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Abstract: Speech processing systems are highly complex and 
teaching students in this subject matter with the underlying 
technologies can be a challenging task. The aim of this work 
was to give a hands-on experience via a development of 
speech processing system based on Hidden Markov Model 
(HMM) as a teaching aid. In this paper, a method for 
implementing speaker recognition system using our toolkit 
was developed as a dedicated laboratory environment for 
students. For speaker recognition, experiments were 
performed to evaluate the performance of the system with 30 
speakers (22 impostors and 8 clients). The identification error 
was 296, the false acceptance rate was 28% and the false 
rejection rate was 1%. 

Teaching Module Speech Recognition (TMSR) toolkit was 
used in the lab which was part of the courses on digital signal 
processing (DSP) technology given by the Computer 
Engineering and Microelectronics Department. Students are 
given some initial guidance on how to use the toolkit and 
instructions to carry out the speaker identification 
experiments. Overall, the laboratory system was a success and 
plans are taken in the coming academic years to improve and 
extend the capability of the system. 
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I. INTRODUCTION 

Speech recognition has been an important subject for research, 
and its development has come to a stage where it has been 
actively and successfully applied in a lot of industrial and 
consumer applications. The methods used for speech 
recognition have since been developed and improved, with 
increasing accuracy and efficiency leading towards a better 
human-machine interface. Speech recognition is very useful in 
various applications such as voice-activated systems, 
industrial control, and also automatic dialer applications. In 
this paper, we developed a general-purpose speaker 
recognition system for personal identification as a security 
system. In such systems, confidentiality is of utmost 
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importance. Thus, a speaker recognition system must be 
totally reliable in terms of acceptance of client speakers and 
rejection of impostors. 

HMM-based speech recognition system has already 
been applied successfully in commercial products such as 
the IBM Viavoice, Dragon NaturallySpeaking, L8zH’s 
Voice Xpress and Philips’s FreeSpeech. However, none of 
these commercially available speech recognition products 
are made in Malaysia. Besides, there are no speech 
recognition programs for learning and teaching speech 
processing developed locally. Thus, we have come up with a 
user-friendly and flexible speech recognition program that 
facilitates learning of HMM as a tool for doing speech and 
speaker recognition experiments. The system is then applied 
to recognition of isolated .Bahasa Melayu digits, that is 
‘kosong’, ‘satu’, ‘dua’, ‘tiga’, ‘empat’, ‘lima’, ‘enam’, 
‘tujuh’, ‘lapan’, and ‘sembilan’. Experiments were done to 
evaluate the system’s performance on speaker recognition, 
which can be further divided into speaker identification and 
speaker verification. 

11. THE TMSR TOOLKIT. 

The Teaching Module Speech Recognition (TMSR) toolkit 
is built upon established speech recognition algorithms. The 
speech recognition system that was built consists of the 
following blocks as shown in Figure 1.0. Detail explanations 
of these blocks will be given in the next section. As can be 
seen in Figure 2.0 of the TMSR toolkit, the window shows 
an outline of the components of the system and how they 
interact and depend. For each box the corresponding 
module window can be opened with a mouse click. There 
are multiple copies of documents, hence the name, multiple- 
document-interface. The documents are where the sound 
samples are stored. Each document can store a sample. 
There are 5 buttons of interest on the toolbar. To start 
recording a new sample, press the ‘Studio’ button as shown. 
A dialog box ‘Studio’ will pop up. The dialog box contains 
some buttons: 

1. Record - Record a new sample in the active document 



Speech Feature e-, Training? 

Vector I+ .-.-.-.-. 1 Codebook 
Quantization Building 

p1 Recognition 

Figure 1.0. The building blocks for the TMSR toolkit. 

Recognized word 

Figure 2.0 A screenshot showing the TMSR toolkit. The speech recognition module (right) and the sound wave recorded will 
be shown in the active document view screen (upper left) 
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2. Play - Play the sample in the active document 
3. Edge- Perform edge detection on the active document 
4. Evaluate- Perform speech recognition on the active 

5. SpkReg-Perfrom speaker recognition on the active 
Document 

document. 

The active document is the topmost document, the one 
highlighted. It is the document with the sound sample that the 
user wants to access. Besides the buttons, there are also the 
options that the user can select to configure his sound sample. 
The sound wave recorded will be shown in the active 
document view screen. After that, click on the ‘Edge’ button 
to let the program detect the start and end points of an 
utterance. The ‘Play’ button can now be pressed to playback 
the sound just recorded. 

The other controls, such as the ‘Upper Threshold’, the ‘Lower 
Threshold’, the Start’, the ‘Min, and the ‘End’ are for the edge 
detection. By tweaking these values, the edge detection 
algorithm used by the program will detect different endpoints. 
To save the sample, just click on the ‘Save’. 

