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ROBUST INTELLIGENT ACTIVE FORCE CONTROL OF
NONHOLONOMIC WHEELED MOBILE ROBOT

H. H. TANG1, MUSA MAILAH2 & M. KASIM A. JALIL3

Abstract. The paper describes a new and novel approach to control a nonholonomic wheeled
mobile robot (WMR) robustly with reference to its trajectory tracking capability in the wake of
introduced disturbances. The workspace of a mobile robot is not always ideal but more often than not,
filled with disturbances (known or unknown) such as inherent friction, irregular surface terrain,
uncertainties, and parametric changes. An intelligent active force control (IAFC) scheme incorporating
fuzzy logic has been proposed in the study to counter the disturbances and consequently improve the
trajectory tracking characteristic of the system. In the study, IAFC scheme is employed together with
a resolved acceleration control (RAC) that has been shown to provide a very robust and accurate
performance of the WMR. Fuzzy logic is explicitly used for the estimation of the inertia matrix that is
required in the inner feedback control loop of the IAFC scheme. The robustness and effectiveness of
the proposed control scheme are investigated considering various forms of loading and operating
conditions. The IAFC scheme has also been compared to two other control methods for the purpose
of benchmarking.

Keywords: Active force control, fuzzy logic, resolved acceleration control, robust, nonholonomic
wheeled mobile robot

Abstrak. Kertas kerja ini menerangkan satu pendekatan baru dalam pengawalan lasak robot
mudah gerak beroda tak holonomik (WMR) dengan merujuk kepada keupayaan robot menjejaki
kehendak trajektori walaupun dikenakan gangguan terhadapnya. Ruang lingkup kerja sebenar robot
mudah gerak adalah tidak selalunya ideal, malahan dipenuhi dengan pelbagai gangguan (sama ada
diketahui ataupun tidak) seperti geseran dalaman, permukaan yang tidak rata, ketidaktentuan, dan
perubahan terhadap nilai parameter sistem. Dalam kajian ini, suatu kawalan daya aktif pintar (IAFC)
yang melibatkan penggunaan logik kabur telah diperkenalkan untuk tujuan menghapuskan gangguan
yang wujud dan seterusnya memperbaiki ciri penjejakan trajektori sistem. Skim IAFC telah digunakan
bersama dengan pengawal pecutan terlerai (RAC) untuk mempertingkatkan lagi kejituan dan kelasakan
sistem WMR. Logik kabur telah digunakan untuk menganggar matriks inersia yang diperlukan
dalam gelung suap balik dalaman skim IAFC. Kelasakan dan keberkesanan pengawal IAFC telah
diselidiki dan diuji dengan pelbagai keadaan pembebanan serta pengoperasian. Skim IAFC juga
dibandingkan dengan dua sistem kawalan lain untuk tujuan pengukurlarasan.

Kata kunci: Kawalan daya aktif, logik kabur, kawalan pecutan terlerai, kelasakan, robot mudah
gerak beroda tak holonomik
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1.0 INTRODUCTION

The motion control of nonholonomic WMR has been a subject of considerable research
over the last few years. Most of the research centres on the fact that the WMR does not
meet Brockett's well-known necessary smooth feedback stabilization condition [1]. In
other words, the primary side effect of the wheel motion is to move the vehicle to any
point in a three dimensional (3D) space while the existing number of controllable
degrees-of-freedom (DOF) is only 2-DOF, less than the total DOF (which is 3-DOF).
It is recognized that the larger the gap between the controllable and total DOFs of the
WMR, the harder it is to control the robot [2]. Due to this nonholonomic constraint,
the WMR cannot be stabilized to a point using the familiar smooth static-state feedback
control laws. Therefore, instead of stabilizing the WMR to a point, which at the present
stage is still considered as not yet fully generalised, the mobile robot is required to
converge to a reference trajectory only [3]. Kanayama et al. [4] has first proposed a
stable tracking control method for WMR, but it was restricted to the determination of
target linear and rotational velocities, involving only kinematic model analysis of WMR.
Besides, Yamamoto and Yun have also introduced a look-ahead control algorithm
for the mobile platform so that the reference point to be controlled is successful in
following the desired trajectory [5]. As inspired by [4], Fierro and Lewis have developed
a WMR control scheme through back-stepping the kinematics into the dynamics of
WMR with the assumption that a complete prior knowledge of the robotic system is
attainable [6]. Meanwhile, Samson [7] has also provided a global asymptotic control
solution for the set point regulation of a general class of nonholonomic systems. Later,
Dixon et al. [8] suggested a global exponential tracking control method for the
stabilization of the nonholonomic WMR. By using backstepping technique,
Pourboghrat and Karlsson [9] have incorporated the continuous feedback controller
into their adaptive control scheme for the stabilization of the nonholonomic mobile
robot.

