to happen 

at point A with an angle β1. In this test case, only the gradual contraction region was 

considered. 

 

 
Figure 3.24  Gradual contraction 

 

 

 

3.3.5 Bend 

 

It is an extension problem from gradual contraction. Let’s consider the figure 

3.24 again; if the length of each short chord is very small compared to channel width, 

then it will become a bend. The flow in bends is non-uniform due to normal 

acceleration. The outside wall of the channel in a bend must be made high enough to 

accommodate the increase in water depth due to the bend. The flow in channel bends 
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is more complex due to scour and deposition (Jain, 2001). However, this kind of 

channels are beyond the scope of this testing. 

 

For subcritical flow, analytical solution provides the water depth difference 

between left bank and right bank in equation 3.7, where B is surface width, R is the 

radius of curvature of the centreline of the channel, and V is the average velocity. 

 

gR
BVy

2

=∆         (3.7) 

 

Ippen and Knapp found that the maximum difference depth between outer 

and inner walls for supercritical flow was about twice the difference for subcritical 

flow (Jain, 2001). Figure 3.25 below gives a better illustration. The line a-a’, b-b’ 

and c-c’ respectively represent water surface in a straight channel, in a curved 

channel carrying subcritical flow, and in a curved channel carrying supercritical flow 

(Jain, 2001).  

 

 
Figure 3.25  Maximum difference depth in bend 

 

A numerical curved channel with 45 degrees bend was conducted and tested 

for sub and supercritical flow to compare with the above theory. The width of the 

model is 0.5 m with frictionless horizontal slope to ensure the approach flow is 

uniform. Model error was expected especially for high Froude number flow with the 

existing of non-hydrostatic condition in bend. 
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3.4 Numerical Model Application 

 

The basic steps to conduct a hydraulic problem in numerical model are 

introduced in this section. The pre and post processing are very important. The finite 

element meshes, or cross section entities, along with associated boundary conditions 

necessary for analysis, are needed to be created and save to model-specific files. The 

post-processing is needed to view solution data such as flow velocity and steady 

water depth. Generally procedures can be divided into a few steps as listed below: 

 

1. Data collection for model input parameters. 

2. Draw the geometry of model in plan view. 

3. Grid generation and mesh editing. 

4. Apply boundary conditions and initial condition. 

5. Adjust the model control such as the time step size, number of iteration steps 

and roughness coefficient. 

6. Run the model. If necessary, repeat the run after refine the mesh grid. 

7. Examine the solution for reasonableness. 

 

 

 

3.4.1 Data Collection for Model Input Parameters 

 

Data such as geometry of flume, roughness coefficient (Manning’s n), flow 

conditions at boundaries; discharge rate and slope are required as input parameters. 

Those data can be obtained either through experiments, published laboratory results 

or can be designed for any specified test cases. 

 

 

 

3.4.2 Model  Geometry  

 

The geometry of flume/channel was input into model as point coordinate in 

function of x and y, which are referred to longitudinal and lateral direction 

respectively. Meanwhile coordinate z represents the bed level from datum for each 
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point. The value of z was created by using interpolation method. Note that for 

experiment a test cases, the coordinate z was interpolated by using data from slope 

checking. Other critical elements such as points on weir, contraction and bridge pier 

should be inputted into the model. Figure 3.26 shows an example of contraction 

geometry in a numerical model. 

 

 
Figure 3.26  Example geometry shown in model 

 

 

 

3.4.3 Mesh Grid Generation 

 

To a large degree the quality of grid determines the accuracy and stability of 

the model. For this numerical model, only four-node quadrilaterals and three-node 

triangles can be used as linear elements. The element aspect ratio was controlled 

within 1:2. An element’s area should not be greater than 1.5 times the smallest 

neighbour to allow gradual transitions in element size. 
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Due to the run time factor, coarse resolution was used for various test cases as 

a trial run. The results then were analysed and the critical sections were marked. 

Resolution around that marked area was increased. Normally, model resolution will 

be increased until the results no longer changed with greater solution for each test 

case. Besides, stability condition also should be considered in mesh editing. 

Checking on Courant-Friedrichs-Lewy (CFL) criterion was carried out from time to 

time especially when model stop during simulation. Further discussion about CFL is 

provided in the following sub-section. 

 

Once the grid generation was completed, mesh grid was renumbered to obtain 

the smallest bandwidth for global matrix. Run time can be minimized with small 

bandwidth. Figure 3.27 shows an example of final mesh. 

 

 
Figure 3.27  Example meshing grid shown in model 
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3.4.4 Initial Condition 

 

Initial condition is always required in hyperbolic shallow water equation. 

Since the interest is in steady-state results only, the first-order backward difference in 

temporal derivative was chosen. Therefore, initial condition for one time step of old 

data (t = -1) was created in an initial file called hot start file.  

 

The hot start file contains data such as flow rate, velocity and initial depth for 

each mesh node when time = -1. This file will be over written by the model and 

replaced with latest result data. For this reason, a copy of hot start file was always 

made. 

 

Different initial condition causes different output. Thus, the accuracy of the 

initial guess is quite significant, and it will determine how long it will take to reach a 

steady state condition. Results in chapter 4 will show the importance of initial 

condition in several test cases. 

 

 

 

3.4.5 Boundary Conditions 

 

Model equations constitute a hyperbolic initial boundary value problem. The 

required boundary conditions are determined using characteristic method, and 

assigned by selecting a specific node or node string. 

 

The number of boundary conditions is equal to the number of characteristic 

half-planes that originate exterior to the control and enter it. For example, if the 

inflow is supercritical, then all information from outside the control is carried 

through this boundary; if inflow is subcritical, downstream control effect will 

provide the depth. Thus, depth is not needed in this inflow boundary. 

 

In the same manner, if outflow boundary is supercritical, no boundary 

condition is specified because all information can be determined within the control 

domain. If outflow is subcritical, then the depth should be provided as tailwater. The 
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no-flux boundary condition is appropriate at sidewall boundaries. Detail discussion 

can be found in a technical report Berger (1995). Figure 3.28 shows the boundary 

input form in the model. 

 

 
Figure 3.28  Input for boundary conditions 

 

 

 

3.4.6 Model Control 

 

All the hydraulic information about the computation parameter for the model 

run was controlled. As mentioned above, the Courant-Friedrichs-Lewy (CFL) 

number is controlled by grid and time step size as shown in equation 3.8. 

 

tl

ghvu
CFL

∆+∆

++
=

22

      (3.8) 

 

where, u and v are velocity in x and y direction; ∆l is element length and ∆t is time 

step size. Every computation was started with small time step, and then gradually 

increased if the steady state solution is desired. This can prevent model from error 

and gives better results. However, more time is spent with smaller time step. 
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Experience has shown that the model sometimes will converge to a different solution 

with different time step size as described in chapter 4. In fact, it needs engineering 

judgement to decide the time step size. 

 

The element type was assigned using Manning’s n because stresses are 

modeled using the Manning’s formulation for boundary drag. Note that the 

Manning’s n applies to each element bed surface as well as the adjoining sidewalls 

automatically. This includes the wall friction for pier in model. This means that the 

sidewall roughness cannot be assigned independently. The input form is shown in 

figure 3.29. 

 

 
Figure 3.29  Input for Manning’s n 

 

Besides, dissipation coefficient (βshock and βsmooth) in Petrov-Galerkin 

parameters for shock and smooth flow also was controlled. Sensitivity study on this 

parameter was carried out too. Other parameters such as coefficients used in 

determination of eddy viscosity, acceleration of gravity (imperial/SI units), and 

number step of iteration in Newton-Raphson method was also adjusted. 
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3.4.7 Model Run 

 

During this process, the results for each time-step are displayed. These results 

include the number of iterations required, the maximum residual error and the node 

with which it is associated, and the average energy. When it is done, results will be 

saved in two output files that contain final water depth and velocity for each node. 

Post-processing is needed to view the results. 

 

 

 

3.4.8 Results Examination 

 

Results from model were examined for reasonableness. To do this, a post-

processing step was needed to open results in graphic or table mode. For this reason, 

a software named Surface Water Modelling System 8.0 (SMS) was used. Results are 

presented in contour or vector mode for viewing.  

 



 

 

 

 

CHAPTER 4 

 

 

 

RESULTS AND ANALYSIS 

 

 

 
4.1 Introduction 

 

As stated previously, this study involves experimental works and numerical 

model simulation. For every test case, results from both sources are presented 

together for comparison purpose. Input parameters for each simulation are provided 

and results from both sources were analyzed. 

 

In addition, the sensitivity of simulation results to the choice of dissipation 

coefficient (β) and mesh refinement were tested. This sensitivity was examined by 

repeating a run case with different model conditions to assess the test case 

condition’s impact on simulation results.  
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4.2 Control Test  

 

In the laboratory test, a valve was used to regulate the flow rate. Through 

these control tests, the flow rate for every valve turn can be determined. For this 

purpose, control tests were conducted in four different slope gradients (1/z) and each 

of them was repeated to ensure the consistency, as shown in table 4.1. For example, a 

discharge of 0.0291 m3/s, corresponding to a slope of 1/65, was obtained after 

making 720 degree turn to the valve (2.0 round). 

 

Table 4.1 : Measured flow rate, Q 
Valve 
turn 1/ 150 1/150 1/500 1/500 1/1500 1/1500 1/1500 1/65 average
1.00 0.0062 0.0061 0.0054 0.0060 0.0058 0.0056 0.0061 - 0.0059 
1.25 0.0098 0.0110 0.0105 0.0105 0.0103 0.0110 0.0110 0.0110 0.0105 
1.50 0.0155 0.0160 0.0154 0.0159 0.0159 0.0159 0.0164 0.0158 0.0157 
1.75 0.0206 0.0232 0.0208 0.0221 0.0219 0.0213 0.0219 0.0229 0.0218 
2.00 0.0262 0.0299 0.0277 0.0273 0.0271 0.0273 0.0268 0.0291 0.0278 
2.25 0.0349 0.0306 0.0315 0.0318 0.0326 0.0315 0.0314 0.0360 0.0328 
2.50 0.0398 0.0368 0.0372 0.0386 0.0394 0.0372 0.0355 0.0425 0.0386 
2.75 - 0.0419 0.0471 0.0466 0.0468 0.0468 0.0421 0.0481 0.0459 
3.00 - 0.0458 0.0530 0.0519 0.0545 0.0544 0.0503 0.0529 0.0523 

 

Results above will not be used in model simulation. However, they are 

important in estimating the possible value of Manning’s n for the laboratory flume by 

using Manning equation. With known flow rate and measured normal depth, as 

indicated in table 4.2, the range for Manning’s n was computed and listed in table 4.3. 

The information in table 4.3 is essential to provide a guideline in determining the 

roughness coefficient for numerical model. 

 

Table 4.2 : Measured normal depth (unit cm) from experiment 
Valve 
turn 1/ 150 1/150 1/500 1/500 1/1500 1/1500 1/1500 1/65 
1.00 2.2 2.1 3.2 3.3 3.6 3.5 3.5 1.8 
1.25 3.0 2.8 4.6 4.5 4.9 4.9 4.9 2.4 
1.50 3.8 3.6 5.7 5.7 6.1 6.1 6.2 3.0 
1.75 4.5 4.6 7.0 7.1 7.6 7.4 7.6 3.8 
2.00 5.5 5.5 8.3 8.4 9.0 8.9 8.9 4.5 
2.25 6.5 6.3 9.3 9.4 10.2 10.0 10.1 5.2 
2.50 7.0 7.1 10.3 10.3 11.2 11.0 11.1 5.6 
2.75 8.1 7.7 11.2 11.2 12.2 11.9 11.8 6.2 
3.00 8.9 8.4 12.2 12.2 13.1 12.8 12.5 6.7 
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Table 4.3 : Manning’s n for flume  
Valve 
turn 1/ 150 1/150 1/500 1/500 1/1500 1/1500 1/1500 1/65 

1 
0.009-
0.01 

0.009-
0.01 

0.0109-
0.0117 

0.0101-
0.0107 - - - 

0.0095-
0.011 

1.25 
0.009-
0.0097 

0.009-
0.0097 

0.01-
0.0104 

0.0096-
0.01 - - - 

0.009-
0.0099 

1.5 
0.0092-
0.0096 

0.0085-
0.0089 

0.0095-
0.0097 

0.0092-
0.0094 - - - 

0.0085-
0.0091 

1.75 
0.0085-
0.0088 

0.0089-
0.0092 

0.0096-
0.0097 

0.0093-
0.0094 - - - 

0.0088-
0.0092 

2 
0.009-
0.0092 

0.0086-
0.0088 

0.0095-
0.0096 

0.0098-
0.0099 - - - 

0.0089-
0.0093 

2.25 
0.0101-
0.0103 

0.0091-
0.0093 0.0098 0.0100 - - - 

0.0089-
0.0091 

2.5 
0.0095-
0.0096 

0.0091-
0.0092 

0.0097-
0.0098 0.0094 - - - 

0.0086-
0.0088 

2.75 
0.0101-
0.0102 

0.0089-
0.009 0.0086 0.0087 - - - 

0.0088-
0.009 

3 
0.0101-
0.0102 0.0088 0.0087 0.0089 - - - 

0.0091-
0.0092 

 

Generally, the Manning’s n for the flume is within the range from 0.0085 to 

0.0107 due to its composite material. The maximum Manning’s n of 0.0117 was 

neglected because it fall out of the range when compared to others. For slope 1/1500, 

no calculation is made due to the condition of non-smooth bed surface. As reported 

in chapter 3, the flume’s bed is not smooth and its impact becomes more significant 

in mild slope, which is clearly shown in figure 4.1. The “1/1500” thus only becomes 

a label and cannot represents the real slope condition for the flume. Without the exact 

slope gradient, the accuracy of calculated Manning’s n is questionable. However, for 

steep slope, the smoothness of bed surface is unaffected. Figure 4.2 shows one of the 

measured bed level for steep slope (1/65). The average error of 4 mm is considered 

acceptable. 
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Figure 4.1 Bed surface of flume (mild slope) 
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Figure 4.2 Bed surface of flume (steep slope) 

 

Always keep in mind that the non-smooth bed surface will not give any 

problem to model simulation because slope checking was carried out for every test 

case. The measured real slope in the laboratory will be used as the input in modelling. 