Assuming that the user has recorded samples for 
different words, each word repeating a few times, the 
codebook can then be build. Once all the input files have 
been determined, the name of the codebook must be entered in 
the ‘Codebook Name’ box. The ‘LPC Order’ and ‘CEP Order’ 
boxes are to set the LPC order and the Cepstrum order to be 
performed on the samples. The ‘Stage’ box indicates the LBG 
codebook stage to be created. If the user enter ‘8’ means a 
256-codewords codebook will be created. Once everything is 
set, just click the ‘Build’ button to start building the codebook. 

After the codebook development, the next stage is to build the 
HMM models. Click on the ‘Build HMM Model’ button in the 
main screen and the dialog box will appear. When a number 
of HMM models is created, we are then ready to add the 
models into the vocabulary of the program. When all word 
models to be recognized are selected and moved into the 
‘Vocabulary’ box, the program is ready to recognize all the 
words or speakers in the template. 

111. SPEAKER RECOGNITION SYSTEM 

Sampling of Speech 

The implemented system has a feature for 
recording/playback sound in real time. The sampling 
frequency can be selected as either 8khz, 1Okhz, 16khz, 
22.5khz or 44.1khz. The sample resolution can also be 
selected as either 8 bit or 16 bit per samples. After the 
sampling stage, a built-in adaptive edge detection algorithm is 
used to find the start and end points of an uttered word (since 

this system is meant to recognize isolated word). However, 
the user can also manually select these points. 

Speech Feature Extraction 

After the sampling stage, the user can then select 
either one of the two modes available in our system. The 
first is to train the system to recognize the word just 
recorded, and the second is to test the system. In either case, 
a feature extraction procedure is performed. The purpose of 
this is to condense and distill the important information of 
the speech signal. Any form of variability, which is 
important, must be extracted in order to keep the important 
characteristics of the uttered word, and the variability, which 
is not important, must be suppressed and eliminated. In this 
procedure, the utterance signal is divided into frames of 240 
points, with each frame overlapping each other by 160 
points shown in Figure 3.0. 

Figure 3.0 Overlapping of speech frames. 

Next, each frame is passed through a first order high pass 
filter in order to spectrally flatten the signal. The high pass 
filter FIR equation is given by: 

- 
s(n) =s(n)-as(n-1), wherea=0.95 (1) 

Then, each frame is windowed by a Hamming window: 

x(n> = x(n )x  w(n> 
- 

(2) 
2nn 
N - 1  

w(n) = 0.54- 0.46cos(-), where N = 240 

After that, the Levinson-Durbin algorithm [ 1][2] is used to 
find the LPC coefficients of the each signal frame. After 
this, a P-order LPC vector is obtained. This P-order vector is 
then converted to a Q-order cepstral vector. The TMSR 
toolkit allow the user the freedom of setting the order of the 
LPC and cepstral coefficients. This will enable the user to 
experiment on the effects of different orders of LPC and 
cepstral coefficients on speech recognition accuracy. 

Vector Quantization 

From the previous speech feature extraction stage, a series 
of Q-order cepstral vectors, representing the whole utterance 
of speech have been sampled. The next stage is then to 
convert the vectors into a discrete set of symbols, which can 
be, used by the discrete HMM model. The method that was 
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used is the LBG (Linde-Buzo-Gray)[3][4][5] method of vector 
quantization. 

1. First, a codebook must be created before vector 
quantization can be performed. To build a codebook, a 
large set of training vectors Xi is needed. 
For every time step t: 
A) For every training input Xi (i=1,2,3.. .. Q), calculate its 
distance to every codeword: 
B) Find the minimum distance and assign it to the 
codeword cluster 

2. 

d(i,q) = c(W:’’ - X,“’)z ,  p = vector dimension, q = 1,,..,2M (6)  Lo 
Hidden Markov Model (HMM) 

In the training mode, the series of codeword indices 
obtained from each cepstral vector of each frame represents 
the uttered word. To recognize an unknown word, the system 
has to compare and evaluate that unknown word with word 
models stored in the system. In discrete HMM[1][6], each 
word model consists of states, with each state corresponding 
to a short period of time. In each state, there are discrete 
observations. A typical HMM model is shown below: 

in the system’s vocabulary, is created using the Baum- 
Welch re-estimation formula on multiple sequences: 
where a and p are the forward and backward variables 
associated with the HMM forward-backward procedure, 
while aij (the transition probability of state i to state j) and 
bj(1) (the probability of observing symbol 1 in state j) are the 
model parameters. Pk is the probability score of the k-th 
observation sequence 0={ 01,02 ,..., OT) for time t=1,2 ,..., T 
based on the HMM model A={ a, b, n). 

The user has the freedom to select the number of 
states for a word model that he wishes to create, and also 
select the inputs for training the model. The inputs are 
recorded repetitions of the same word utterance. 