Although these methods are effective, they generally lack the necessary robustness
in countering disturbances. The workspace for the WMR is not always ideal and
usually packed with various forms of disturbances including frictions, irregular terrains,
obstacles in robot’s path, parametric changes and uncertainties within and outside the
system, making it almost impossible to model all these disturbances and incorporate
them into the dynamics of the WMR. Thus, in order to ensure a more robust and
accurate operation of the mobile robot, a disturbance compensation scheme should
be incorporated into the operation of the WMR. The idea of disturbance compensation
is in fact not a new issue and has been rigorously studied by Hewit and Burdess
towards the end of seventies [10]. They have first proposed a robust motion control
scheme known as active force control (AFC) method applied to the control of a
dynamic system in the presence of disturbances and uncertainties. Apart from AFC,
Ohnishi et al. [11] have also proposed a robust motion controller in the form of a
disturbance observer for the compensation of existing disturbances in a dynamic system.
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With reference to [10], Mailah [12] has further improved the performance of the AFC
control scheme through proper estimation of inertial parameters by intelligent
mechanism. In this paper, the AFC scheme with an intelligent component (therefore
called IAFC) and which is coupled to a RAC scheme [13] has been applied for the
trajectory tracking control of the WMR.

2.0 NONHOLONOMIC WMR

The WMR is assumed to be located in a two dimensional plane in which a global
Cartesian coordinate system is defined at the reference point, O as shown in Figure 1.
The heading direction, φ(t) is taken positive counter clockwise from the horizontal x-
axis. For the navigation of the WMR, two coordinate axes are applied: the global X-Y
axis and local V-N axis. In the global X-Y axis, basically the WMR possesses a 3-
DOF configuration in which the general coordinate, q(t) is defined as:

 ( )
( )
( )
( )

 
 =  
  

c

c

x t

q t y t

tφ
(1)

From Equation (1), xc and yc are the coordinates of the reference point, Pc. In local
V-N axis, the number of DOF for the WMR is only two and thus by transforming
WMR from global X-Y axis to V-N axis, this ensures the reduction of DOF for WMR
from three to two, which is necessary for the stabilization purpose. Generally, the
posture of the WMR in global X-Y axis is not independent, since the derivative of q(t)
is closely related to the nonholonomic constraint.

Figure 1 A WMR configuration
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 In this paper, it is assumed that the configuration space, C of the WMR is an open
subset of ℜj, where j denotes the numbers of motion parameters of the WMR as
stated in Equation (1). In order to observe the states of these two motors, the right and
left wheel rotation (θr and θl) have been added into Equation (1) and thus the
nonholonomic constraint of the WMR can be formulated as follows [14]:

( )

1

sin cos 0 0

cos sin 0 0

cos sin 0

φ φ
φφ φ

φ φ θ

θ

 
 

− −   
   = − − − =   
 − −   

 
  

r

x

yd

q q b r

b r

A
(2)

A(q) ∈ ℜ m × n represents a matrix of m velocity constraints. A(q) is assumed
to be linearly independent at each point q ∈ ℜ n or else the dependent constraints may
be eliminated. The first constraint in Equation (2) reveals that the robot can only move
in the direction normal to the axis of the driving wheels. The other two constraints are
the rolling constraints that ensure the mobile robot will satisfy the pure rolling and
non-slipping conditions [15]. In order to fulfil the condition A(q)S(q) = 0, S(q) is derived
as:

( )

( ) ( )
( ) ( )

cos sin cos sin

sin cos sin cos

1 0

0 1

φ φ φ φ
φ φ φ φ

− + 
 + − 
 = −
 
 
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c b d c b d

c b d c b d

q c cS
(3)

The variable c is defined as follows:

2
r

c
b

= (4)

where r is the wheel radius and 2b is the width of WMR.

