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Abstract This paper deals with the design and analysis of the best sets of ex-
periments by using Bayesian Method in the presence of prior knowledge. How-
ever, the model presented is not completely general since it is restricted to solve
this particular problem, that is to find the best conditions to adsorp Methyl
Iodide released after a nuclear reaction.
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Abstrak Kertas ini membincangkan penggunaan Kaedah Bayes di dalam mere-
kabentuk dan menganalisis set ujikaji terbaik jika terdapat pengetahuan awalan.
Walaubagaimanapun, model yang diberikan hanyalah untuk menyelesaikan ma-
salah ini bukannya model secara umum, iaitu untuk mendapatkan syarat yang
terbaik untuk penyerapan Methyl Iodide yang terbebas hasil daripada tindak-
balas nuklear.

Katakunci Kaedah Bayes, Rekabentuk Ujikaji, Rekabentuk Ujikaji Bayes.

1 Introduction

Stable and radioactive isotopes of iodine are formed as fission products in irradiated reactor
fuel. Iodine can therefore be released to the environment as part of routine discharges, or
under fault situations. As such, it creates a potential health risk. Although some eighteen
isotopes of iodine are known to exist, the isotope of primary concern from operating power
reactors is I131. The physical form of the iodine may be as gas (e.g. Methyl Iodide), which
is generally considered to be the most highly penetrating form. Therefore, potential release
must be controlled by an iodine trap that is by using an activated impregnated carbon.
Activated impregnated carbon can be manufactured either from coconut or coal based.
Certain conditions such as face velocity of incident CO2 , pressure, temperature, elution
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time and iodine loading should be taken into consideration so to maximize the adsorption
effectiveness. This paper deals with a method in finding the optimum conditions, that is
Bayesian Experimental Design. The findings will help in minimizing the amount of test
work required and also the time and money in testing all the charcoals needed for the
adsorption of the iodine.

2 Design of The Mathematical Curve-Fitting Model

The model presented is not completely general since they are restricted to solve this partic-
ular problem. We need to maximize the ’K value’ (a measure of adsorption effectiveness)
of the charcoal. The K value is defined by

p = 10−Kt = 10−Kz/v (1)

where p is the proportion of methyl iodide penetrating at a distance z down the column, v
is the face velocity, t is the dwell time.
Hence,

ln (p) = −ln(10)Kt = −2.303Kt,

and

dp

dt
= −2.303Kp. (2)

So, 2.303K is the ’hazard’ of adsorption. Empirically, K is a function of z and changes
slope at high z.
K is a function mainly of:

1. Face velocity of incident CO2, v;

2. Pressure, P ;

3. Temperature, T ;

4. Elution time, µ ;

5. Iodine loading, τ .

The logarithm of K value for the existing charcoal was modelled as a sum of the five linear
term xi (i.e.P , T , v, µ and τ ). In addition, the five quadratic terms xi

2 and the ten
interaction terms xixj were included i.e.

logK = c0 +
5∑

i=1

cixi +
5∑

i=1

5∑

j=1

cijxixj . (3)

The x variables are redefined as relative to a ’central’ vector of values e.g. 40cm/sec, 20 bar,
150 degrees C, 0 minutes and 25 µg/g loading. This is done to make the approximation to
be as good as possible (more accurate), by letting it to be at the centre. Furthermore, by
defining it this way, we make the contribution of the quadratic term smaller.
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The equation (3),

µ0 = logK = c0 +
5∑

i=1

cixi +
5∑

i=1

5∑

j=1

cijxixj ,

derived for the existing charcoal still has the same form, but the numerical values of the
coefficients will change. The new value of the pressure, temperature, velocity, elution time
and iodine loading are noted by P2, T2, v2, µ2 and τ2 respectively.