 

During the control test, a series of water depth data were recorded starting 

from x = 0.6 m, for various flow rates and slope gradients. By using these data, the 

numerical model was examined for the first time in this simplest test case. Figure 4.3 

shows the measured water depths (blue line) with a slope of 1/500 for 1.0, 1.5 and 

2.0 valve turn respectively. Meanwhile the red line in the figure represents the 

simulated water depth from numerical model. Results indicated that good agreements 

were achieved. The water profiles were particularly affected by the non-smooth bed 

surface and boundary conditions. 
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Figure 4.3 Comparison water depths for different flow rate with S = 1/500 
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To see the sensitivity of Manning’s n and dissipation coefficient (βshock, 

βsmooth), a few model simulations were performed with various n and β, and compared 

with the measured water depth with a slope of 1/1500. The result is plotted in figure 

4.4.  
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Figure 4.4 Comparison water profiles for different n and β with S = 1/1500 

 

As described before, the exact Manning’s n for mild slope is unknown. 

Therefore, a few trial runs with various roughness coefficients were examined, that 

were 0.0085, 0.009 and 0.01. From figure 4.4, it is interesting to express that the 

water depth increased with larger n value. This is not surprising since based on 

Manning equation, the roughness is proportional to the depth in constant flow rate 

(Q). In other words, when the friction increases, the velocity will decrease and the 

water depth will increase due to continuity condition.  

 

Referring to the legend in figure 4.4, the n0.009(1), n0.009(2) and n0.009(3) 

represent three different set of β (βshock, βsmooth) respectively, as listed below: 

 

1. n0.009(1) : n = 0.009, βshock = 0.25, βsmooth = 0.25 

2. n0.009(2) : n = 0.009, βshock = 0.25, βsmooth = 0.50 

3. n0.009(3) : n = 0.009, βshock = 0.10, βsmooth = 0.10 

 

The result clearly shows that the solution is not significantly influenced by the choice 

of Petrov-Galerkin weighting parameter β.  
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4.2.1 Normal Depth 

 

In the control test, it was found that the exact roughness of flume cannot be 

determined. For this reason, the numerical model was compared again with analytical 

solution by using a fixed roughness n. In this case, Manning equation was selected to 

facilitate the evaluation and comparison. 

 

n
SARQ

3
2

=         (4.1) 

 

In Manning equation, the variable Q, B and n were fixed to 0.0155m3/s, 0.457 

m and 0.012, respectively. These parameters will be used as input data in numerical 

model. Normal depths corresponding to various slope gradient (S) were calculated 

for results comparison. By this way, roughness problem can be avoided and the 

accuracy of numerical model can be fully tested. Figure 4.5(a) shows an example of 

plan view of numerical model, with 15 m long and 0.457 m wide. The initial depth 

was set to calculated normal depth of 0.025 m. Other input details are listed below: 

 

Q = 0.0155 m3/s     n = 0.012 

S = 1/25      time step = 1s 

Upstream B.C = supercritical (h = 0.028 m)  Downstream B.C = supercritical 

Initial depth = bed level + 0.025m   β = 0.25 

 

 
Figure 4.5(a) Water depth contours from numerical model at t = 300s 
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After 300 seconds, the water depth converged to 0.025 m and maintained till 

the end of flume. The numerical model was repeated again but this time the upstream 

boundary condition was changed to h = 0.022 m which was lower than the previous 

simulation run. The result is displayed in figure 4.5(b). Again, the simulated depth 

converged to 0.025 m, which yielded result very close to the analytical solution. It is 

apparent that the upstream boundary depth had no effect in the convergence of 

normal depth.  

 

Next, the test was further extended to examine the performance of numerical 

model by changing the slope gradient. As shown in table 4.4, the numerical model 

always underestimated normal depth, and the error increased as the slope decreased. 

In addition, similar results were obtained after extending the length of channel from 

15m to 200m.  

 

 
Figure 4.5(b) Water depth contours from numerical model at t = 300s 

 

To see the effect of different flow rate, a discharge rate of 10.0m3/s was used 

in the following tests. The Manning’s n was maintained as 0.012 but the channel 

width was changed to 3 m. Similar to the previous tests, the computed normal depths, 

(yo theory) were compared to simulated normal depths (yo model), as presented in 

table 4.5. The result shows that yo model was always lower than yo theory. The error 

increased for larger flow rate with maximum error of 11%. This is a direct result of 

the shallow water equation assumption. The various wavelengths actually should 

propagate at different speeds with the shorter one propagating more slowly. In the 
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shallow water model all waves travel at a speed of an infinitely long wave. This 

higher wave celerity leads to decreasing water depth to maintain constant flow rate. 

 

Table 4.4 : Normal depth for small flow rate, Q = 0.0155 m3/s  

S yo theory 
Flow 

Condition yo model 
Displacement 

(m) % error 
1/25 0.025 super 0.025 0 0.00 
1/50 0.032 super 0.031 0.001 3.13 
1/75 0.036 super 0.035 0.001 2.78 

1/100 0.04 super 0.038 0.002 5.00 
1/125 0.043 super 0.041 0.002 4.65 
1/150 0.046 super 0.043 0.003 6.52 
1/175 0.048 super 0.045 0.003 6.25 
1/200 0.049 sub 0.047 0.002 4.08 
1/250 0.053 sub 0.051 0.002 3.77 
1/300 0.056 sub 0.054 0.002 3.57 
1/350 0.059 sub 0.057 0.002 3.39 
1/400 0.061 sub 0.059 0.002 3.28 
1/500 0.066 sub 0.064 0.002 3.03 
1/600 0.071 sub 0.068 0.003 4.23 
1/800 0.077 sub 0.075 0.002 2.60 

1/1000 0.083 sub 0.080 0.003 3.61 
1/1500 0.095 sub 0.091 0.004 4.21 
1/2000 0.106 sub 0.100 0.006 5.66 
1/2500 0.113 sub 0.107 0.006 5.31 
1/3000 0.121 sub 0.114 0.007 5.79 

 

Table 4.5 : Normal depth for large flow rate, Q = 10.0 m3/s 

S  yo theory 
Flow 

Condition yo model Displacement(m) % error 
1/25 0.420 super 0.404 0.017 3.93 
1/50 0.529 super 0.504 0.025 4.73 
1/75 0.606 super 0.579 0.028 4.54 

1/100 0.669 super 0.634 0.036 5.31 
1/125 0.722 super 0.683 0.040 5.47 
1/150 0.769 super 0.725 0.045 5.79 
1/200 0.850 super 0.787 0.063 7.41 
1/250 0.920 super 0.860 0.060 6.52 
1/300 0.981 super 0.914 0.068 6.88 
1/350 1.037 super 0.965 0.072 6.94 
1/400 1.088 sub 1.013 0.075 6.89 
1/500 1.180 sub 1.089 0.091 7.71 
1/600 1.261 sub 1.160 0.101 8.01 
1/800 1.402 sub 1.284 0.118 8.42 

1/1000 1.524 sub 1.388 0.136 8.92 
1/1500 1.778 sub 1.600 0.178 10.01 
1/2000 1.987 sub 1.779 0.208 10.47 
1/2500 2.167 sub 1.929 0.238 10.98 
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The velocity was assumed uniform in Manning equation but this is not true in 

real condition simulation. In model, the velocity is not uniform due to friction from 

side wall. For example, as highlighted in table 4.5, the velocity should be equal to 

3.92 m/s according to Manning equation. However, the velocity distribution in model 

varied from 3.854 m/s to 4.32 m/s as shown in figure 4.6.  

 

 
Figure 4.6 Velocity distribution when steady state 

 

The control test and normal depth model simulation provided information 

such as the available flow rate in the laboratory, possible roughness for flume, the 

sensitivity of Manning’s n and dissipation coefficient (βshock, βsmooth), and the 

accuracy of numerical model prediction. Through these simple test cases, it clearly 

shows roughness always the main problem in the model simulation since it gives 

significant effect to the solution. Overall, the model is able to converge to a stable 

and consistent solution with an acceptable error due to the limitations of shallow 

water equations. 

 

 

 

 

 



 

 

72

4.3 Test Cases 

 

Numerous test cases are presented in the following sections, which consist of 

weir, expansion, contraction, channel junction, hydraulic jump, bridge pier, gradual 

contraction and bend. All test cases demonstrated the ability of numerical model to 

capture shock wave and to predict the flow profile. 

 

 

 

4.3.1 Weir 

 

Weirs are among the oldest and simplest hydraulic structures that have been 

used for centuries by hydraulic engineers for flow measurement, energy dissipation, 

flow diversion, regulation of flow depth and flood passage. 

 

Four different flow conditions were solved using analytical solution and 

numerical model. The first condition was subcritical flow without back water. The 

related flow parameters used in numerical model and analytical solution are shown in 

table 4.6. A 3.0 m long weir structure was placed at x = 20 m with 0.01 m height. 

Based on analytical solution, no back water should occur in this case. 

 

Table 4.6 : Flow parameters for subcritical flow without back water (weir) 

Q (m3/s) B (m) 
Channel 

length (m) n S yo theory (m) β 
0.0155 0.457 30 0.012 1/1500 0.095 0.25 

 

Weir height (m) Upstream BC Downstream BC Initial condition 
0.01 sub Sub (h=0.095m) 0.080m depth 

 

 Figure 4.7 illustrates the mesh grid near the weir location. Since this was 

considered one-dimensional problem, only 4 elements, each 0.11m wide was 

constructed laterally across the channel in model. 
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Figure 4.7 Mesh grids (weir) 

 

The model was computed until 400s after reaching a steady condition and the 

result (centre grid) is plotted in figure 4.8. Using analytical solution, the water depth 

before, above and after the weir should be 0.095 m, 0.082 m and 0.095 m 

respectively. As shown in figure 4.8, numerical model results are in agreement with 

the analytical solution. 
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Figure 4.8 Result for subcritical flow without back water (weir) 

 

The second situation was set to create a subcritical flow with back water. For 

this case, the weir’s height was raised to 0.040 m from the position x = 15 m to x = 

16 m. The same mesh resolution and flow parameters were used. However, the 

tailwater depth was fixed to 0.070 m. Expected back water can be seen in numerical 

model result as shown in figure 4.9. The water depth, approaching the weir was 
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0.110 m and dropped to 0.050 m on the weir, followed by 0.025 m at the end toe of 

weir, and rapidly jumped to 0.078 m height due to mild slope effect at the 

downstream end. Although the simulated depths compared quite well with the 

computed depths, further experiments are needed to verify the location of hydraulic 

jump. 
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Figure 4.9 Result for subcritical flow with back water (weir) 

 

The third situation was designed to produce a supercritical flow without back 

water. To produce a supercritical flow, a slope of 1/50 was selected. Other flow 

parameters are listed in table 4.7. The β were defined as dissipation coefficient for 

shock and smooth region (βsmooth and βshock). Figure 4.10(a) presents the simulated 

water profile. Meanwhile figure 4.10(b) indicates that approach water depth near the 

weir was found to be 0.031 m, increased to 0.034 m on the weir structure, but 

dropped to 0.031 m after the weir. The profiles are similar to profiles obtained in the 

exact solution. 

 

Table 4.7 : Flow parameters for supercritical flow without back water (weir) 

Q (m3/s) B (m) 
Channel 

length (m) n S yo theory (m) β 
0.0155 0.457 30 0.012 1/50 0.032 0.25, 0.5 

 

Weir height (m) Upstream B.C. Downstream B.C. Initial condition 
0.01 Super (h=0.032m) Super 0.035m depth 
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water profile
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Figure 4.10(a) Water profile for supercritical flow without back water (weir) 
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Figure 4.10(b) Result for supercritical flow without back water (weir) 

 

The fourth situation was supercritical flow with back water. All flow 

parameters were maintained except the weir height was increased to 0.030 m to form 

back water. Simulated results are illustrated in figure 4.11(a) and figure 4.11(b).  
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Figure 4.11(a) Water profile for supercritical flow with back water (weir) 
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Figure 4.11(b) Result for supercritical flow without back water (weir) 

 

In this case, it was not easy to determine the depth around the weir in the 

model. However, the maximum level of back water still can be determined. Besides, 

the subcritical flow (back water region) changed to supercritical flow at the 

downstream of the weir. Table 4.8 shows the overall results for all test cases, and 

comparison of the results with analytical solution. The average error was about 0.002 

m (3.6 %). Comparison shows that the model is adequate to address hydraulic 

problem involving weir structure. 

 

Table 4.8 : Results comparison for weir test case with analytical solution 

Water depth (m) 
Test 
Case    

Before 
weir 

Above 
weir 

After 
weir 

Theory 0.095 0.082 0.095 
Model 0.095 0.083 0.093 
Error  0.000 0.001 0.002 

1 

% error 0.0 1.2 2.1 
Theory 0.108 0.049 0.026 
Model 0.110 0.05 0.025 
error 0.002 0.001 0.001 

2 

% error 1.9 2.0 3.8 
Theory 0.032 0.038 0.032 
Model 0.031 0.034 0.031 
error 0.001 0.004 0.001 

3 

% error 3.1 10.5 3.1 
Theory 0.097 0.049 0.028 
Model 0.087 0.050 0.027 
error 0.010 0.001 0.001 

4 

% error 10.3 2.0 3.6 
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In fact, the analytical solution cannot represent the real condition on site with 

the attendance of assumptions in the solution. For this reason, observed results from 

experiment were required for model simulation. Figure 4.12 shows the front view of 

a mortal weir in the flume experiment. 

 

 
Figure 4.12 Front view of mortal weir 

 

The flume slope was approximately set to 1/65 to obtain a supercritical flow, 

with normal depth (approach depth) equal to 0.030 m. The test was started in dry bed 

condition. During the test, water elevation increased when the flow passes through 

the weir as shown in figure 4.13. 
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Figure 4.13 Side view of water profile on the weir 

 

Based on analytical solution, the increased water depth was determined. 

However, the flow pattern on the weir formed a “V” shape as shown in figure 4.14, 

which is impossible to be computed in analytical solution. This happened because of 

the frictional effect from side walls.  
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Figure 4.14 Flow pattern on the weir 

 

The flume experiment was then modelled to see whether the “V” pattern 

could be captured or not. The test was simulated with Q = 0.0152 m3/s as measured 

in lab. Other detail inputs are outlined in table 4.9. The Manning’s n was obtained by 

trial and error by matching the computed water depths with the measured water 

depths in the flume. It was found that the n = 0.094 gave the best result. 