By creating an N-state HMM model for a speaker, 
a test observation sequence for the time period of T 
(produced after vector quantization of cepstral coefficient 
vectors), can be evaluated (recognized by the system) using 
the logarithmic Viterbi algorithm. P is the final probability 
score for the whole observation sequence. The logarithmic 
viterbi algorithm is chosen because it solves the problem of 
floating point underflow caused by the inability of the 
computer to calculate real numbers, which are too small. 

~~ 

Figure 4.0 HMM model for Speaker 
Recognition. 

a a a 

A HMM model can be concisely described by 3 model 
parameters: {n ) ,  the initial state probability matrix; (a),  the 
state transition probability matrix; and { b), the observation 
probability matrix. Each model, which represents each word 

Probability scores are theoretically less than 1, and quite 
often, the scores are very small. 
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IV. SPEAKER IDENTIFICATION SYSTEM 

Besides isolated word speech recognition, the system 
can also perform speaker recognition. Speaker recognition 
consists of speaker identification and speaker verification [7]. 

From the Figure 5.0, it is clear that the whole process 
is actually a sequence of Word Recognition using HMM: 

1. First select client speaker 1’s HMM models, and then 
perform Word Recognition on the unknown speaker’s 
speech utterance. Using HMM, find the word to 
recognize the unknown utterance. If the correct word 
is recognized, record the probability score produced. 
If the word is recognized wrongly, then discard the 
score. 

2. Now select client speaker 2’s HMM models, and do 
the same process again. Repeat for all client speakers’ 
models. Record all maximum probability scores 
associated with each client speaker if the correct word 
is recognized. 

3. If there is at least 1 client speaker whose models 
correctly recognized the word spoken by the 
unknown speaker, we will then have at least 1 
probability score in our list. From the list of scores, 
select the maximum. The client speaker whose 
probability score is the highest is identified as the 
unknown speaker. However, if there are no scores 
recorded, then the unknown speaker is then identified 
as ‘not-in-the-list’. 

Speaker Recognition Results 
The next step is to evaluate the performance of the system in 
speaker recognition. There are 8 clients for speaker 

recognition, which are identified as speaker 1, speaker2 and 
so on. To find an Equal Error Rate @ER) threshold for each 
client speaker, first the distribution scores for each client 
speaker were found. Each client speaker will record hisher 
digit samples and then evaluate the test samples using the 
HMM models. 

Scores for 10 repetitions of each digit are recorded 
for speakerl, speaker 2, speaker 5, speaker 6 and speaker 7, 
whereas only 5 repetitions of each digit are recorded for 
speaker 3, speaker 4 and speaker 8. 

To find the distribution for the impostor speakers, 
22 impostors were selected and each impostor will record 1 
sample for each digit. Thus, there are 220 samples. For each 
client speaker, these 220 samples will be tested to find its 
probability score using that client speaker’s models. For 
example, using speaker 1 digit models, the 220 samples 
were tested and the scores for each sample recorded. The 
process is repeated using speaker 2 models, then speaker 3, 
and so on. For each client speaker, there is 2 set of scores: 
his own scores and the impostors’ scores. 

The following results were acquired by testing the 
system with all the 8 client speakers’ samples and the 22 
impostors’ samples. The top row is the identified speakers. 
The left is the test speakers from the population. For 
example, 9 out of 10 times, the test speaker ‘4’ (left column) 
was identified as ‘4’ (top row), and 1 time identified as ‘8’ 
(top row). 

For speaker recognition, the problem lies with 
insufficient testing data instead of training data. By 
assuming the distributions are Gaussiun, a very large 
number of samples are required to accurately represent the 
distribution. However, in the experiments, 1 sample per 
digit per speaker is the distribution of the impostor speakers. 
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I speaker is identified as another client) is 2%. 

More importantly, the number of impostor speakers should be 
increased. The equal error rate threshold is set at equalizing 
the false acceptance and false rejection rate. Another 
important factor is that only a single digit is spoken by every 
test speaker for each time. In a real application, a sequence of 
digits is required to be spoken by a test speaker before he is 
identified, such as the person’s PIN numbers. It is expected 
that this can decrease the false acceptance rate. 

V. DISCUSSION 

The HMM-based speaker recognition system achieved a false 
acceptance ratio of 28%, while the false rejection rate is 196, 
and the identification error (a client speaker is identified as 
another client) is 2%. Overall, the system is a flexible one 
suitable for learning and research purposes on speech 
recognition. 

TMSR is an experimental system and some additions are 
under way which include features extraction, pattern 
classification and extension of the offered services. The main 
technique for the recognition phase of the TMSR toolkit only 
covers the HMM, further development of the system will 
include other techniques such as Dynamic Time Warping 
(DTW) and Neural Network (NN). In the work presented, the 
system was described and the use of TMSR speaker 
recognition by the students is presented. 
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