We now assume that the new charcoal has a prediction equation

µ = logK = c0 + θ0 +
5∑

i=1

(ci + θi)xi +
5∑

i=1

5∑

j=1

cijxixj . (4)

So

µ = µ0 + θ0 +
5∑

i=1

xiθi, (5)

where µ0 is the expected value of log K for the existing charcoal, to which a random error
with (known) variance σ2 must be added to obtain the true value of log K . The variable µ is
the expected value of log K for a new charcoal, where the six θ values are offsets that have a
prior distribution that is Normal, with mean ζ and variance S for i from 0 to 5. We assume
that the regression equation fitted to the existing charcoal data is an exact representation
of the reality. We have put probability distributions on the constant and linear terms, and
assumed that the quadratic terms do not change between charcoals.

3 Estimation of Good Prior Probability Distributions
for θ

The θi’s are offsets or just the unknown regression coefficients. θ is considered to be a
random variable, that have a prior distribution that is Normal, with mean ζ and variance
S for i from 0 to 5. If we have the data for two types of charcoal, to find the value for ζ and
S , we combine the data of both existing charcoals that we have in one model and have a
new variable h = 0 for Charcoal 1 and h=1 for Charcoal 2. The variable h is only added to
the linear terms because it is assumed that the quadratic and interaction terms are fixed.
The only terms that vary between charcoals are the linear terms.
The equation is now

logK = y = c0 + hc0
′ +

5∑

i=1

(ci + hci
′)xi +

5∑

i=1

5∑

j=1

cijxixj . (6)

The last part of the equation (6)
∑5

i=1

∑5
j=1 cijxixj is assumed known. For experimental

design, they are ignored.

Minitab regression is run using this equation, and the mean and variance of θ can be
estimated from the regression coefficient, where

S =
(x1 − x̄)2 + (x2 − x̄)2

2 − 1
=

1
2
(x1 − x2)2, (7)
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and

x̄ = ζ =
x1 + x2

2
, (8)

where x1 is the coefficient of the variable when h = 0 and x2 is when h = 1. This method
is called Empirical Bayes Method because we are using the data that we already have from
previous experiments in estimating the variances for the prior distribution. If we are using
Bayesian approach fully, hierarchical prior is used, instead of just estimating the values for
the mean and the variance of the prior distribution (Chaloner and Verdinelli [2]).

4 Expected Utility Function (Design Criteria)

We have to choose experiments that will minimise the expected value of the loss function
over the posterior distribution of θ . The expected loss function is defined as:

R(X) =
∫

f(y, θ)l(θ, x, y)dydθ, (9)

where y = logK, and

l(θ, x, y) =
∫

Γ

(µ − Eθ(µ))2dx. (10)

Here

Eθ(µ) =
∫

µ(θ)f(θ|y)dθ, (11)

i.e. it is the mean over the posterior distribution of θ .

The integral denotes a 5-dimensional integral over a range of values for each xi. This loss
function is thus an average over the envelope of x values of the squared error in the predicted
value of log K (the value before measurement error is added) due to uncertainty over the
value of the θi after doing the experiments. As new information is obtained, it is combined
with any previous information to form the basis for statistical procedures.
We have

f(y, θ) = f(y|θ)f(θ), (12)

where the likelihood function

f(y|θ) =
8∏

j=1

(1/
√

2πσ2) exp

{
−(yj − µ0 − θ0 −

5∑

i=1

xijθi)2/2σ2

}
, (13)

and the prior distribution for θ is expressed in terms of the normal distribution:

f(θ) =
5∏

i=0

1/(2πS)1/2exp

{
−

5∑

i=0

(θi − ζ)2/2S

}
. (14)
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We find Eθ(µ) =
∫

µ(θ)f(θ|y)dθ using Bayes’ theorem, where

f(θ|y) = f(y|θ)f(θ)

/∫
f(y|θ)f(θ)dθ. (15)

Hence

R(x) =
∫

Γ

dx

{∫
µ(θ)2f(θ)dθ −

∫
{Eθ(µ)}2f(y)dy

}
, (16)

where the first term is a constant over all sets of experiments.