 

Table 4.9 : Input parameters for numerical model (weir experiment) 
Q 

(m3/s) Up BC Down BC B (m) Slope n β 
time 

step (s) 

0.0152 
super 

(h=0.037) supercritical 0.457 measured 0.0094 0.25, 0.5 0.05 
 

The initial dry bed condition was applied in flume. However, because the 

numerical model is not adapted to handle dry-bed propagation, the initial condition 

was modified so that initial water depth at x = 0.6 m was 0.26 m and reduced 

gradually to 0.01 m until x = 3.1 m and maintained till the end of flume, as shown in 

figure 4.15. The mesh grid is presented in figure 4.16 with maximum aspect ratio of 

1.2. 
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Figure 4.15 Initial condition (weir experiment) 

 

 
Figure 4.16 Mesh grids (weir experiment) 

 

Results from numerical model are presented in figures 4.17(a) and 4.17(b). 

The simulated contours were labelled with orange colour. Meanwhile the scatter 

points, which labelled with various colour represent the measured depths from the 

experiment. For comparison purpose, the scatter points were labelled with colour 

level that corresponding to contour legend. Similar “V” shape flow pattern occurred 

in simulated results. Besides, the second “V’ just immediately after the weir was also 

captured in numerical model. The oscillations at downstream were observed and the 

simulated depths were very close to measured results. Again, the model shows its 

ability to solve the real weir problem.  

 

 



 
Figure 4.17(a) Water depth (weir experiment) 

Scatter points shown below are 
measured water depth from lab; 
meanwhile the contour and legend 
show the results from model. For 
comparison, just compare font colour 
with contour colour. 
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Figure 4.17(b) Water depth (downstream just after weir) 
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In addition, there is interesting finding in the flume experiment. During the 

steady state condition, water on the weir was blocked temporarily and back water 

occurred in front of the weir as displayed in figure 4.18. However, when the obstacle 

was removed, the back water was still maintained and formed another pattern of 

steady state condition.  

 

 
Figure 4.18 Back water in front of weir 

 

It was caused by the change of approach depth. In the other words, the 

approach depth may influence minimum head energy (Hmin). For example, if 

approach depth is 0.030 m, Hmin should be 0.020 m. Since the weir height is only 

0.0135 m, no back water should occur. However, when the approach depth was 

increased to 0.040 m, the Hmin becomes 0.0028 m which is less than weir height. This 

results back water in the flume. 

 

To verify this explanation, the same numerical model was repeated with 

different initial condition. The initial depth was set to 0.025 m throughout the domain. 

At starting, the upstream water was pushed forward and raised up the approach depth. 

The increasing of approach depth will reduce Hmin till less than weir height.  
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Figure 4.19 Back water in front of weir (numerical model) 

 

Figure 4.19 shows the back water in numerical model when t = 50s. Again, 

the back water was successfully simulated by the numerical model. It is apparent to 

note that the solution in this test case was sensitive to approach depth. Through these 

investigations, numerical model had demonstrated its usage as a tool in checking the 

flow condition for existing open channel. 
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4.3.2 Expansion 

 

Expansion problem was conducted in the numerical model by using the flow 

parameters listed in table 4.10. The total length of channel was 14 m with upstream 

width of 0.35 m. The channel was expanded to 0.457 m at x = 7.0 m. As illustrated in 

figure 4.20, the mesh was refined at critical region with 0.01 m wide. Detail 

description about this test was discussed in chapter 3.  

 

Table 4.10 : Input parameters for numerical model (expansion experiment) 
Q 

(m3/s) 
B1 
(m) 

B2 
(m) n S F1 

θ 
(degree)

y1 
(m) 

Expansion 
Length (m) 

Time step 
(s) 

0.0155 0.35 0.457 0.009 1/75 2.159 -5 0.035 1.223 0.1 
 

Upstream BC Downstream BC Initial condition β 
Super (h=0.095m) Super  0.035 m depth 0.25, 0.5 

 
Figure 4.20 Geometry and mesh grid for expansion  

 

The computed results using analytical solution, are listed in table 4.11 

(parameters are described in figure 3.26). β1 and β2 are wavefront angles of negative 

wave; meanwhile F2, d2 and v2 are the Froude number, depth and velocity 

downstream of the expansion. 

 

Table 4.11 : Analytical solution results (expansion experiment) 

β1(degree) β2(degree) F2 d2 (m) v2 (m/s) 
27.6 23.4 2.52 0.028 1.32 

 

Figure 4.21 and 4.22 present the simulated water depth and velocity 

distribution. The red lines in figure 4.21 show the theoretical angles of deflection. 



Figure 4.21 Water depth (expansion) 

Figure 4.22 Velocity distribution (expansion) 
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 The simulated results reasonably matched the analytical solution with regard 

to the magnitude of water depths. However, the angles of wavefront were slightly 

different with analytical solution (red line). This is because the approach velocity is 

not uniform as what had been assumed in the analytical solution (figure 4.22).  

 

To prevent this non-uniform flow, a frictionless, horizontal channel was 

applied in numerical model. Other flow parameters were remained including the 

mesh grid resolution. 

 

Figure 4.23 shows the velocity distribution for frictionless channel. It is 

clearly shown that the uniform flow is formed before the expansion with 1.26 m/s 

across the channel. Meanwhile figure 4.24 shows contours of simulated water depth 

with approach depth equal to 0.035 m. As expected, the water depth was reduced to 

0.028 m due to the expansion effect. By using simple calculation, the Froude number 

after expansion should be equal to 2.50 as demonstrated below. 
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On the other hand, the angles of wavefront for frictionless model displayed 

marginally improved phase accuracy in comparison with computed angles (red line). 

These results verify the error caused by non-uniform flow condition.  

 

In addition, the flow after the expansion was deflected due to the contraction 

effect. This will be discussed in the next sub-section. 

 

 

 

 

 

 

 



Figure 4.23 Velocity distribution (frictionless expansion) 

Figure 4.24 Water depth (frictionless expansion) 
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4.3.3 Contraction 

 

Generally, contraction can be divided into two types, either one side 

contraction or both sides contraction. Both of them were studied in the following 

sections. 

 

 

 

4.3.3.1 One Side Contraction 

 

 

 
Figure 4.25 Parameters in one side contraction 

 

The primary concerns for this case are the wavefront angle and water depth. 

One side contraction was modelled by using the flow parameters listed in table 4.12. 

The contraction started at x = 13 m in a 20 m long channel. The channel extension 

upstream of the contraction allowed the model to reach normal depth (0.025 m). The 

initial and boundary conditions are presented in table 4.12. 

 

Table 4.12 : Input parameters and analytical solution results (one side contraction) 

Q (m3/s) S n F1 θ (degree) B1 (m) B3 (m) L (m) β 
0.0155 1/25 0.012 2.740 10 0.457 0.2507 1.17 0.25 

 

Upstream B.C. Downstream B.C. Initial depth 
Super (h=0.025m) Super  0.020 m  
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Figure 4.26 shows the mesh grid in the model. Laterally the channel was 

divided into 32 elements in the area of interest. Since the expansion near the end of 

the side wall, the grids were further refined. To maintain the model stability, the 

small time step equal to 0.001s was used. The result after 45000 time steps (t = 45s) 

can be seen in figure 4.27, shows steady state flow contour. Based on analytical 

solution, the computed results such as β1, β2, d1, d2 and d3 were listed in table 4.13.  

 

 
Figure 4.26 Mesh grid in one side contraction 

 

Table 4.13 : Analytical solution results (one side contraction) 

β1(degree) β2(degree) d1 (m) d2 (m) d3 (m) 
31.1 41.3 0.025 0.039 0.056 

 

 

 
Figure 4.27 Water depth (one side contraction) 
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Referring to figure 4.27, at contraction point A, an angle β1 was generated 

due to sudden inward of side wall. The shock was propagated to point B in the 

channel axis and reflected to the wall again at point C. Negative wave was formed, 

followed by a complicated wave pattern in the downstream region. The water depths 

were found very close to computed results. However, the angle of shocks was over 

predicted compare to computed angles β1 and β2 (red lines). This is indeed a result 

of the uniform flow and infinite wavelength assumption.  

 

To support the statement above, another model was conducted with 

frictionless horizontal channel (test1). Other flow parameters were maintained. As 

illustrated in figure 4.28, the flow becomes smooth again after passing through the 

contraction. By eliminating the friction, uniform approach flow was obtained. It is 

clearly shown that the angles of wavefront were predicted accurately. 

 

 
Figure 4.28 Water depth (frictionless one side contraction) 

 

The product of F1 and θ is called shock number. The shock number for the 

test above was 27.4. The ratio d2/d1 = 0.0390/0.0251 = 1.55; and the ratio d3/d2 = 

0.0563/0.0390 = 1.44.  

 

During design stage (equation 3.4 and 3.5), it is interesting to note that the 

ratio d2/d1 and d3/d2 are constant if the shock number remains constant, as reported 

by Reinauer et al (1998). To verify this, two numerical models (test2 and test3) were 

conducted by using the same shock number, which was equal to 27.4. Table 4.14 

concludes all parameters used in the test2 and test3 together with the computed water 

depths. For comparison purpose, frictionless horizontal model was selected again. 
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Table 4.14 : Input parameters and analytical solution results (test2 and test3) 

test no. Q (m3/s) S n F1 θ (degree) F1θ B1 (m) B3 (m) L (m) 
Test2 0.0155 0 0 5.479 5 27.4 0.457 0.219 2.721
Test3 0.0155 0 0 3.653 7.5 27.4 0.457 0.23 1.722

 
Test no. Computed d1 (m) Computed d2 (m) Computed d3 (m) 

Test2 0.016 0.024 0.034 
Test3 0.021 0.032 0.045 

 

Figures 4.29 and 4.30 show the simulated water depths for test2 and test3 

respectively. The results, d1, d2 and d3 matched the computed water depths as well. 

Besides, the ratio d2/d1 and d3/d2 for both tests were found very close to test1, as 

concluded in table 4.15. These observations agree with those of Roger et al (1998). 

 

 
Figure 4.29 Water depths (test2 one side contraction) 

 

 
Figure 4.30 Water depths (test3 one side contraction) 
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Table 4.15 : Constant ratio of water depth 

test no. F1 θ (degree) F1θ d1 (m) d2 (m) d3 (m) d2/d1 d3/d2 
test1 2.740 10 27.4 0.0251 0.0390 0.0563 1.55 1.44 
test2 5.479 5 27.4 0.0162 0.0242 0.0341 1.49 1.41 
test3 3.653 7.5 27.4 0.0209 0.0318 0.0451 1.52 1.42 

 

It should be realized that without numerical model, a series of complicated 

lab tests would be required for verification. This section was included as an example 

of how this numerical model can be utilized to verify theoretical finding. 

 

 

 

4.3.3.2 Both Sides Contraction 

 

Besides analytical solution, qualitative comparisons between simulated 

results and published model and flume experimental results were made as described 

below. 

 

1. Laboratory Test:  by Ippen and Dawson  

 

A flume test results which reported by Ippen and Dawson (1951) was selected. This 

case was chosen as a benchmark because it has been computed by many other 

researchers and comparison can be made with the experimental data. 

 

The design procedure of Ippen et. al. (1951) was based on wave interference. For the 

design approach flow and a contraction ratio, the contraction angle was chosen such 

that the positive shock wave generated at the contraction point was directed to the 

contraction endpoint, where the reflection of the positive wave interfered with the 

negative wave. Shock waves were narrow and locally extreme surface waves. 

 

The tests were conducted for an approach Froude number of 4.0, upstream depth of 

0.1ft, and a total discharge of 1.44ft3/s. The channel contracts from 2ft to 1 ft wide in 

a length of 4.78ft, i.e., an angle of 6 degree on each side. Figure 4.31 shows contours 

of water depth in plan view which reported by Ippen et. al. (1951). 
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Figure 4.31 Water depth (both side contraction from Ippen et. al.) 

 

2. Model Simulation: by R.C. Berger and R. L. Stockstill  

 

The numerical model was set up with 10 evenly spaced elements laterally across the 

channel and 24 elements over the length of the transition. The model limits were 

extended to 40ft with 1661 nodes and 1500 elements. In this simulation, Berger 

assumed a Manning’s n of 0.0107 for the flume (Ippen), and he recalculated the 

slope, which was 0.05664. The result from this simulation is presented in figure 4.32.  

 

 
Figure 4.32 Water depth (both side contraction from Berger et. al.) 

 

3. Model Simulation: by M. Hanif Chaudhry 

 

The MacCormack scheme was used to simulate the laboratory tests reported by 

Ippen et. al. (1951). The finite-different scheme was computed by assuming zero 

friction with horizontal slope. It shows some different if compared to Berger 

assumption. 
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In this section, two model simulations, using the assumptions made by Berger 

and Chaudhry, are presented. For the first simulation, the slope was set to 0.05664 

with Manning’s n of 0.0107; meanwhile the second simulation was run on a 

frictionless horizontal model.  Other geometry parameters will be exactly same as 

those reported by Ippen et. al.  

 

Table 4.16 : Flow parameters used by Berger et. al. 
Flow rate, Q 1.44 ft3/s 
Slope, S 0.05664 
Manning n 0.0107 
Total length of model 40ft 
Upstream width, B1 2ft 
Downstream width, B3 1ft 
Angle θ 6 degree (at x =20ft) 
Contraction length, L 4.78ft 
Froude number , F1 4.0 
Upstream boundary condition Supercritical, h = 0.1ft 
Downstream boundary condition Supercritical 
Initial condition Bed + 0.075ft 
Time step 0.005s 

 

Flow parameters used in first model simulation are outlined in table 4.16. The 

model consisted of 1661 nodes for a total of 1500 elements throughout the domain 

(figure 4.33). Maximum aspect ratio was 2.0. 

 

 
Figure 4.33 Mesh grid (both side contraction) 

 

Simulated results are presented in figure 4.34. The transition caused a 

disturbance that reflected down the channel forming a diamond-shaped wave pattern. 

By carefully set the display contours option, results similar to Ippen and Berger was 

obtained. The contours shape is good as well and the simulated maximum height of 

water depth is also similar to the corresponding results from Ippen et al (1951). The 

numerical model certainly captured the overall features of the flume. 
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Figure 4.34 Simulated Water depth (Berger assumption) 

 

Meanwhile, table 4.17 lists the flow parameters that used in second model 

simulation. With zero friction and horizontal slope, uniform flow velocity was 

obtained. This frictionless horizontal model was very useful for model simulation 

because it can avoid non-uniform flow across the channel and make the test cases 

exactly the same as the design condition. Figure 4.35 shows the simulated water 

depth, which matched with the results from Ippen and Berger. 