3.0 KINEMATICS AND DYNAMICS OF THE WMR

The forward kinematics is used to estimate the positions and velocities of the WMR in
Cartesian space from a set of linear and angular velocities. The forward kinematics of
the WMR is given as:
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where v and ω are the linear and angular velocities of the WMR, respectively.
The linear velocity, v, and angular velocity, ω, of the WMR in relation to the motor

rotation speeds, θ
.
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.
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In order to derive the dynamic equation for the nonholonomic WMR, the Lagrange
equation, L with Lagrange multiplier λ is applied as follows:

( )T 0λ τ∂ ∂− + − =
∂ ∂

d L L
q

dt q q
A (7)

The columns of AT form a non-normalized basis for the constraint forces and
λ ∈ ℜ m gives the relative magnitudes of the forces. Meanwhile, τ represents the non-
conservative and externally applied forces. Through denoting M(q) ∈ ℜ n × n as
symmetric, positive definite inertia matrix, V(q,q.) ∈ ℜ n × 1 as centripetal and Coriolis
matrix, D as the disturbance matrix which is the summation of frictions, gravitational
vector, as well as disturbance torques, and E(q) as input transformation matrix, the
dynamic equations of WMR can be modelled as follows [5]:

M(q)q
..
 + V(q,q
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m : total mass of WMR = mc + 2mw
mc : the mass of the platform without the driving wheels and the rotors of the DC

motors
mw : the mass of each driving wheel plus the rotor of its motor
I : total moment of inertia of WMR = Ic + 2mw (d2 + b2 ) + 2Im
Ic : the moment of inertia of the platform without the driving wheels and the

rotors of the motors about a vertical axis through Po
Iw : the moment of inertia of each wheel and the motor rotor about the wheel axis
Im : the moment of inertia of each wheel and the motor rotor about the wheel

diameter
τr : the torque acting on wheel axis by right motor
τl : the torque acting on wheel axis by left motor

For control purposes, the 5-DOF of Equation (8) should be reduced to 2-DOF since
the controllable DOF for WMR is only two. Denoting the expression,

( ) ( ): ,r lq q u u θ θ= =S (9)

the derivative of Equation (9) is then obtained as:

( ) ( )q q u q u= +S S (10)

Equation (8) can be further simplified through substituting Equation (10) into Equation
(8). Meanwhile, the constraint forces λ can be eliminated through fulfilling the condition
A(q)S(q) = 0. Assuming WMR moves only in a horizontal plane, the gravitational
effect can thus be neglected and the dynamic equation can be written as follows:

 ( ) ( ) ( ), dq u q u q τ+ + + =M V F Eτ (11)

where

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T T, , , ,q q q q q u q q q q q u = = + M S M S V S V S M S and

( ) ( ) ( )Tq q q=E S E

4.0 DESIGN OF THE MOTION CONTROLLER

The proposed trajectory tracking controller for the WMR consists of the RAC and the
AFC. In designing the controller, two postures of the WMR have been used. They are
the reference and the current postures. A reference posture is the goal posture of the
WMR while the current posture is the real posture in real time operation. By feeding
back the information on the current posture, the error of the motion is calculated as the
difference between the reference and the current postures. Figure 2 illustrates the block
diagram of the proposed trajectory tracking controller. In the inverse motion
transformation, the acceleration commands generated by the RAC are transformed
from global axis to local axis as follows:
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Since the total DOF for WMR is three while the controllable DOF is two, the DOF
for the solution of Equation (12) has to be stepped down to two. With α denoted as the
constant virtual correcting radius which is set to unity (i.e. α = 1), the kinematic controller
as defined in [4] is modified into a dynamic form to take into account the AFC
requirements as follows:

 
localr

local local1
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φ αθ
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b
xr r

b y
r r

(13)

The wheel acceleration commands obtained in Equation (13) are then applied into
IAFC scheme to generate the compensation torques that are required for the actuation
of both motors. In order to adapt the actual output states of WMR from local axis to
global axis, forward motion transformation consists of Equations (5) and (6) is required.
Finally, the transformed states are fed-back into the RAC scheme for motion control
purposes.