The expected loss function has now been obtained as an integral over the yj ’s , the six θi’s
and the five ranges of the xi .
Let prior distribution be

θ : N [ζ, S], (17)

distribution of

y|θ : N
[
Xθ, σ2I

]
, (18)

where yi =
∑

j Xijθj + ξi,
and distribution of

θ|y : N [α, M−1], (19)

where

M = S−1 +
XT X

σ2

and

α = M−1

(
S−1ζ +

XT y

σ2

)
.

Estimators are exhibited for the parameters in the multiple linear regression model, which,
besides just using data from the present set of observations, the data obtained in previous
experiments was also incorporated. These estimators have lower Bayes risk than the usual
least squares estimators (Wind [6]).
The expected value of the loss function is

R(X) = V ar y = xT M−1x =
∑

(M−1)ijxixj = Tr(M−1A)

where Aij = xixj .
Therefore,

R(X) = Tr

[
M−1

∫

v

xixjdx1 · · · dx5

]

= Tr[M−1A]. (20)
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This is an A-optimal design. Matrix A is then estimated to be

Aij =
∫

xidxi

xih − xil

∫
xjdxj

xjh − xjl
=

1
4
(xih + xil)(xjh + xjl), (21)

and

Aii =

∫ xh

xl
xi

2dxi

xih − xil
=

1
3

(xih
3 − xil

3)
xih − xil

=
1
3
(xih

2 + xilxih + xil
2). (22)

Therefore,

∆Aii =
1
12

xih
2 − 1

6
xihxil +

1
12

xil
2 =

(xih − xil)2

12
(23)

where, xh is the highest value for a variable and xl is the lowest value for a variable.
However, the value for A11 = 1.

5 Numerical Results

Experiments are done under certain envelope conditions for pressure, temperature, velocity,
elution time and iodine loading, that are 0 bar to 40 bar, 0 degree C to 233 degree C, 0 to
70m/s, 0 to 4 hours and 0 to 50 µg/g respectively.

By using the multiple regression model fitted in (6), a Minitab regression is run for the
data obtained from the experiments on the adsorption of radioactive iodide in charcoal.
It is computed that the experiment done on the new charcoal under the same pressure,
temperature, velocity, elution time and iodine loading will give the higher value for log K.
The R2 value of 96.3% indicates this model fits the data very well. The standard deviation
of the random error is stated to be 0.1474. The covariance matrix S is calculated to be:

S =




5.02× 10−2 0 0 0 0 0
0 2.21× 10−6 0 0 0 0
0 0 6.27× 10−7 0 0 0
0 0 0 7.56 × 10−5 0 0
0 0 0 0 6.88× 10−4 0
0 0 0 0 0 8.65× 10−5




After the estimations have been made, we have to compute the value of the expected value
of the loss function given any conditions of the experiment. Then, assuming that we have
four values for every variable, we want to find the combination of the conditions that will
give us the minimum expected value of the loss function. A programming language called
Fortran95 is used.

After running this program, the lowest expected value of the loss function is obtained to be
0.1104 at pressure = 20 bar, temperature = 150 degree C, velocity = 70ms−1, elution time
= 2.5 hour and iodine loading = 30µg/g . Therefore, these are the conditions under which
the experiments on different charcoals should be carried out.
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6 Conclusion and Recommendation

Even though it is difficult to use Bayesian method in practical implementation, it is better to
use a method that is fundamentally sound, rather than to work with one having fundamental
flaws (Chaloner and Verdinelli [2] ). According to Pilz [4], Bayesian approach which allows
for an efficient and exhaustive use of prior knowledge and its combination with actual
observations, will lead to an improved estimation and a possibly considerable reduction of
experimental efforts.

This research could be done by using the hierarchical prior instead of just estimating the
mean and variance of the prior distribution.
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