 

Table 4.17 : Flow parameters used by Chaudhry et. al. 
Flow rate, Q 1.44 ft3/s  
Slope, S 0.0 
Manning n 0.0 
Total length of model 40ft 
Upstream width, B1 2ft 
Downstream width, B3 1ft 
Angle θ 6 degree (at x =20ft) 
Contraction length, L 4.78ft 
Froude number , F1 4.0 
Time step 0.005s 

 

Figure 4.35 Simulated Water depth (Chaudhry assumption) 
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One interesting finding was observed from both model simulations. The slope, 

roughness and initial depth were chosen by Berger and Chaudhry to provide a depth 

of 0.1ft approaching the transition. To examine the effect of approach depth, another 

assumption was made as a trial run. All parameters were maintained as the previous 

except the slope and Manning’s n. With Q = 1.44cfs, B = 2ft, Slope = 1/100 and n = 

0.0041, a 0.1ft normal depth should be obtained according to Manning formula. 

After 50 seconds, it shows excellent contours of water depth, which matched with 

Ippen and Berger results (figure 4.36). 

 

Figure 4.36 Simulated Water depth (new assumption) 

 

Results show that the approach water depth is very important. As long as it 

was maintained at 0.1ft, same simulation results can be obtained with maximum 

height 0.23ft at downstream. The contour patterns are just slightly different among 

those simulation results. Overall though, the comparison between simulated results 

and published results is reasonable and the shape of oblique standing waves 

demonstrated. 

 

 

 

4.3.3.3 One Side Contraction and 90 Degree Expansion 

 

In this section, the numerical model was further examined with the 

combination case of contraction and expansion. An experiment was carried out to 

facilitate data for evaluation and comparison. In this experiment, the slope was set to 

approximately 1/78 to obtain a supercritical flow with normal depth (approach depth) 

equal to 0.030 m. The test was started in dry bed condition. Detail explanation about 
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the experiment can be reviewed in chapter 3. During the test, shock wave was 

formed when the flow passed through the contraction as shown in figure 4.37. Figure 

4.38 clearly displays the wavefront angle due to sudden inward boundary condition. 

 

 
Figure 4.37 Shock wave in experiment 

 

 
Figure 4.38 Wavefront angles in experiment 
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Basically, the first shock wave was formed when the channel contracted from 

B1 (0.457 m) to B2 (0.337 m). The flow pattern was travelling in “Z” shape along 

the narrow region. When the flow reached the end of plywood wall (figure 4.39 and 

4.40), the water depth was rapidly reduced due to 90 degree expansion, and increased 

again after hitting the glass side wall and forming another shock wave. 

 

 
Figure 4.39 90 degree expansion 

 

 
Figure 4.40 Flow pattern after 90 degree expansion 
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Through the glass wall, the increase of water depth can be seen easily and the 

location was recorded (figure 4.41). By this way, the coordinates for point A, C, D 

and E were marked for result comparison (refer figure 4.43). Measured water depths 

are presented together with model results in the following pages. Note that it is 

difficult to precisely measure the water depths for a shock wave by using gauge point. 

 

 
Figure 4.41 Increasing water depth (point A) 

 

A numerical model simulation was conducted using the same flow conditions, 

as listed in table 4.18. With 0.01s interval, the model was run till t = 50s when the 

result no longer changed with time. The mesh grid of model was increased gradually 

in critical part as illustrated in figure 4.42. There were more than 15 elements across 

the flume. The roughness was determined by trial and error and Manning’s n of 

0.0085 was finally selected because it gave the best result especially at the shock 

location, as shown in table 4.19. For comparison purpose, simulated flow patterns are 

presented in plan view together with the measured water depths in the sequence of 

figures 4.44(a)-4.44(c). 

 

 
Figure 4.42 Mesh grid (contraction and 90 degree expansion) 



 

Table 4.18 : Input flow parameters for numerical model (contraction & 90 degree expansion) 

Parameters
Q 

(m3/s) 
B1 
(m) 

B2 
(m) 

B3 
(m) 

L1 
(m) 

L2 
(m)

θ 
(contraction)

θ 
(expansion) S n 

Upstream 
B.C. 

Downstream 
B.C. 

Initial 
Condition 

model 0.0153 0.457 0.337 0.457 1.134 1.9 
6.042 

degree 90 degree measured 0.0085
super 

(h=0.035m) super d = 0.008 m 
 

Table 4.19 : Results comparison for contraction & 90 degree expansion 

  coordinate point A coordinate point C coordinate point D coordinate point E 
  β1(degree) β2(degree) d1(m) d2 (m) d3 (m) x y x y x y x y 

Lab  -37.3 40.02 0.031 0.038 0.049 8.70 0 11.30 0.457 12.69 0 13.72 0 
model -35.5 40.02 0.030 0.039 0.049 8.74 0 11.34 0.457 12.68 0 13.68 0 

 

 

 
Figure 4.43  Plan view for contraction & 90 degree expansion test case 
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Figure 4.44(a) Water depth (contraction & 90 degree expansion) 



 

 

103 

 
Figure 4.44(b) Water depth (contraction & 90 degree expansion) 
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Figure 4.44(c) Water depths (contraction & 90 degree expansion) 
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Figure 4.45 Comparison between simulated water depths and measured water depths (contraction & 90 degree expansion) 
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Locations of shock waves are unable to be determined accurately because not 

enough data was recorded during the experiment. However, the comparison of 

contours colour shows that numerical model is able to simulate the water depth in the 

experiment (figure 4.45). Referring to the coordinates of point A, C, D and E in table 

4.19, the shock locations were compared as well. The maximum simulated water 

depth is 0.049 m, which is less than measured depth (0.055 m). This underestimation 

result is similar to those result obtained in normal depth simulation (see discussion in 

section 4.2.1). Meanwhile the minimum water depth from both model and 

experiment are almost the same. 

 

Because of the disagreement of maximum water depth, a trial run was carried 

out by raising the Manning’s n from 0.0085 to 0.0093. In the trial run, the simulated 

maximum depth was successfully increased to 0.052 m. However, the shock 

locations (point A, C, D and E) seem moved further upstream due to the increasing 

friction. The friction always a problem in model simulation. Perhaps, the roughness 

coefficient in this test case can vary within a range due to its non-uniform water 

depths and composite material. For this reason, the Manning’s n of 0.0093 was 

applied in sub-region start from x = 8.1 m till 9.5 m; and Manning’s n of 0.0085 was 

applied from x = 9.5 m till the end of flume. Unfortunately, the result was found 

almost similar to the case with n = 0.0093. It is noticeable to note that the shock 

locations are controlled by the roughness coefficient in the upstream for supercritical 

flow.  

 

In addition, great care must be taken when applying initial condition for 

contraction case. If the initial depth is too high, back water may occur, and lead to 

error. In the other hand, if the initial depth is too shallow, the model will halt due to 

instability of model. 

 

Next, the investigation was extended to examine the performance of 

numerical model in the confluence test case.  
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4.3.4 Junction 

 

These experiments were performed in a sharp-edged, 90º combining flow 

flume with horizontal slope (Weber et al, 2001). The flow travelled from right to the 

left. Details about the experiment were discussed in chapter 2. In the published paper, 

the results were presented by using normalized distance. All distances were 

normalized by the channel width, B = 0.914 m. The non-dimensionalized coordinates 

are called x*, y*, and z* for x/B, y/B, and z/B, respectively. The water depths, h was 

normalized by the channel width also, where h* = h/B.  

 

 
Figure 4.46 h* contours for q* = 0.250 and 0.750 (experiment 90 degree junction) 

 

Figure 4.46 presents the contours of normalized water depths for q* = 0.250 

and 0.750. Note that the ratio q* was defined as the upstream main channel flow (Qm) 

to the constant total flow (Qt) which equal to 0.170 m3/s. According to weber (2001), 
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for all flow conditions the water surface generally displays a drawdown longitudinal 

profile as the branch flow enters the contracted region and then exhibits a depth 

increase as the flow expands to the entire channel width downstream of the 

separation zone. This pattern is more distinctive for lower q* flow conditions. 

 

The velocity measurements had been non-dimensionalized by the 

downstream average velocity (0.628 m/s). The longitude velocity, u* and lateral 

velocity, v* are the dimensionless velocity along x-axis and y-axis respectively. 

Figure 4.47 displays published u*-v* vector field near the water surface for q* = 

0.250.  

 

 
Figure 4.47 u*-v* vector field for q* = 0.250 (experiment 90 degree junction) 

 

Recirculation was formed immediately downstream of the junction due to the 

deflection from outer wall. The study in that published paper was three-dimensional 

flume, including the study of vertical component such as vertical velocity, w*. 

Weber concluded the flow condition in a schematic for flow q* = 0.250 as shown in 

figure 4.48.  

 

However, due to the limitation of two-dimensional numerical model, only the 

surface flow condition was simulated. Results comparison will be only focused on 

the water depth and velocity of surface flow. 
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Figure 4.48 Schematic of flow structure for q* = 0.250 

 

In the numerical model, flow parameters which were displayed in table 4.20 

were applied and the mesh grid used for this study is shown in figure 4.49. The 

inflow for main channel and branch channel were indicated as Qm and Qb 

respectively. The models were repeated for both inflow (q* = 0.250 and 0.750). The 

roughness coefficient was determined using trial and error method. The best results 

were obtained with Manning’s n equal to 0.0160 for both models. Since the 

measured water depth was higher than critical depth, the flow condition should be 

subcritical flow. 

 

Table 4.20 : Input flow parameters for numerical model (90 degree junction) 

Total Q, Qt (m3/s) B (m) Upstream B. C. Downstream B.C. slope n time step 
0.17 0.914 sub sub (h=0.296m) 0 0.0160 1.0s 

 

q*=Qm/Qt Qm (m3/s) Qb (m3/s) 
q* = 0.750 0.127 0.042 
q* = 0.250 0.042 0.127 
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Figure 4.49 Mesh grid (90 degree junction) 

 

After 100s of simulation, the flow pattern converged to stable solution. 

However, both model simulations were continued until t = 300s to ensure the flows 

reached steady state. For comparison purpose, the results were plotted in h* as 

presented in figures 4.50(a) and 4.50(b). These results are in agreement with those of 

Weber et al (2001).  

 

 
Figure 4.50(a)  h* contours for q* = 0.250 from model (90 degree junction) 
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Figure 4.50(b) h* contours for q* = 0.750 from model (90 degree junction) 

 

The momentum of the lateral branch flow caused the main flow to detach at 

the downstream corner of the junction. This is more significant for lower q* flow 

condition. As a result, the water depth raised up at the upstream of main channel. The 

effect of 90 degree expansion is significant for both flow conditions, causing the 

water depth decreased rapidly at immediately downstream of junction. Figures 4.51(a) 

and 4.51(b) show the u*-v* vector field from numerical model. It is apparent to see 

that for higher q*, the velocity vectors show less deflection toward the outer wall. 

Meanwhile the disturbance from branch channel is not significant for higher q*. Note 

that the recirculation was formed in the numerical results too as reported in the paper. 

The model’s results show that higher q* will take shorter distance downstream from 

the junction to reach uniform flow condition again. However, both results show the 

increasing of velocity at outer wall region downstream of the junction. 

 

 
Figure 4.51(a)  u*-v* vector field for q* = 0.250 from model (90 degree junction) 
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Figure 4.51(b) u*-v* vector field for q* = 0.750 from model (90 degree junction) 

 

 

 

4.3.5 Hydraulic Jump 

 

Two hydraulic jump test cases were examined in this section. The published 

hydraulic jump result, adapted from Gharangik et al (1991), was simulated with a 

horizontal slope; meanwhile the experiment conducted in UTM was modelled in a 

steep slope. Description of both test facilities can be referred in chapter 2 and 3. Here, 

comparison between numerical model and the published hydraulic jump data was 

discussed first. 

 

Four numerical model simulations were conducted with different Froude 

numbers (Fr1), as listed in table 4.21. Since the published results were presented in 

one-dimension, all numerical models were modelled in one-dimension for easy 

comparison. Besides, interval of 1.0s time step was used. The depth for every model 

was initially set to d1 at the entrance, and increased linearly to d2 at the end of 

downstream.  

 

Table 4.21 : Input flow parameters for numerical model (hydraulic jump) 

test no. Q (m3/s) Fr1 upstream B. C. Downstream B.C. 
Initial Depth  

(d1-d2) 
2 0.0357 6.71 super (h=0.024m) sub (h=0.201m) 0.025m - 0.200m 
3 0.0654 5.71 super (h=0.040m) sub (h=0.283m) 0.040m - 0.290m 
4 0.0538 4.21 super (h=0.043m) sub (h=0.223m) 0.045m - 0.230m 
6 0.0534 2.30 super (h=0.064m) sub (h=0.170m) 0.065m - 0.170m 
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In this analysis, the sensitivity of grid resolution was studied. The mesh grids 

(1D) with several value of ∆x were tried and the results are plotted in figure 4.52 

together with the measured depth for test case 2. The Manning’s n of 0.0058 was 

applied for all grid resolution. Unlike previous test cases, the final solution was kept 

changing with grid refinement. Further grid refinement will reduce the length of 

hydraulic jump. In the other words, the jump length was greatly affected by the size 

of element. Another important finding is that the energy in numerical model was 

dissipated too quickly within two elements. The numerical model cannot predict the 

length of hydraulic jump since the vertical motion that should be captured is 

neglected due to the assumption of shallow water equation. 

 

Grid resolution Analysis
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Figure 4.52 Analysis of grid resolution in hydraulic jump 

 

The study of the sensitivity of grid resolution provided an important guideline. 

By selecting the distance between the measured points in experiment as element’s 

size, the simulated result should be the best. Since the depths were recorded for every 

1ft in laboratory, the chosen size of element for the following models was 0.30 m. 

Four simulated results are compared with the published results in figure 4.53(a), 

4.53(b), 4.53(c) and 4.53(d) for test case 2, 3, 4 and 6 respectively.  The Manning’s n 

for the flume was determined by trial and error so that the computed water-surface 

profile matches with the measured water levels in the flume during the initial steady 

supercritical flow. According to the published result, the n value was varied from 
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0.008 to 0.011, depending upon the flow depth. However, results from numerical 

model show that the Manning’s n can be equal to 0.0058. The line in yellow colour 

shows the best result for each test case. 