4.1 RAC Scheme

RAC was first proposed by Luh et al. [13] for the motion control of static manipulator.
As an acceleration control method, RAC takes into account the dynamics of the robot
for the generation of actuating commands. By denoting Kp(q) as positive definite

Figure 2 A block diagram for the proposed IAFC scheme
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proportional control parameter and Kd(q) as positive definite derivative control
parameter, three acceleration commands, i.e. x

..
c, y

..
c, and φ

..
c can be obtained as follows:

( ) ( )c r dx r px rx x K x x K x x= + − + − (14)

( ) ( )c r dy r py ry y K y y K y y= + − + − (15)

( ) ( )c r d r p rsinK Kφ φ φ φ φ φϕ ϕ= + − + − (16)

4.2 IAFC Scheme

The incorporation of AFC into the motion control scheme of WMR has contributed
to the dynamic decoupled control of the WMR in a convenient coordinate system.
Dynamic system that is controlled by AFC remains stable, robust, and efficient although
the system is operated at high speed or exposed to disturbances. Besides, AFC also
ensures that the motion controller tolerate with the inaccurate modelling of the system
and its workspace. Figure 3 illustrates the block diagram for the AFC scheme. By
stating IN as the estimated inertia matrix of WMR, θ

..
 as the acceleration signal of

WMR, and τ as the applied control torque, the essential equation describing the
estimated disturbances, τd* in the AFC loop is shown as follows [12]:

τd* =  τ − INθ
..

(17)

Note that the AFC equation as described in Equation (17) could have practical
implication. Both the acceleration signal and control torque could be physically
measured by means of suitable transducers, i.e. accelerometer and ammeter

Figure 3 Block diagram for the AFC scheme
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respectively. For the acquisition of τ, ammeter is used to measure the motor current, It
and with a priori known motor constant, Kt, τ can be obtained as follows:

τ  = Kt It (18)

In this study, perfect modelling was assumed for the measurements while an
intelligent method was applied for the estimation of IN. It has been ascertained that
the estimation of IN is a definite requisite to the AFC scheme. In the past, there were
several methods that have been proposed for the estimation of IN, such as through
the reference of a look-up table or even using a crude approximation technique [16].
These methods though quite effective in implementation, they lack the systematic
approach towards estimating appropriate IN. Therefore, in this paper, fuzzy logic (FL)
has been applied for the purpose of appropriate estimation of IN. From a number of
trial-runs, it has been shown that the AFC scheme works effectively if the chosen IN
lies within an infinite bound of the modelled inertia matrix, M [17] such that:

0.4M < IN < 1.2M (19)

From Equation (19), a suitable range of IN was selected and applied in the study.
In Equation (8), it is observed that M(q) is a function of φ and through the above
relationship, it can also be said of IN. This was subsequently applied to the fuzzification
process and generation of the rules for the implementation of FL to estimate suitable
values of IN. Figure 4 illustrates the membership functions for the input, sin (φerror)
and the output, INR and INL for the right and left motors respectively. The fuzzy rules
were designed in the form of if-then structure. In this paper, Mamdani fuzzy inference
system was utilized. A total of five simple fuzzy rules has been designed to estimate
the suitable values for IN. The fuzzy rules are expressed as follows:

If sin(φerror) is NB then INR is VSR and INL is VLL
If sin(φerror) is NS then INR is SR and INL is LL
If sin(φerror) is ZE then INR is MR and INL is ML
If sin(φerror) is PS then INR is LR and INL is SL
If sin(φerror) is PB then INR is VLR and INL is VSL

Taking first statement in the above example, it implies that if the orientation error,
sin(φerror) of the mobile robot is negatively big (NB), then the estimated inertia matrix
of the right motor, INR is very small (VSR) and the estimated inertia matrix of the left
motor, INL is very large (VLL). Finally, a crisp output is obtained through the process
of defuzzification.

