
Implementation of Speaker Identification System by Means
of Personel Computer

Sheikh Husssain Shaikh Salleh, Ahmad Zuri, Zulkarnian Yusoff, Syed Rahman, Lim Soon Chieh

Fakulti Kejuruteraan Elektrik
Universiti Teknologi Malaysia
81310 Skudai, Johor, Malaysia

Email: hussain@suria.fke.utm.my

Abstract: Speech processing systems are highly complex and
teaching students in this subject matter with the underlying
technologies can be a challenging task. The aim of this work
was to give a hands-on experience via a development of
speech processing system based on Hidden Markov Model
(HMM) as a teaching aid. In this paper, a method for
implementing speaker recognition system using our toolkit
was developed as a dedicated laboratory environment for
students. For speaker recognition, experiments were
performed to evaluate the performance of the system with 30
speakers (22 impostors and 8 clients). The identification error
was 296, the false acceptance rate was 28% and the false
rejection rate was 1%.

Teaching Module Speech Recognition (TMSR) toolkit was
used in the lab which was part of the courses on digital signal
processing (DSP) technology given by the Computer
Engineering and Microelectronics Department. Students are
given some initial guidance on how to use the toolkit and
instructions to carry out the speaker identification
experiments. Overall, the laboratory system was a success and
plans are taken in the coming academic years to improve and
extend the capability of the system.

Key words
Speaker recognition, speaker identification, speaker
verification.

I. INTRODUCTION

Speech recognition has been an important subject for research,
and its development has come to a stage where it has been
actively and successfully applied in a lot of industrial and
consumer applications. The methods used for speech
recognition have since been developed and improved, with
increasing accuracy and efficiency leading towards a better
human-machine interface. Speech recognition is very useful in
various applications such as voice-activated systems,
industrial control, and also automatic dialer applications. In
this paper, we developed a general-purpose speaker
recognition system for personal identification as a security
system. In such systems, confidentiality is of utmost

0-7803-6355-WW $10.00 0 2000 IEEE 1-43

importance. Thus, a speaker recognition system must be
totally reliable in terms of acceptance of client speakers and
rejection of impostors.

HMM-based speech recognition system has already
been applied successfully in commercial products such as
the IBM Viavoice, Dragon NaturallySpeaking, L8zH’s
Voice Xpress and Philips’s FreeSpeech. However, none of
these commercially available speech recognition products
are made in Malaysia. Besides, there are no speech
recognition programs for learning and teaching speech
processing developed locally. Thus, we have come up with a
user-friendly and flexible speech recognition program that
facilitates learning of HMM as a tool for doing speech and
speaker recognition experiments. The system is then applied
to recognition of isolated .Bahasa Melayu digits, that is
‘kosong’, ‘satu’, ‘dua’, ‘tiga’, ‘empat’, ‘lima’, ‘enam’,
‘tujuh’, ‘lapan’, and ‘sembilan’. Experiments were done to
evaluate the system’s performance on speaker recognition,
which can be further divided into speaker identification and
speaker verification.

11. THE TMSR TOOLKIT.

The Teaching Module Speech Recognition (TMSR) toolkit
is built upon established speech recognition algorithms. The
speech recognition system that was built consists of the
following blocks as shown in Figure 1.0. Detail explanations
of these blocks will be given in the next section. As can be
seen in Figure 2.0 of the TMSR toolkit, the window shows
an outline of the components of the system and how they
interact and depend. For each box the corresponding
module window can be opened with a mouse click. There
are multiple copies of documents, hence the name, multiple-
document-interface. The documents are where the sound
samples are stored. Each document can store a sample.
There are 5 buttons of interest on the toolbar. To start
recording a new sample, press the ‘Studio’ button as shown.
A dialog box ‘Studio’ will pop up. The dialog box contains
some buttons:

1. Record - Record a new sample in the active document

Speech Feature e-, Training?

Vector I+ .-.-.-.-. 1 Codebook
Quantization Building

p1 Recognition

Figure 1.0. The building blocks for the TMSR toolkit.