 

Besides, the stabilized jump location was always changing with different 

roughness coefficient. However, the model simulated the water depths extremely 

well. It took longer for the solution to converge to a stabilized jump for lower Froude 

number.  Note that the model cannot predict the length of the jump due to the 

negligible of vertical motion in shallow water equation. 
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Figure 4.53(a) Fr1 = 6.71 

Test Case 3

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 1 2 3 4 5 6

x (m)

de
pt

h 
(m

) d measured
n = 0.007
n = 0.0073
n = 0.0075
n = 0.008

 
Figure 4.53(b) Fr1 = 5.71 
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Test Case 4
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Figure 4.53(c) Fr1 = 4.21 

Test Case 6
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Figure 4.53(d) Fr1 = 2.30 

 

Numerical model always underestimated the depth before jump for all test 

cases. Generally, the decreasing of friction will push the jump location further 

downstream and reduced the maximum depth. Result from test case 4 is the best 

verification of this explanation. Besides, 3 set of dissipation coefficient were tested 

in test case 4 (βsmooth = 0.25, βshock = 0.25; both 0.25 and both 0.50). Result with both 

β equal to 0.25 shows overshooting before and after jump. However, the effect is not 

significant with only 0.020 m different. 
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The second hydraulic jump experiment was carried out in UTM with steep 

slope (1/78). A 0.045 m wide plastic plate was used as a sluice gate at the 

downstream of flume as shown in figure 4.54. In this experiment, Q = 0.0153 m3/s 

was used. The approach depth (normal depth) was equal to 0.031 m with Froude 

number 2.0. The average measured velocity was 1.08 m/s. The experiment was 

started with dry bed condition. 

 

 
Figure 4.54   Hydraulic jump test case with steep slope 

 

Figures 4.55(a) and 4.55(b) display the undular jump which was formed in 

the experiment. The hydraulic jump constituted a rapid transition from supercritical 

to subcritical flow. Due to the oscillating breaking front at the toe of the jump, air 

was entrained into the jump. Difficulty was found when measuring the water depth in 

this region.  

 

 
Figure 4.55(a)  Undular jump (front view) 
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Figure 4.55(b) Undular jump (side view) 

 

The figures clearly illustrate that a “non-uniform” undular jump was formed 

due to side wall friction and non-uniform of incoming flow. Initially, the 

supercritical flow formed a small jump when blocked by the plate downstream of the 

channel. Then the hydraulic jump was pushed backward gradually to upstream of the 

channel and stop at a stabilized location (x ≈ 6.6 m). The grids on glass-walled 

section were used to measure the jump profiles. The maximum and minimum depths 

were recorded and an average depth was considered the depth at that location. 

 

 
Figure 4.56   Oscillations 
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The flow oscillated after the undular jump and formed a series of shock 

waves downstream of the channel as shown in figure 4.56. This means that the 

energy in the flow was continuously dissipated even after the undular jump. The 

water profile was recorded and will be presented together with numerical model’s 

result. 

 

A two-dimensional numerical model was conducted to simulate the above 

experiment. The formation of undular jump and oscillations in the experiment were 

considered in numerical result. There were eight elements across the model with 

aspect ratio of 1.0 as shown in figure 4.57.  

 

 

 
Figure 4.57 Mesh grid (Hydraulic jump) 

 

Table 4.22 shows the flow parameters used as input in numerical model. The 

depths for boundary conditions were determined from experiment. However, the 

initial dry bed condition in experiment cannot be applied in model. Similar to 

previous model, the initial condition was modified so that it increased linearly from 

upstream to downstream of the channel boundary conditions. 

 

Table 4.22 : Input flow parameters for numerical model (experiment hydraulic jump) 
Q 

(m3/s) B (m) S n 
Upstream 

B.C. 
Downstream 

B.C. 
Initial 

Condition 
Time step 

(s) 

0.0153 0.457 measured 0.009
super 

(h=0.033m)
sub 

(h=0.177m) 
0.030m-
0.180m 

 
0.02 

 

Figures 4.58(a) and 4.58(b) present the results from numerical model and 

experiment after 355s. The measured depths were plotted by using interpolation 

method. The contours show that the agreement was reached between both results 

quantitatively. 



 
Figure 4.58(a)  Water depth (Hydraulic jump) 
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Figure 4.58(b) Water depth (Hydraulic jump) 



 

 

121

However, the formation of undular jump and oscillations in the experiment 

are unable to be simulated. It is apparent to express that numerical model dissipated 

energy immediately within one element longitudinally. And the oscillations are not 

found as expected. In this result, the flow profile after jump was smooth and the 

depth increased gradually till the end of flume. 

 

In shallow water equation, vertical velocity and acceleration are neglected. 

Therefore, any energy that should be captured in vertical motion is lost. The shallow 

water equation treat the jump as discontinuity and all vertical energy will be 

dissipated immediately as proved in the example above. Actually this problem was 

found in many others studies which used shallow water equation as a basic governing 

equation (Stockstill, et.al. 1994).  

 

 

 

4.3.6 Bridge Pier 

 

To obtain experimental data for model verification, there are three test cases 

for aluminium pier and another three test cases for wood pier were conducted. All 

experiments were tested for Froude number within 2.0 to 3.0. The Froude number 

was controlled by using sluice gate which was located 0.5 m in front of pier as shown 

in figure 4.59.  

 

 
Figure 4.59 Sluice gate 
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In test case1, back water was formed as displayed in figure 4.60(a). 

Complicated flow pattern was found due to combination effect of contraction and 

expansion. The maximum water depth which was formed on the face of pier was 

approximately 0.075m. The run up at pier nose seemed strong and the vertical 

acceleration should be large. This would be the most challenging part for model 

simulation. Besides, a diamond shape of flow was formed at channel downstream 

due to wave interference. The water depths in the area of interest were measured. 

 

 
Figure 4.60(a) 3D view (1st test case in aluminium pier) 

 

In test case 2, a sluice gate was applied to increase the approach Froude 

number. No back water is found for this time. The run up was much stronger than 

test case 1 as shown in figure 4.60(b), which raised up to 0.080m. Similar to test case 

1, diamond shape flow was formed downstream of the pier. However, the shock 

waves were swept further downstream if compared to test case 1. The flow pattern in 

test case 3 is almost similar to test case 2, except the shock locations were found 

further downstream than previous test case due to high velocity flow. The maximum 

water depth which was found on the face of pier was approximately 0.103m. Plan 

views for these three test cases are displayed together for comparison in figures 4.61. 



 

 

123

 
Figure 4.60(b) 3D view (2nd test case in aluminium pier) 

 

 
Figure 4.60(c) 3D view (3rd test case in aluminium pier) 



 

 

124

 

 

 
Figure 4.61  Plan views for test case 1 (top), 2 (middle) and 3 (bottom)  
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As seen in the sequence of figures 4.61, the approaching flows were 

separated to left and right sides in an angle. The waves were reflected by sidewalls 

and formed wave interference immediately behind the pier till the end of flume. With 

these observed results, numerical model was run to reproduce the complicated flows. 

 

Figure 4.62 shows the mesh grid for aluminium pier with triangular nose and 

tail. Finer mesh, with 16 elements across laterally, was applied at both sides of the 

pier region. The dimension of pier is described in chapter 3. In the model simulation, 

the measured slope approximately equal to 1/78 was implemented. All required input 

were selected to be equal to those of the corresponding physical experiments (table 

4.23). 

 

 
Figure 4.62 Mesh grid (triangular nose and tail) 

 

Table 4.23 : Input flow parameters for numerical model (aluminium pier) 

test case Fr Q/B (m3/s.m) Upstream B.C.  Downstream B.C. Initial depth 
1 (without 

sluice gate) 2.0 0.032 
super 

(h=0.035m) super 
0.030m-
0.010m 

2 (with sluice 
gate) 2.5 0.028 

super 
(h=0.023m) super 

0.017m-
0.010m 

3 (with sluice 
gate) 2.8 0.043 

super 
(h=0.029m) super 

0.015m-
0.010m 

 

Results from numerical model and experiment are presented together in the 

following paragraph, by starting with test case 1. By trial and error method, the 

Manning’s n of 0.097 shows the best result. Figure 4.63 presents measured water 

depth and simulated depths for test case 1. Similar to hydraulic jump problem, the 

energy was dissipated too fast. However, the simulated maximum depth on the face 

of pier is 0.073m, which is very close to the measured depth (0.075m). In the other 

words, numerical model still can reproduce the run up successfully for this case.



 
Figure 4.63(a) Comparison water depth between experiment and numerical model (1st test case) 
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Figures 4.63(b) and 4.63(c) show another two results for test case 2 and test 

case 3. The contours were plotted by using simulated depth; Meanwhile the 

measured depths were marked in both figures as white scatter points.  

 

Let’s focus to the run up region near the nose of pier. As seen in table 4.24, 

both run up (from experiment and numerical model) were increased with larger 

approach Froude number. For both case, the model underestimated the run up on the 

face of pier. Besides, the comparison of shock locations shows the disagreement as 

indicated in figure 4.63(b). This problem might be improved by adjusting the 

Manning’s n. For this purpose, test case 2 was repeated for various Manning’s n such 

as 0.0050, 0.0085, 0.0090, 0.0093, 0.0095 and 0.0098. But unfortunately, all 

simulated run up was still underestimated. Moreover, the effect of Manning’s n to the 

shock location was insignificant because pier was located too near to the upstream 

boundary condition. In the other words, not enough space for roughness factor to 

show its effect in run up region.  

 

Table 4.24 : Relationship between run up with other parameters (aluminium pier) 

test  Fr 
 measured 

run up  
simulated run 

up  
2 2.5 0.080m 0.050m 
3 2.8 0.103m 0.060m 

 

Figure 4.60(c) clearly shows that the wavelength of run up is extremely thick 

and sticks closely with the face of pier. However, numerical model failed to capture 

this run up because the vertical motion was neglected in the model. Perhaps, the 

triangular pier’s wall gave over blocking effect to the approaching flow. This was 

strongly proved by the larger angle of wavefront in the model simulation. As a result, 

the shock wave hit further upstream of sidewall. Next, a wood pier with rectangular 

nose and tail was investigated. 



 
Figure 4.63(b) Comparison water depth between experiment and numerical model (2nd test case) 
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Figure 4.63(c) Comparison water depth between experiment and numerical model (3rd test case) 
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Similar to triangular pier cases, the wood rectangular pier was also examined 

in three different approaching Froude number. Compared to aluminium pier, wood 

pier provides more sufficient clearance laterally across the flume. Three of the 

experiments were conducted in the same flume with approximately 1/78 slope 

gradient. The first test case was conducted without sluice gate. The flow pattern from 

all test cases was found similar. Figure 4.64 shows the example of flow pattern 

during these test cases. The flow choked up when suddenly blocked by rectangular 

nose of pier. The height of run up was recorded for each test case. These recorded 

data are very important since the main interest is to see the capability of numerical 

model in capturing these run up. 

 

 
Figure 4.64  Run up at rectangular nose of wood pier 
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In the model simulation, three models were established corresponding to the 

physical experiments. The geometry and mesh grid for each model was same, as 

presented in figure 4.65. Table 4.25 shows the flow parameters used as model input 

for every test case. Time step of 0.002s was used and the Manning’s n for each test 

case was determined by using trial and error method. 

 

Table 4.25 : Input flow parameters for numerical model (wood pier) 

test case Fr Q/B (m3/s.m) Upstream B.C.  Downstream B.C. Initial depth 
1 (without 

sluice gate) 2.1 0.035 
super 

(h=0.031m) super 
0.035m-
0.010m 

2 (with sluice 
gate) 2.4 0.030 

super 
(h=0.025m) super 

0.017m-
0.010m 

3 (with sluice 
gate) 2.8 0.025 

super 
(h=0.020m) super 

0.018m-
0.010m 

 

 
Figure 4.65 Mesh grid (rectangular nose and tail) 

 

Since the flow pattern was similar for all test cases, only the result from test 

case 1 was displayed, as shown in figure 4.66. The contours represent the simulated 

water depth meanwhile the scatter points represent the measured depths. If compared 

to the real flow condition (figure 4.64) with the simulated result, there should be 

another shock wave formed at the face of pier as shown by red arrow. Again, the 

angle of shock wave was relatively large if compared to experimental result.  

 

The locations of maximum and minimum water depths were found at the 

nose and tail region of pier respectively. Model simulated the minimum depth quite 

well. But for the maximum depth (run up), some interesting findings were found. 

Referring to table 4.26, the height of run up increased with the increasing of Froude 

number but the simulated run up decreased for larger Froude number. This may 

happen because of hydrostatic assumption in shallow water equation. 

 

 



 

 

132

Table 4.26 : Relationship between run up with other parameters (wood pier) 

test  Fr 
 measured run 

up  Q/B (m3/s.m) approach depth 
simulated run 

up 
1 2.1 0.078m  0.035 0.030m 0.111m 
2 2.4 0.090m  0.030 0.025m 0.103m 
3 2.8 0.125m  0.025 0.020m 0.090m 

 

For larger Froude number, a large amount of energy was dissipated through 

the strong run up when hitting the nose of pier in experiment. The energy was 

transformed to vertical motion, means that the vertical acceleration will increase with 

larger Froude number. As a result, the height of run up increased as observed in the 

experiment.  

 

However, the vertical motion was ignored in the model and all dissipated 

energy in the experiment was considered lost in numerical model. Larger Froude 

number means that more energy will loss in numerical model, resulting the 

decreasing of height of simulated run up. However, the simulated run up was found 

proportional to the rate of discharge. 

 

Since the energy was lost due to hydrostatic assumption, why the simulated 

run up was still overestimated in test case 1? As explained earlier in triangular pier 

section, the boundary condition of pier in numerical model gave more blocking effect 

to the flow than reality. This over blocking effect will produce higher run up when 

the flow was blocked. Meanwhile in reality, the blocking effect from pier was not 

that much. With the increasing of Froude number, the height of measured run up will 

increase; but the simulated run up showed the inverse results due to the loss of 

energy.  

 

Generally, the numerical model performed poorly in estimating the run up 

due to the negligible of vertical accelerations in shallow water assumption.  