5.0 SIMULATION

The simulation was performed using MATLAB, Simulink and Fuzzy Logic Toolbox
[18]. During the simulation, disturbance models were included to test the system’s
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robustness and effectiveness. Finally, the simulation results of the proposed IAFC
scheme were analyzed and compared with the control methods as proposed by Tang
[19] as well as Fierro and Lewis [6] for the purpose of benchmarking. For convenience,
the method used by Tang [19] is denoted by the abbreviation AFC while Fierro and
Lewis [6] technique by the notation F&L in the simulation study. The IAFC method
relies very much on the AFC loop in countering the existing disturbances with the
assumption that the IN has been appropriately estimated by the FL component. Tang
[19] on the other hand, used crude approximation method to estimate the IN. In this
study, a number of parameters and conditions that have been assigned after a number
of successful trial runs prior to the simulation study and are listed as follows:

WMR Parameters:

r = 0.15 m, b = 0.75 m, d = 0.03 m, m = 31.0 kg, mc = 30.0 kg

Controller Parameters

Kpx = 10, Kpy = 10, Kpφ = 10, Kdx = 10, Kdy = 10, Kdφ = 10 (for the RAC part)

Fuzzy Logic Parameters

Range for INR and INL : 0.12 < IN < 0.36 kgm2

Disturbance Models Parameters

Constant torque, a

6

6
τ  

=  
 

 Nm, Harmonic torque, 
( )

( )h

3 sin 0.5 3

3 sin 0.5 3

t

t
τ

π
+ 

=  + + 
 Nm

Figure 4 Membership functions for (a) input and (b) output of FL component
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6.0 SIMULATION RESULTS AND DISCUSSION

Figures 5 - 8 illustrate the comparison of the proposed IAFC control scheme with two
different control methods by Fierro and Lewis (F&L) [6] and Tang (AFC) [19], in
terms of their tracking performance in the presence of the introduced disturbances at
steady state conditions. The trajectory tracking for no disturbance condition is not
shown since all the control methods are very effective in the stabilization of the WMR
and thus their performances are almost similar in this case.

Table 1 shows the tracking errors (xerror , yerror , and φerror) for all the schemes for
both disturbance conditions. It is obvious that all the three methods display almost
similar result in terms of the average tracking errors generated when there is no external
disturbances acting on the WMR. However, with the introduction of disturbances, it
can be seen that IAFC scheme shows its superiority over its counterparts by producing
a very small margin of overall steady state errors averaging 0.56% deviation from the
prescribed reference trajectory compared to 1.03% and 12.06% for the AFC and F&L
methods respectively. This shows that the IAFC method can reject disturbances more
effectively than its counterparts. It is also evident that the performance of the F&L
controller deteriorates significantly as the margin of error increases to more than ten
folds of the case where the WMR is free from disturbances.

Figure 5 Circular trajectory tracking
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Figure 7 Track error (y)
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Figure 6 Track error (x)
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Meanwhile, the pure AFC controller shows a comparable result with the IAFC
method as it only exhibits about twice the error generated by the latter method. This
is because the IN obtained through the crude approximation method is static (fixed),
and thus hinders the generation of the necessary compensation torque required for the
actuation of WMR.

Figure 8 Orientation error
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Table 1 Percentage of deviation for WMR from reference trajectory

Without disturbance With disturbance
Control
scheme

xxxxxerror (%) yerror (%) φφφφφerror (%) Average xerror (%) yerror (%) φφφφφerror (%) Average

IAFC 0.35 0.38 0.32 0.35 0.49 0.53 0.65 0.56

AFC 0.35 0.38 0.32 0.35 0.86 0.96 1.27 1.03

F&L 0.20 0.21 0.35 0.25 13.83 13.59 8.76 12.06
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7.0 CONCLUSION

A robust approach to control the WMR has been proposed. The proposed IAFC
scheme applied to the motion control of the WMR has been demonstrated to be very
robust compared to the method by Tang [19] as well as Fierro and Lewis [6]. With
proper estimation of IN through the FL technique, the IAFC scheme is able to compute
the necessary applied control torques to cancel out all the disturbance torques and
thus guarantees the convergence and stability of the WMR through the observed results.
In future, it is recommended that the study should be extended to include other types
of loading and operating conditions. Besides, a more intricate design of the fuzzy
controller mechanism could also be investigated and applied.
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