Recognized word

Figure 2.0 A screenshot showing the TMSR toolkit. The speech recognition module (right) and the sound wave recorded will
be shown in the active document view screen (upper left)

1-44

2. Play - Play the sample in the active document
3. Edge- Perform edge detection on the active document
4. Evaluate- Perform speech recognition on the active

5. SpkReg-Perfrom speaker recognition on the active
Document

document.

The active document is the topmost document, the one
highlighted. It is the document with the sound sample that the
user wants to access. Besides the buttons, there are also the
options that the user can select to configure his sound sample.
The sound wave recorded will be shown in the active
document view screen. After that, click on the ‘Edge’ button
to let the program detect the start and end points of an
utterance. The ‘Play’ button can now be pressed to playback
the sound just recorded.

The other controls, such as the ‘Upper Threshold’, the ‘Lower
Threshold’, the Start’, the ‘Min, and the ‘End’ are for the edge
detection. By tweaking these values, the edge detection
algorithm used by the program will detect different endpoints.
To save the sample, just click on the ‘Save’.

Assuming that the user has recorded samples for
different words, each word repeating a few times, the
codebook can then be build. Once all the input files have
been determined, the name of the codebook must be entered in
the ‘Codebook Name’ box. The ‘LPC Order’ and ‘CEP Order’
boxes are to set the LPC order and the Cepstrum order to be
performed on the samples. The ‘Stage’ box indicates the LBG
codebook stage to be created. If the user enter ‘8’ means a
256-codewords codebook will be created. Once everything is
set, just click the ‘Build’ button to start building the codebook.

After the codebook development, the next stage is to build the
HMM models. Click on the ‘Build HMM Model’ button in the
main screen and the dialog box will appear. When a number
of HMM models is created, we are then ready to add the
models into the vocabulary of the program. When all word
models to be recognized are selected and moved into the
‘Vocabulary’ box, the program is ready to recognize all the
words or speakers in the template.

111. SPEAKER RECOGNITION SYSTEM

Sampling of Speech

The implemented system has a feature for
recording/playback sound in real time. The sampling
frequency can be selected as either 8khz, 1Okhz, 16khz,
22.5khz or 44.1khz. The sample resolution can also be
selected as either 8 bit or 16 bit per samples. After the
sampling stage, a built-in adaptive edge detection algorithm is
used to find the start and end points of an uttered word (since

this system is meant to recognize isolated word). However,
the user can also manually select these points.

Speech Feature Extraction

After the sampling stage, the user can then select
either one of the two modes available in our system. The
first is to train the system to recognize the word just
recorded, and the second is to test the system. In either case,
a feature extraction procedure is performed. The purpose of
this is to condense and distill the important information of
the speech signal. Any form of variability, which is
important, must be extracted in order to keep the important
characteristics of the uttered word, and the variability, which
is not important, must be suppressed and eliminated. In this
procedure, the utterance signal is divided into frames of 240
points, with each frame overlapping each other by 160
points shown in Figure 3.0.

Figure 3.0 Overlapping of speech frames.

Next, each frame is passed through a first order high pass
filter in order to spectrally flatten the signal. The high pass
filter FIR equation is given by:

-
s(n) =s(n)-as(n-1), wherea=0.95 (1)

Then, each frame is windowed by a Hamming window:

x(n> = x(n)x w(n>
-

(2)
2nn
N - 1

w(n) = 0.54- 0.46cos(-), where N = 240

After that, the Levinson-Durbin algorithm [1][2] is used to
find the LPC coefficients of the each signal frame. After
this, a P-order LPC vector is obtained. This P-order vector is
then converted to a Q-order cepstral vector. The TMSR
toolkit allow the user the freedom of setting the order of the
LPC and cepstral coefficients. This will enable the user to
experiment on the effects of different orders of LPC and
cepstral coefficients on speech recognition accuracy.