 

 

 

 



 
Figure 4.66  Comparison water depth between experiment and numerical model (1st test case for wood pier) 
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4.3.7 Gradual Contraction 

 

Five gradual contraction cases were modelled using approaching Froude 

number of 2.0, 3.0, 4.0, 5.0, and 6.0 respectively. The zero bed slope and friction 

were chosen to provide uniform flow approaching the transition. Same mesh 

resolution was used as displayed in figure 4.67 below. One side of the channel wall 

was replaced by a sequence of short chords start at x = 0.50 m, each one deflects 4 

degrees relative to the preceding one. The geometry was gradually contracted from 

0.50 m to 0.337 m. Table 4.27 lists the input parameters  

 

Table 4.27 : Input flow parameters for numerical model (gradual contraction) 

Fr Q (m3/s) S n Upstream B.C. downstream B. C. 
2.0 0.015 0 0 super (h=0.028m) super 
3.0 0.015 0 0 super (h=0.022m) super 
4.0 0.015 0 0 super (h=0.018m) super 
5.0 0.015 0 0 super (h=0.015m) super 
6.0 0.015 0 0 super (h=0.014m) super 

 

 
Figure 4.67 Mesh grid (gradual contraction) 

 

In numerical modelling, the solution was computed until reaching the steady 

flow condition. For Fr = 6.0, the model halted and stopped during simulation because 

the water depth near the expansion region (point A in figure above) was close to zero. 

The expected oblique shock wave due to inward boundary was obtained in numerical 

model for all test cases except for Fr = 2.0, which back water was found. All 

numerical results are presented in the sequence of figures 4.68, including test case for 

Fr = 6.0 (before model halted).  
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Figure 4.68 Water depth for Fr = 2.0, 3.0, 4.0, 5.0 and 6.0  (gradual contraction) 

 

These reasonable results show that the shock location moved further 

downstream with larger Froude number. The flow pattern in “z” shape was also 

captured by model. The performance of model in this test case was considered quite 

good. 
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4.3.8 Bend 

 

In this test, five numerical model simulations were conducted using different 

Froude number, which were consisting of 0.25, 0.70, 1.20, 1.50 and 2.0. The 

geometry and mesh grid for the test was displayed in figure 4.69. The model’s width, 

B was equal to 0.5 m. The inner and outer radiuses of the bend were 0.232 m and 

0.743 m respectively, resulting average radius equal to 0.488 m in centre line. 

 

 
 Figure 4.69 Mesh grid (bend) 

 

Table 4.28 shows the input parameters for each test case. The constant flow 

rate of 1.0m3/s was applied in all cases. Again, the frictionless horizontal model was 

used. In addition, a time step of 0.01s was applied. 

 

Table 4.28 : Input flow parameters for numerical model (bend) 

test Fr Upstream B.C. Downstream B.C. Initial depth 
1 0.25 sub sub (h=1.840m) 1.8m 
2 0.70 sub sub (h=0.900m) 0.9m 
3 1.20 super (h=0.660m) super 0.6m 
4 1.50 super (h=0.565m) super 0.5m 
5 2.00 super (h=0.467m) super 0.4m 

 

After several trial run, the model was found unable to simulate bend case for 

supercritical flow (test 4 and 5). The assumption of hydrostatic is invalid in bend 

region due to the eccentricity force, especially for supercritical flow. The 

supercritical flow in test 3 (Fr = 1.2) reached steady state condition because of the 
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formation of back water. The depth for back water was higher than critical depth, 

means that the flow after the jump should be considered subcritical flow. The 

following figures illustrate the simulated flow pattern for test case 1 and 3. 

  

 
Figure 4.70(a) Water depth for Fr = 0.25  (bend) 

 

 
Figure 4.70(b) Water depth for Fr = 1.20  (bend) 
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Based on analytical solution described in chapter 3, the water depth 

difference between left bank and right bank for subcritical flow should be equal to V 
2B/gR. This value should be doubled for supercritical flow (refer figure 3.28). 

 

From figures 4.70(a) and 4.70(b), the difference water depth for test 1 and 

test 3 were 0.150m and 0.914m respectively. Meanwhile the average velocities were 

1.140 m/s and 2.275 m/s for test 1 and 3. Other variables such as B (0.50 m), R 

(0.488m) and g (9.18 m/s2) were constant. Using equation 3.7, the theoretical depth 

difference was calculated as shown below. 

 

m
gR

BVd 14.0
488.081.9

5.014.1 22

=
×
×

==∆  (subcritical flow) 

 

m
gR

BVd 08.154.02
488.081.9

5.0275.222
22

=×=
×
×

×=×=∆  (supercritical flow) 

 

For subcritical flow (Fr = 0.25), the theoretical depth difference was 0.14 m, 

which was quite close to simulated results. For supercritical flow (Fr = 1.20), the 

theoretical depth difference was equal to 0.914 m. According to Ippen and Knapp, 

the maximum difference depth between outer and inner walls for supercritical flow is 

about the twice of the difference for subcritical (Jain 2001). As a result, the 

theoretical depth difference became 1.08 m, which was 0.166 m different if compare 

to measured result.  

 

In this test case, the results show the weakness of numerical model in 

handling supercritical flow in bending channel. The failures of test 4 and 5 were 

caused by the superelevation of surface flow at the bending region. The water depth 

decreased rapidly in a steep curvature and leaded to instabilities when the depth near 

inner wall became almost zero. This numerical model is unsuited to supercritical 

flow in bending region, particularly for an approaching Froude number in excess of 

1.20. In fact, the relation between approaching Foude number and the bending angle 

is quite interesting to be investigated in future study. 

 



 

 

 

CHAPTER 5 

 

 

 

MODEL APPLICATION 

 

 

The numerical model HIVEL2D was applied to two channels for case studies 

proposed by the Department of Irrigation and Drainage (DID, 2003). The two channels 

are Sg Segget near City of Johor Bahru  and Sg Sepakat at Kampung Jaya Sepakat, Senai. 

These two channels have been frequently flooded during wet season. The channels 

improvement was contracted to consultants for better designs. Due to insufficient 

information on the design analysis, the information on the design analysis for the two 

case studies was provided by DID. In this study, a numerical model is used to evaluate 

the channel performance and to assess its practicality as an alternative tool at the design 

stage.  

 

5.1 Model Application to Sg Segget, Johor Bahru 

 

An upper section of Sg Segget, which is flowing into the tidal Sg Segget was 

selected for the application of the numerical model. It is located in the urbanized area of 

Johor Baharu City. Pictures of Sg Segget are shown in Figure 5.1. A numerical model of 

the Sg Segget is developed and simulation is conducted using ARI 100 year design event. 

Manning’s n of 0.02 was used in the simulation. Detailed calculation using empirical 

equations can be found in the report (Perunding Amin, 2004). The grid system 

constructed for the existing condition is shown in Figure 5.2. The channel bottom 

elevation contour of the Sg Segget is shown in Figure 5.3.  
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The channel was assumed to be rectangular section from the rubbish trap 

(downstream) to the upper section. About 40-meter closed rectangular culvert is found at 

the mid-section of the selected channel. A sudden drop of channel elevation 

approximately 0.3 m is found just after the culvert outlet. The downstream boundary of 

the channel is controlled by the rubbish trap structure. A discharge of 19.48 cms is 

specified at the upstream channel boundary. A tail water height of 2 m is specified at the 

downstream boundary (rubbish trap). Simulated water surface elevation contour profiles 

are shown in Figure 5.4. Backwater water surface profiles are observed due to the 

channel contraction, bend, and controlled structure (rubbish trap). 

 

A modified section was proposed to improve the flow conditions in the channel 

section as shown in Figure 5.5. The grid system constructed for the existing condition is 

shown in Figure 5.6. Similar upstream and downstream conditions were specified at the 

boundaries as used in the existing condition. The water surface elevation profiles are 

shown in Figure 5.7. The results show that the numerical model can be used to analyze 

the water surface profiles in actual channel. The numerical model can provide an 

alternative tool to engineers for designing a high-velocity channel in urbanized area. 
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Figure 5.1(a): Pictures of Sg Segget Channel and Affected Areas 
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Figure 5.1(b): Pictures of Sg Segget Channel and Affected Areas 
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Figure 5.1(c): Pictures of Sg Segget Channel and Affected Areas 

 

 

 

 

 
Figure 5.2 Grid System for Sg Segget Channel 
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Figure 5.3 Bottom Channel Elevation Contour Profile for Channel 

 

 
Figure 5.4 Water Surface Elevation Profiles Downstream of the Channel 
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Figure 5.5 New Geometry for Improved Channel 

 

 
Figure 5.6 Water Surface Elevation Profiles for Improved Channel 
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Figure 5.7 Water Surface Elevation Profiles for Improved Channel 

 

5.2 Model Application to Sg Sepakat, Senai 

 

The second case study is Sg Jaya Sepakat, Senai which a tributary of Sg Skudai. 

The natural river frequently flooded the Kampung Jaya Sepakat and its surrounding areas 

during wet season. Based on the information gathered from the villagers, major floods 

occurred in year 1997 and 2000. The pictures showing one of the natural river sections 
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during one of the flood events (year 2000) is shown in Figure 5.8. During this study, the 

natural sections were replaced with pre-cast U-shaped concrete as shown in Figure 5.9.  

Uneven section which is a sudden contraction to the channel was found as shown in 

Figure 5.10. The water profiles in the channel just after rain event is shown in 5.11. As 

clearly illustrated in the figure, the water level is below 0.5 m from the channel top level. 

The condition of the channel in year 2004 is shown in Figure 5.12. Plant and aquatic 

growth and sediment are beginning to reduce the flow capacity of the channel.  

 

Based on the DID design analysis, analytical solution and numerical simulation 

design analysis conducted by Shaharidam (2005), the flow capacity of the channel is 

72.30, 39.01, and 45.10 m3/s, respectively. Comparison of design analysis is described in 

detail by Shaharidam (2005). In this section, a numerical model simulation was 

conducted using field data for model calibration and model design flow application. 

 

To calibrate the model, a field flow data Q= 0.209 m3/s or q= 0.0443 m3/s/m was 

used and a tailwater was set at h= 0.0964 m. Several Manning’s n was used for model 

calibration and the n value of 0.02 is considered suitable for the channel. The grid system 

and simulated water profile is shown in Figure 5.13. The detail water profiles at point A 

and B are shown in Figure 5.14 and 5.15, respectively. As illustrated in the figures, the 

water profiles vary from one point to point due to bends and side wall and channel 

bottom friction. The maximum water depth in channel is just 0.106 m while the minimum 

water depth is 0.097 m. No back water occurs in the channel due to low flow is 

introduced in the channel. 

 

After the model calibration, several flows were used to evaluate the channel 

capacity. It was found the DID design flow capacity is not appropriate for the constructed 

concrete channel. Based on the design analysis using the numerical model, the maximum 

allowable flow capacity for the channel is 45.10 m3/s. The computed water surface 

profiles using Q= 45.10 m3/s (q= 7.49 m3/s/m) is shown in Figures 5.16, 5.17, and 5.18. 

As illustrated in Figure 5.17, the first bend in the channel is the model critical point 
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which produced a water height of 2.66 m and overtopped the channel height. Backwater 

is produced in the channel due to channel bend. 

 

 
 

Figure 5.8: The natural river is flooding in year 2000 
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Figure 5.9: The critical sections were replaced with pre-cast concrete channels 

 

 
Figure 5.10: Uneven sections during construction which can cause sudden contraction 
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Figure 5.11: The water profiles in the channel just after rain event in year 2003. 
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Figure 5.12: The condition of the concrete channel in year 2004. 
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Figure 5.13: Aquatic growth and sedimentation in the channel 

 

 

 

 

 
Figure 5.13: Grid System and Computed Water Profiles 
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Figure 5.14: Computed Water Depth Profiles at Point A 

 

 
 

Figure 5.15: Computed Water Depth Profiles at Point B 
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Figure 5.16: Simulated Water Profiles for Q= 45.10 m3/s 
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Figure 5.17: Computed Water Depth Profiles at Point A using Q= 49.1 m3/s. 

 

 
Figure 5.18: Computed Water Depth Profiles at Point A using Q= 49.1 m3/s. 



 

 

 

 

CHAPTER 6 

 

 

 

DISCUSSION AND CONCLUSION 

 

 

 
6.1 Model Performance 

 

This study demonstrated the ability of the numerical model introduced by 

Berger in various test cases. The overall results show good simulation performance 

in water depth and flow pattern. Since the numerical model was developed base on 

shallow water equations, the model was imposed by the assumptions incorporated in 

the governing equations. A few limitations were investigated. 

 

 
Figure 6.1 Wave (side view) 

 

Referring to figure 6.1, the wave velocity is proportional to λ. Since the 

frequency is always constant along the flow, the short wave with shorter λ will travel 

slower than long wave. But the shallow water equations will transport all wave 

lengths at the speed of a long wave, as reported by Berger (1995). As a result, the 
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numerical model was found tends to overestimate the velocity as clearly shown in 

normal depth test case. For the same reason, all simulated wavefront in contraction 

and expansion test cases were located further downstream than the computed 

location. 

 

Another important finding is that the energy in numerical model was 

dissipated too fast within one or two elements, which was proved in hydraulic jump 

and pier test cases (the first test case in triangular nose of pier). In other word, the 

length of jump is unable to be predicted by this model. Since the model dissipates 

energy within one or two elements, the grid resolution becomes very important to 

determine the length of hydraulic jump. 

 

Vertical motion is always neglected in shallow water equations. This 

assumption’s effect is apparent in bridge pier test cases where the hydrostatic 

assumption was not valid in run up region. Numerical model cannot predict the run 

up accurately, resulting the weak prediction for the shock location downstream of the 

pier. However, numerical model manages to capture the diamond shape of flow 

downstream of the pier. Some tiny shock waves (in “Z” shape), formed after the 

expansion or contraction, were successfully addressed by model.  

 

Besides, the numerical model failed to simulate 45 degree bend test case for 

supercritical flow. The model halted when the water depth was extremely shallow 

near the inner wall. The same problem was found in gradual contraction test cases 

(Froude number = 6.0). This finding is not surprising because the hydrostatic 

assumption was invalid in bend due to eccentricity force. However, numerical model 

still shows its good performance for subcritical flow. 

 

The dissipation coefficient, β which introduced by Berger in shock-detection 

mechanism is not showing its significant effect to model simulation. This was proved 

in normal depth and hydraulic jump test cases. Only minor effect was found after 

several test cases. 