Vector Quantization

From the previous speech feature extraction stage, a series
of Q-order cepstral vectors, representing the whole utterance
of speech have been sampled. The next stage is then to
convert the vectors into a discrete set of symbols, which can
be, used by the discrete HMM model. The method that was

1-45

used is the LBG (Linde-Buzo-Gray)[3][4][5] method of vector
quantization.

1. First, a codebook must be created before vector
quantization can be performed. To build a codebook, a
large set of training vectors Xi is needed.
For every time step t:
A) For every training input Xi (i=1,2,3.. .. Q), calculate its
distance to every codeword:
B) Find the minimum distance and assign it to the
codeword cluster

2.

d(i,q) = c(W:’’ - X,“’)z , p = vector dimension, q = 1,,..,2M (6) Lo
Hidden Markov Model (HMM)

In the training mode, the series of codeword indices
obtained from each cepstral vector of each frame represents
the uttered word. To recognize an unknown word, the system
has to compare and evaluate that unknown word with word
models stored in the system. In discrete HMM[1][6], each
word model consists of states, with each state corresponding
to a short period of time. In each state, there are discrete
observations. A typical HMM model is shown below:

in the system’s vocabulary, is created using the Baum-
Welch re-estimation formula on multiple sequences:
where a and p are the forward and backward variables
associated with the HMM forward-backward procedure,
while aij (the transition probability of state i to state j) and
bj(1) (the probability of observing symbol 1 in state j) are the
model parameters. Pk is the probability score of the k-th
observation sequence 0={ 01,02 ,..., OT) for time t=1,2 ,..., T
based on the HMM model A={ a, b, n).

The user has the freedom to select the number of
states for a word model that he wishes to create, and also
select the inputs for training the model. The inputs are
recorded repetitions of the same word utterance.

By creating an N-state HMM model for a speaker,
a test observation sequence for the time period of T
(produced after vector quantization of cepstral coefficient
vectors), can be evaluated (recognized by the system) using
the logarithmic Viterbi algorithm. P is the final probability
score for the whole observation sequence. The logarithmic
viterbi algorithm is chosen because it solves the problem of
floating point underflow caused by the inability of the
computer to calculate real numbers, which are too small.

~~

Figure 4.0 HMM model for Speaker
Recognition.

a a a

A HMM model can be concisely described by 3 model
parameters: {n) , the initial state probability matrix; (a), the
state transition probability matrix; and { b), the observation
probability matrix. Each model, which represents each word

Probability scores are theoretically less than 1, and quite
often, the scores are very small.

1-46

+ Probability
Identification System Score

+
Probability
Score

Unknown Word
Observation

Unknown
word= arg Max

I
Probability

IV. SPEAKER IDENTIFICATION SYSTEM

Besides isolated word speech recognition, the system
can also perform speaker recognition. Speaker recognition
consists of speaker identification and speaker verification [7].

From the Figure 5.0, it is clear that the whole process
is actually a sequence of Word Recognition using HMM:

1. First select client speaker 1’s HMM models, and then
perform Word Recognition on the unknown speaker’s
speech utterance. Using HMM, find the word to
recognize the unknown utterance. If the correct word
is recognized, record the probability score produced.
If the word is recognized wrongly, then discard the
score.

2. Now select client speaker 2’s HMM models, and do
the same process again. Repeat for all client speakers’
models. Record all maximum probability scores
associated with each client speaker if the correct word
is recognized.

3. If there is at least 1 client speaker whose models
correctly recognized the word spoken by the
unknown speaker, we will then have at least 1
probability score in our list. From the list of scores,
select the maximum. The client speaker whose
probability score is the highest is identified as the
unknown speaker. However, if there are no scores
recorded, then the unknown speaker is then identified
as ‘not-in-the-list’.

Speaker Recognition Results
The next step is to evaluate the performance of the system in
speaker recognition. There are 8 clients for speaker

recognition, which are identified as speaker 1, speaker2 and
so on. To find an Equal Error Rate @ER) threshold for each
client speaker, first the distribution scores for each client
speaker were found. Each client speaker will record hisher
digit samples and then evaluate the test samples using the
HMM models.

Scores for 10 repetitions of each digit are recorded
for speakerl, speaker 2, speaker 5, speaker 6 and speaker 7,
whereas only 5 repetitions of each digit are recorded for
speaker 3, speaker 4 and speaker 8.

To find the distribution for the impostor speakers,
22 impostors were selected and each impostor will record 1
sample for each digit. Thus, there are 220 samples. For each
client speaker, these 220 samples will be tested to find its
probability score using that client speaker’s models. For
example, using speaker 1 digit models, the 220 samples
were tested and the scores for each sample recorded. The
process is repeated using speaker 2 models, then speaker 3,
and so on. For each client speaker, there is 2 set of scores:
his own scores and the impostors’ scores.

The following results were acquired by testing the
system with all the 8 client speakers’ samples and the 22
impostors’ samples. The top row is the identified speakers.
The left is the test speakers from the population. For
example, 9 out of 10 times, the test speaker ‘4’ (left column)
was identified as ‘4’ (top row), and 1 time identified as ‘8’
(top row).

For speaker recognition, the problem lies with
insufficient testing data instead of training data. By
assuming the distributions are Gaussiun, a very large
number of samples are required to accurately represent the
distribution. However, in the experiments, 1 sample per
digit per speaker is the distribution of the impostor speakers.

1-47

I speaker is identified as another client) is 2%.

More importantly, the number of impostor speakers should be
increased. The equal error rate threshold is set at equalizing
the false acceptance and false rejection rate. Another
important factor is that only a single digit is spoken by every
test speaker for each time. In a real application, a sequence of
digits is required to be spoken by a test speaker before he is
identified, such as the person’s PIN numbers. It is expected
that this can decrease the false acceptance rate.

V. DISCUSSION

The HMM-based speaker recognition system achieved a false
acceptance ratio of 28%, while the false rejection rate is 196,
and the identification error (a client speaker is identified as
another client) is 2%. Overall, the system is a flexible one
suitable for learning and research purposes on speech
recognition.

TMSR is an experimental system and some additions are
under way which include features extraction, pattern
classification and extension of the offered services. The main
technique for the recognition phase of the TMSR toolkit only
covers the HMM, further development of the system will
include other techniques such as Dynamic Time Warping
(DTW) and Neural Network (NN). In the work presented, the
system was described and the use of TMSR speaker
recognition by the students is presented.

VI. REFERENCES

Sheikh Hussain bin Shaikh Salleh (1993), “A
Comparative Study of the Traditional
Classifier and the Connectionist Model for
Speaker Dependent Speech Recognition
System”, Universiti Teknologi Malaysia:
Masters Thesis.

Rabiner L, Juang B. H. (!993), “Fundamentals of
Speech Recognition”, Englewood Cliffs, New
Jersey: Prentice Hall.

Wu, Frank H. and Ganesan, Kalyan (1989) “

Comparative Study of Algorithms for VQ
Design using Conventional and Neural-net
based approaches.”, IEEE.

Ashok K. Krishnamurthy, Ahalt, Stanley C.,
Melton, Douglas E., and Chen, Prakoon (1990)
“ Neural Networks for Vector Quantization of
Speech and Images”, IEEE Journal on Selected
Areas in Communications, Vol. 6, No 6.

Buck, Joseph T., Burton, David K., and Shore,
John E. (1985) ‘“Text Dependent Speaker
Recognition Using Vector Quantization”,
Florida: ICASSP 85, Vol. 1.

Rabinem L, Juang B.H. (1986), “An Introduction
to Hidden Markov Models”, IEEE ASSP
Magazine.

Soong F. K., Rosenberg, A. E., Rabiner L. R. and
Juang B. H. (1985) “A Vector Quantization
approach to Speaker Recognition”, Florida:
ICASSP Vol. 1.

1-48