 

However, this study presents the powerful simulation of this numerical model 

in handling two-dimensional hydraulic problem such as expansion, contraction, 
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channel junction and bridge pier. The best evidence of this explanation was shown in 

the weir experiment, where the “V” shape flow was captured accurately. In the 

engineering viewpoint, the model performs well because it manages to reproduce the 

maximum water depth for most of the test cases. 

 

This study also demonstrates the application of the model in flow evaluation 

and theory validation. This numerical model is suitable to be used to assess the 

design computationally before construction of the open channel. Using a numerical 

model would accelerate this design process and reduce the time spent on the design 

stage.  

 

The application of this numerical model in real world is possible, especially 

for large scale channel such as high velocity channel. Nevertheless, it is not suitable 

for small open channel. Factors such as sediments (affect the bed condition of 

channel) will cause disturbance to the numerical results. The real slope condition in 

site is not easy to be measured. Other disturbance factors such as the small inflow or 

surcharge along the channel and inconsistent of roughness will lead to error. In other 

word, application model in real world only provides approximate prediction. 

However, the results along with engineering judgement can be used to explore and 

determine the critical region in a problem channel. 

   

 

6.2 Modelling 

 

In modelling, the geometry of flume, the types of material (roughness), the 

boundary conditions and initial condition are the most important input. Any mistake 

found in these inputs will lead to instabilities of solution. 

 

Geometry in x and y axis seldom give problem except for bending test case. It 

is not easy to draw a smooth curve in the model. If the length of element is too large 

in bending region, the bend test case would become gradual contraction test case. But 

if too small, it will influence the stability of model. For bed level in z direction, the 

measured bed condition in reality should be applied. However, it is not easy to 
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collect the level in real channel. Note that during construction in site, the built 

channel is always different with the designed slope gradient. 

 

Roughness, which is indicated by Manning’s n is another important 

parameter in model simulation. This parameter has significant effect in determining 

the shock location especially for hydraulic jump test case. For any channel/flume, 

this parameter is impossible to be measured. This value can only be determined 

approximately within a possible range. Furthermore, the n value can be kept 

changing in a tested channel depending on the flow condition. Thus, simulated result 

only provides approximate prediction for engineering judgement. 

 

Besides, the boundary conditions are required before running the model. 

Sometimes, it is difficult to determine this boundary condition especially for 

downstream boundary. However, it doesn’t give any difficulty for laboratory test 

because it can be measured during experiment. But great care must be taken for 

initial condition. Sometimes, modification is needed for certain initial condition such 

as dry bed condition. A good guess to the initial depth can reduce the computed time 

and gives more accurate results. But this requires experience. Keep in mind that 

initial condition should be applied carefully if the main interest is unsteady flow. 

 

The mesh grid also plays an essential role in modelling. Basically, finer 

resolution provides better result compared to coarse grid, but it will increase the 

computation time. A good practice is that, always start with coarse grid as a trial run, 

and then refine the grids in critical regions till the results no longer change with the 

grid resolution. The time step should be small enough in the beginning, and then 

increased at the half run. By this way, optimum simulated results can be obtained 

within the ‘economic’ time. However, if the time step or element’s size is too small, 

noise may occur in model due to instabilities of model. 
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6.3 Experimental Work 

 

A lot of data for the tested flume were obtained through various experiments 

and measurements. Those data include the determination of flow rate, bed condition 

(longitudinally and laterally), roughness, water depths and flow pattern. Among all 

the experiments, it should be concluded that the control test is the most important 

part for experimental work because it provides basic and important information. 

 

Before starting any experiment in a laboratory, it should be designed first by 

using analytical solution. This preparation not only can provide an overall view or 

direction for the study, but it can greatly save the time and cost. Measured results 

should be double checked with the expected results to reduce the error that caused by 

human. By this way, any error occurs in the experiment can be detected immediately 

and correction can be made. During the experiment, difficulty in water depth 

measurement was found. It is difficult to measure the height for shock wave and also 

the oscillation. Perhaps, the close-range digital photogrammetry technique can be 

used to solve this problem. This technique can freeze the flow condition such as 

hydraulic jump and run up, making the result comparison becomes more accurate. 

Further study on the application of photogrammetry in water depth measurement is 

expected. 

 

As discussed in chapter 4, the roughness of flume always becomes the main 

problem because it is impossible to be measured. Through control test experiment, 

only a range of approximate values for Manning’s n can be obtained. Since the 

roughness gives significant effect to the shock location in modelling, it should be 

treated seriously.  
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6.4 Conclusion 

 

The performance of numerical model in handling shock capturing in various 

test cases through comparison with published results, laboratory tests and analytical 

solutions was carried out through this study. Several features commonly found in 

open channel were included in the test cases, which consist of weir, expansion, 

contraction, hydraulic jump, junction, bridge pier, gradual contraction and bend. This 

series of tests demonstrated the capability of model in open channel flow simulation 

to supply engineering decision makers with a tool to evaluate hydraulic problems. 

This model is limited by the assumptions of shallow water equations. In addition, the 

investigations have been limited to problems involving rectangular channels only.  

 

Four experiments were conducted in laboratory to obtain a complete set of 

data for model simulation. In comparison with these experimental results, 

determination of roughness becomes the main problem. For many cases, the 

disagreement between model and experiment was caused by roughness coefficient, 

especially the hydraulic jump test case. 

 

Overall results show that this numerical model is able to capture two-

dimensional flow patterns including the tiny shock wave such as diamond shape flow. 

It has been proved suitable to be used for verifying some theoretical finding. Besides, 

the application of model was further extended to flow evaluation for many test cases. 

As proved in the study, the energy in the model is dissipated too fast and the short 

wave in the model tends to travel faster. The present model is not suitable for any 

surface flow that has steep gradients due to assumption of hydrostatic pressure 

distribution. This research should be further extended to more complicate test cases 

before fully applied in real site problem in the future.  
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APPENDIX A 

 

 

 

Slope Checking     
Check bed condition 

laterally 
         
  water depth (mm)  S=1:500 water depth(mm) 

x (mm) S = 1/65 
S = 

1/150 
S = 

1/500 
S = 

1/1500  x (mm) 
right 
wall 

left 
wall 

600 19.0 81 102 25  600 25.0 25.0 
1100 23.5 82 101 23.5  1100 23.5 26.0 
1600 30.0 84 102 23.5  1600 23.5 24.0 
2100 35.5 87 100 24  2100 24.0 23.5 
2600 42.5 90 100 24  2600 24.0 23.5 
3100 46.0 91 98 22  3100 22.0 22.5 
3600 52.5 93 99 22  3600 22.0 23.0 
4100 61.0 99 101 23.5  4100 23.5 24.5 
4600 68.0 103 102 24.5  4600 24.5 25.0 
5100 75.0 107 105 26  5100 26.0 26.0 
5600 83.0 112 106 27.5  5600 27.5 27.5 
6100 90.0 115 107 28.5  6100 28.5 28.0 
6600 97.0 118 106 28.5  6600 28.5 27.5 
7100 103.0 121 106 28.5  7100 28.5 28.5 
7600 110.0 123 107 28.5  7600 28.5 28.0 
8100 116.5 126 107 29  8100 29.0 28.0 
8600 123.0 129 106 29.5  8600 29.5 29.0 
9100 131.0 132 107 30.5  9100 30.5 30.5 
9600 137.0 134 108 30.5  9600 30.5 31.5 
10100 145.0 138 108 32  10100 32.0 32.0 
10600 152.5 142 109 33  10600 33.0 33.0 
11100 161.0 147 111 35.5  11100 35.5 34.0 
11600 168.5 150 113 36.5  11600 36.5 35.0 
12100 177.5 157 116 39.5  12100 39.5 39.0 
12600 183.0 158 117 39.5  12600 39.5 41.0 
13100 192.0 164 118 42  13100 42.0 43.0 
13600 200.0 171 122 43.5  13600 43.5 43.5 
14100 209.0 177 126 46  14100 46.0 47.0 
14600 217.0 182 128 48  14600 48.0 49.0 

 

 



 
Example Control test  

    
  water depth (mm) 
x 

(mm) 
1.0 

round 
1.5 

rounds 
2.0 

rounds 
600 41.5 70.0 101.0 
1100 39.5 68.0 98.0 
1600 38.0 66.0 96.0 
2100 38.0 65.0 94.5 
2600 36.5 64.0 93.0 
3100 32.0 59.0 88.0 
3600 31.5 58.5 86.5 
4100 32.0 59.0 88.0 
4600 32.5 58.5 88.5 
5100 33.5 58.5 88.0 
5600 35.0 60.5 88.5 
6100 35.5 62.0 88.5 
6600 35.5 60.5 88.5 
7100 34.5 59.0 86.5 
7600 34.0 57.5 85.5 
8100 33.0 57.0 84.0 
8600 32.0 56.0 82.0 
9100 31.0 55.0 81.0 
9600 29.0 51.5 77.5 
10100 29.5 50.0 75.5 
10600 27.0 50.0 72.0 
11100 27.0 47.0 70.0 
11600 27.0 47.0 70.0 
12100 27.0 48.0 70.0 
12600 26.0 44.0 66.5 
13100 24.0 44.0 66.0 
13600 23.0 43.5 77.0 
14100 28.5 53.0 82.0 
14600 32.0 57.0 86.0 

 

 

 

 

 

 

 

 

 



Weir experiment         
           
  measured depth (mm)         
x 

(mm) right wall left wall  
x 

(mm)
y 

(mm)
depth 
(mm)  

x 
(mm) 

y 
(mm) 

depth 
(mm) 

600 28 -  7600 115 26  9100 115 27 
1100 36 36  7600 230 28  9100 230 28 
1600 34 35  7600 340 28  9100 340 30 
2100 34 34  7980 115 26  9600 115 28 
2600 33.5 33.5  7980 230 28  9600 230 27 
3100 32 30.5  7980 340 28  9600 340 27 
3600 30.5 30  8100 115 37  9770 115 26 
4100 29.5 30  8100 230 37  9770 230 26 
4600 30 29.5  8100 340 35  9770 340 26 
5100 31 30.5  8220 115 38  10100 115 29 
5600 30.5 30.5  8220 230 34  10100 230 30 
6100 29 29  8220 340 40  10100 340 30 
6600 30.5 30  8340 115 31  10600 115 31 
7100 29.5 29.5  8340 230 38  10600 230 29 
7600 29 29  8340 340 33  10600 340 30 
8100 49 48.5  8460 115 33  11100 115 29 
8600 40 40  8460 230 37  11100 230 30 
9100 27 26  8460 340 31  11100 340 29 
9600 31 29.5  8600 115 27  11600 115 28.5 
10100 28 28.5  8600 230 19  11600 230 29.5 
10600 31 30  8600 340 27  11600 340 28 
11100 28 29  8720 115 27     
11600 29.5 29  8720 230 26     
12100 30 29.5  8720 340 27     
12600 26.5 27.5  8840 115 24     
13100 27 27.5  8840 230 28     
13600 28 27  8840 340 25     
14100 27 27  8960 115 28     
14600 26.5 27  8960 230 24     

    8960 340 29     
 

 

 

 

 

 

 

 

 

 



Contraction and 90 degree 
expansion experiment         

           
  measured depth (mm)         
x 

(mm) right wall left wall  
x 

(mm) 
y 

(mm)
depth 
(mm)  

x 
(mm) 

y 
(mm) 

depth 
(mm) 

600 35 -  8350 340 38  12600 340 27 
1100 35 36  8350 230 33  12600 230 27 
1600 31 36  8350 50 30  12600 115 24 
2100 32 33  8600 340 40  12900 340 24 
2600 32 33  8600 230 38  12900 230 24 
3100 30 30  8600 50 36  12900 115 35 
3600 30 32  8800 340 38  13100 340 22 
4100 29 31  8800 230 39  13100 230 25 
4600 29.5 31  8800 115 39  13100 115 28 
5100 31.5 30  9000 300 39  13600 340 28 
5600 31 31  9000 160 45  13600 230 28 
6100 30 34  9000 50 44  13600 115 30 
6600 31 29  9100 270 44  13930 340 35 
7100 30 30  9100 160 48  13930 230 29 
7600 31 31  9100 50 45  13930 115 27 
8100 33 40  9200 270 48  14600 340 25 
8600 32.5 -  9200 160 47  14600 230 28 
9100 49 -  9200 50 53  14600 115 23 
9600 50 -  9600 270 46  11130 457 6 
10100 50 -  9600 160 43  11130 335 34 
10600 42 -  9600 50 48  11130 0 43 
11100 47 -  9870 270 47  9230 335 55 
11600 35 37  9870 160 44  9230 0 48 
12100 28 36  9870 50 41  11600 340 16 
12600 24 38  10100 270 40  12430 125 31 
13100 34 27.5  10100 160 40  12400 50 18 
13600 31 29  10100 50 42  12400 340 31 
14100 27 33  10600 270 43  13000 115 35 
14600 31 32  10600 160 36  13000 340 25 

    10600 50 38     
    11100 270 32     
    11100 160 35     
    11100 50 39     
    11230 400 4     
    11230 250 38     
    11230 115 41     
    11450 400 13     
    11450 220 33     
    11450 115 36     
    11600 400 28     
    11600 220 25     
    11600 115 32     
    12100 340 32     
    12100 220 30     
    12100 115 22     

 



Hydraulic jump experiment     
       

  
measured depth 

(mm)     
x 

(mm) right wall 
left 
wall  x (mm) y (mm) 

depth 
(mm) 

600 34.5 -  6500 100 29 
1100 33.5 32.5  6500 230 31 
1600 31.5 35?  6500 430 47 
2100 32.5 31.5  6600 230 32-40 
2600 30.5 31.5  6600 400 51 
3100 27 30  6700 50 57 
3600 30 30.5  6700 230 80±5 
4100 28.5 30.5  6700 350 57 
4600 29 30  6800 50 53-61 
5100 31.5 29.5  6800 230 52-70 
5600 30 30.5  6800 350 56 
6100 30 33  6900 50 54 
6600 50±5 50±5  6900 170 45 
7100 65±5 62±4  6900 350 55 
7600 71±5 71±5  7000 100 55-70 
8100 80±5 77±2  7000 170 48-78 
8600 87.5±2.5 87±3  7000 350 58 
9100 96±4 95±2  7100 50 65 
9600 102±3 104±2  7100 170 75-80 
10100 110±3 112±3  7100 350 64-58 
10600 115±3 118±4  7280 50 60 
11100 124±3 125±4  7280 230 53 
11600 130±3 130±2  7280 350 61 
12100 137±3 139±3  7500 50 69 
12600 146±3 147±2  7500 170 75-65 
13100 152±2 155±2  7500 350 67 
13600 160±2 166±2  7800 50 66-80 
14100 168±2 168±2  7800 230 70-80 
14600 175±1 176±1  7800 350 72 

    8350 50 83 
    8350 230 75-90 
    8350 350 83 

 

 

 

 

 

 

 

 



Example data for Bridge pier 
experiment         

           
  measured depth (mm)         
x 

(mm) right wall left wall  
x 

(mm) y (mm) 
depth 
(mm)  

x 
(mm) 

y 
(mm) 

depth 
(mm) 

600 35 -  5900 110 29  7100 400 35 
1100 34 37  5900 230 30  7200 0 47 
1600 31 35  5900 340 31  7200 50 38 
2100 32 32  6100 50 48  7200 190 19 
2600 31 32  6100 300 33  7200 230 36 
3100 28 31  6100 400 49  7200 260 19 
3600 29 31  6200 50 59  7200 400 39 
4100 29 31  6200 230 80  7500 80 22 
4600 29 30  6200 340 60  7500 150 44 
5100 32 30  6200 400 55  7500 230 35 
5600 30 30  6400 50 61  7500 320 41 
6100 50 50  6400 110 56  7500 380 25 
6600 68 67  6400 230 48  7700 0 45 
7100 41 37  6400 340 55  7700 110 28 
7600 21 21  6400 400 61  7700 230 134 
8100 35 31  6550 50 68  7700 340 29 
8600 40 39  6550 110 74  7900 50 34 
9100 31 33  6550 230 92  7900 230 25 
9600 27 31  6550 340 71  7900 400 37 
10100 33 34  6550 400 64  8100 110 28 
10600 30 31  6650 0 70  8100 230 35 
11100 32 32  6650 40 65  8100 340 28 
11600 31 32  6650 180 64  8180 110 29 
12100 31 33  6650 right face 75  8180 230 45 
12600 30 32  6650 left face 73  8180 340 30 
13100 30 32  6650 300 62  8600 110 27 
13600 30 31  6650 340 62  8600 230 33 
14100 30 30  6650 400 66  8600 340 28 
14600 30 30  6800 0 62  8800 110 35 

    6800 50 60  8800 230 28 
    6800 160 39  8800 340 35 
    6800 300 35  9100 110 31 
    6800 400 58  9100 230 32 
    6900 0 51  9100 340 31 
    6900 50 47     
    6900 160 55     
    6900 300 49     
    6900 400 46     
    7030 40 41     
    7030 160 51     
    7030 300 51     
    7030 400 38     
    7100 50 43     
    7100 170 20     
    7100 260 19     
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APPENDIX B 

 

Governing Equations 

 

Vertical integration of the three-dimensional equations of mass and 

momentum conservation for incompressible flow with the assumption that vertical 

velocities and accelerations are negligible compared to horizontal motions and the 

acceleration of gravity results in the governing equations commonly referred to as 

the shallow-water equations. The dependent variables of the two-dimensional fluid 

motion are defined by the flow depth h, the x-direction component of unit discharge 

p, and the y-direction component of unit discharge q. These variables are functions of 

the independent variables x and y, the two space directions, and time t. Neglecting 

free-surface stresses and the effects of Coriolis force as these are not considered 

important in high-velocity channels, the shallow-water equations in conservative 

form are given as (Abbot, 1979; Praagman, 1979): 
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for the conservation of mass. Conservation of momentum in the x-direction and y-

direction are given respectively as: 
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and 
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where 

 

g= acceleration of gravity 

σ= Reynolds stresses per unit mass where the first subscript indicates the direction 

and the second indicates the face on which the stress acts 

z= channel invert elevation 

n= Manning’s roughness coefficient 

Co= dimensional constant (Co=1 for SI units and 2.208 for non-SI units) 

 

The governing equations are given in vector form as: 
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where 
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where 

p=uh, u being the depth-averaged x-direction component of velocity 

q= vh, v being the depth-averaged y-direction component of velocity 

 

The individual terms in the conservation equations are as follows: 

a. Acceleration force per unit width 

b. Pressure force per unit width 

c. Body forces per unit area 

d. Bed shear stresses 

 

 

The Reynolds stresses are determined using the Boussinesq approach of gradient-

diffusion: 
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where vt is the viscosity (sum of turbulent and molecular viscosity, commonly 

referred to as eddy viscosity), which varies spatially and is solved empirically as a 

function of local flow variables (Rodi, 1980; Chapman and Kuo, 1985): 
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where Cb is a coefficient that varies between 0.1 and 1.0. 

 

This system of equations constitutes a hyperbolic initial boundary value 

problem. Appropriate boundary conditions are determined using the approach of 

Daubert and Graffe as discussed in Drolet and Gray (1988) and Verboom, Stelling, 

and Officier (1982). Daubert and Graffe use the method of characteristics to 

determine the required boundary conditions. The number of boundary conditions is 

equal to the number of characteristic half-planes that originate exterior to the domain 

and enter it. If the inflow boundary is supercritical, then all information from outside 

the domain is carried through this boundary. Therefore, p and q (or u and v) and the 

depth h must be specified. If the inflow boundary is subcritical, then the depth is 

influenced from the flow inside the domain (downstream control) and therefore only 

p and q (or u and v) are specified. Outflow boundary conditions required are 

determined by analysis of information transported through this boundary. If the 

outflow boundary is supercritical, then all information is determined within the 

domain and no boundary conditions are specified. However, if the outflow boundary 

is subcritical, then the depth of flow at the boundary (tailwater) must be specified. 

The no-flux boundary condition is appropriate at the sidewall boundaries and is 

discussed in detail in Appendix B. 
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FINITE ELEMENT FORMULATION 

 

A variation formulation of the governing equations involves finding a 

solution of the dependent variables Q using the test function Ψ over the domain Ω.  

The variation formulation of the shallow-water equations in integral form is: 
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Where t is time and Q, F, F, and H are defined in Equations A5-A8. 

 

The finite element approach taken is a Petrov-Galerkin formulation that 

incorporates a combination of the Galerkin test function and a non-Galerkin 

component to control oscillations due to convection.  The finite element form of the 

governing equations is 
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Where: 

 

e  =  subscript indicating a particular element 

 

i    = subscript indicating a particular test function 

 

~ = discrete value of the quantity 

 

The geometry and flow variables are represented using the Lagrange basis Φ: 
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               Q Q
j

j j= ∑ φ        

 (B3) 

 

Where j is the nodal location. Bilinear triangular and quadrilateral elements are used 

with nodes at the element corners.  Figure B1 show the two bilinear elements used in 

terms of local coordinates η and ξ. 

 

 

 

 

 

 

 

  

 

 

Figure B1. Local bilinear elements. 

 

 

The test function used (to be elaborated in the next section) is: 

 

               Ψ i j iI= +φ λ                  

 (B4) 

Where 

Ф = Galerkin part of the test function 

Ι  = Identity matrix 

ϕ  = non-Galerkin part of the test function 

 

To facilitate the specification of boundary conditions, the weak form of the 

equations is developed using integration by parts procedure. Integration by pats of 

the terms. 

 
                                η                                                                η 
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                   1                           
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yields the weak form of the equations.  The ~ is omitted for clarify and the variables 

are understood to be discrete values.  The weak form is given as: 
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where (nx, ny) = ň the unit vector outward normal to the boundary Гe and 
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Natural boundary conditions are applied to the sidewall boundaries through the weak 

statement.  The sidewall boundaries are “no flux” boundaries.  That is there is no net 

flux of mass or momentum through these boundaries.  This boundary condition is 

enforced in an average sense through the weak statement.  Setting the mass flux 

through the sidewall boundary to zero: 
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( )
τ
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 (B8) 

where: 

 

p = x-direction component of unit discharge 

 

q = y-direction component of unit discharge 

 

There is no net momentum flux through the boundaries.  Therefore, the x-direction 

momentum through the boundary is set to zero. 
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and the y- direction momentum through the boundary is set to zero: 
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where: 

 

u = p/h = depth averaged x-direction component of velocity. 

 

V = q/h = the depth averaged y-direction component of velocity 

 

H = the depth of flow. 

 

Sidewall drag is treated as a partial slip condition.  That is the boundary stress 

terms in the governing equations, integrated along the sidewall, are specified via the 

Manning relation: 
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Where 

   

oxx oxy oyx oyy     = Reynolds stress per unit mass where the first subscript indicates the  

                            direction and the second indicates the face on which the stress acts. 

 

g                 = Acceleration of gravity 

 

Co       = Dimensional constant (Co = 1 for S1 units and 2.208 for non S1 

units) 

 

 

 

 

 

 

 

 

 

 

 

 

PETROV-GALERKIN TEST FUNCTION 

 



 

 

x

For the shallow-water equations in conservative from (Equation B2), the 

Petrov-Galerkin test function ϕ is defined as (Berger 1993) 
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Where β is a dimensionless number between 0 and 0.5 and Φ is the liner basin 

function.  In the manner of Katopodes (1986) the grid intervals are chosen as: 
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 and 

 

 Λ y
y y

=
⎛
⎝
⎜

⎞
⎠
⎟ +

⎛
⎝
⎜

⎞
⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2
2 2

1
2

∂
∂ξ

∂
∂η

                

(B15) 

 

where ξ and η) are the local coordinates defined from –1 to 1 (Figure B1). 

 

To find Â consider the following: 
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P P A− =1Λ         

 (B17) 
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Where Λ = Ιλ is the matrix of eigenvalues of A and P and P-¹  are made of the right 

and left eigenvectors. 

 

∃ ∃A P P≡ −1Λ          

 (B18) 

where 

 

                    λ¹                                           0                     0 

              (λi ² + λ²) ½ 

 

Λ =  

                       0                                      λ¹                                    0                  

                                                         (λi ² + λ²) ½ 

                            λ¹                                                  

                       0        0         (λi ² + λ²) ½ 

                

          

(B

19) 

 

and 

 

         λ¹ = u + c                                                                                                    

(B20) 

 

λ² = u - c                                                

 (B21) 

 

            λ³ = u                                               

 (B22) 

            c = (gh)½         

 (B23) 
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A similar operation may perform to define 
^
B . 

 

This particular test function is weighted upstream along characteristic similar 

to a concept like that developed in the finite difference method of Courant, Isaacson 

and Rees (1952) for one-sided differences.  These ideas were expanded to more 

general problems by Moretti (1979) and Gabutti (1983) as split-coefficient matrix 

methods and by the generalized flux vector splitting proposed by Steger and 

Warming (1981).  In the finite element community, instead of one-sided differences 

the test function is weighted upstream.  Thus particular method in one dimension (1-

D) is equivalent to the SUPG (streamline upwind Petrov-Galerkin) scheme of 

Hughes and Brooks (1982) and similar to the form proposed by Dendy (1974).  

Examples of this approach in the open channel movement using the generalized 

shallow-water equations are presented for 1-D in Berger and Winant (1991) and for 

2-D in Berger (1992) A 1-D Venant application is give by Hicks and Steffler (1992). 
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SHOCK CAPTURING 

Berger (1993) shows that the Petrov-Galerkin scheme is not only a good 

scheme for advection-dominated flow, bit is also a good scheme for shock capturing 

because the scheme dissipates energy at the short wavelengths.  When a shock is 

encounter, the weak solution of the shallow-water equations must lose mechanical 

energy. Some of this energy loss is analogous to a physical hydraulic system losing 

energy to heat, particle rotation, etc but much of it is in fact, simply the energy being 

transferred into vertical motion.  And since vertical motion is not include in the 

shallow-water it is lost. This apparent energy loss can be advantages.  

To apply high value of β say 0.5, only in regions in which it is needed, since 

a lower value is more precise, construct a trigger mechanism that can detect shocks 

and increase β automatically.  The method employed detects energy variation for 

each element and flags those elements that have a high variation as needing larger 

value of β for shock capturing.  Note that this variation on an element basis and the 

Galerkin method would enforce energy conversation over a test function (which 

includes several elements) 

 

The shock capturing is implemented when Equation B24 is true 

Tsi > χ             

(B24) 

 

where γ is a specified constant and 

Ts
ED E

Si
i=
−

            

(B25) 

 

where EDi the element energy deviation is calculated by 
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 (B26) 

 

Where 

Ω = element i 

Ε = mechanical energy i 

ạ = area of element i  

and E the average energy of element i is calculated by  

E
E d
ai i=

∫ Ω
                                  

(B27) 

and 

E  = the average element energy over the entire grid 

S  = the standards deviation of all EDi 

Through trial a value of � of 1.0 was chosen.   
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TEMPORAL ACTIVITIES 

A finite difference expression is used for the temporal derivatives.  The 

general expression for the temporal derivatives of a variable Q, is: 
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∂
∂
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Where 

α = temporal difference coefficient 

j = nodal location 

m = time-step 

An α equal to 1 result in a first-order backward differences approximation 

and an equal α to equal to 1.5 results in a second-order backward difference 

approximation of the temporal derivative. 
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SOLUTION OF THE NONLINEAR EQUATIONS 

The system of nonlinear equations is solved using the Newton-Raphson 

iterative method (Carnahan, Luther, and Wilkes 1969) Let R be a vector of the 

nonlinear equations computed using a particular test function Ψ and using as 

assumed value of Q.  R is the residual error for a particular test function i  

Subsequently R is forced toward zero as: 

∂
∂

R
Q

q Ri
k

j
k j

k
i
k∆ = −         

 (B29) 

where k is the literati on number j is the node location and the derivatives composing 

the Jacobian are determined analytical.  This system of equations is solved for ∆qkj 

and then improved estimate for Qk+1 is obtained from: 

Q Q qj
k

j
k

j
k+ = +1 ∆           

(B30) 

This procedure is continued until convergence to an acceptable residual error is 

obtained. 

Equation B29 represents a system of linear algebraic equations that must be 

solved for each iteration and each time-step.  A profile solver is implemented to 

achieve efficient coefficient matrix storage.  This method stores the upper triangular 

portion of the coefficient matrix by columns and the lower by rows.  Any zeros 

outside the profile are not stored or involved in the computations.  The necessary 

arrays are then a vector composed of the columns of the upper portion and a pointer 

vector to locate the diagonal entries.  Triangular decomposition of the coefficient 

matrix is used in a direct solution.  The program a construct the triangular 

decomposition of the coefficient matrix uses a compact Crout variation of Gauss 

Elimination. 
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