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Abstract: The hardware implementation of the RSA 
algorithm for public-key cryptography is presented. The 
algorithm is dependent on the computation of modular 
exponentials. Critical to this computation is a fast 
implementation of modular multiplications. A high- 
performance systoiic array architecture for modular 
multiplication based on the algorithm of P.L. Montgomery 
is proposed. The design is targeted for implementation in 
reconfigurable logic, which can yield custom-hardware 
performance yez maintains all the flexibility of software- 
based systems. Reconfigurable computing allows the 
designer to respond, in the prototyping stage, to flaws 
discovered in implementation or to changes in standards or 
data formats. We report the issues involved in the 
preliminary design of the prototype to be fabricated in 
Altera FLEXIOKE series FPGA mounted on a PCI card. 

Keywords: RSA algorithm, Montgomery algorithm, 
systolic array architecture, FPGA. 

I. INTRODUCTION 

Cryptography is the art of using mathematics to address 
the issue of information security. The secure transfer and 
storage of information in the electronic realm has today 
become critical as the digital world becomes more and 
more dependent on e-mail, secure telephony, mobile 
internet, e-commerce, e-banking and so on. Cryptographic 
systems can provide the objectives of information security: 
confidentiality, user authentication, data origin 
authentication, data integrity and non-repudiation [ 1 I ] .  In 
contrast to symmetric-key cryptosystems, public-key 
cryptosystems are capable of fulfilling all of these 
objectives. However, in order to be fast enough and 
feasibly practical in the applications mentioned above, 
public-key schemes have to be implemented in hardware. 
Hardware implementations also provide for ease of 
installation as well as security from tampering. 

Among the existing algorithms for public-key 
cryptography, the Rivest-Shamir-Adleman (RSA) 
algorithm is the best known. Its security lies in the 
difficulty of the factorizing large integers [l]. In RSA, a 
longer key size means better security. Improvements in the 
factorization algorithm may inadvertently require that the 
size of the key be continually and appropriately 

recommended. The .flexibility to change key length or 
modify the embedded algorithm to respond to design flaws 
or changes in standards or data formats, requires hardware 
reconfigurability. Reconfigurable hardware applies to a 
device that can be configured, at run-time, to implement a 
function as a hardware circuit. Commercially available 
reconfigurable devices include Field Programmable Gate 
Arrays (FPGA) and Complex Programmable Logic Devices 
(C PL D). 

The basic operation in RSA algorithm is modular 
exponentiation on large integers, and this operation requires 
a long computation time. The square and multiply method 
[7] is the most popular and effective algorithm for 
computing modular exponentiation. The technique reduces 
the problem to a series of modular multiplications and 
squaring steps. Consequently, it is critical that the modular 
multiplication operation is fast, and Montgomery [2 ]  has 
proposed a fast method for multiplying two integers 
modulo M,  while avoiding division by M. The idea is 
transform the integers to M-residues and compute the 
multiplication with these M-residues. It is then transformed 
back to the normal representation [ 5 ] .  Walter [4] then 
proposed a systolic array architecture for high-speed 
hardware implementation of the Montgomery algorithm. 
This architecture gives a throughput of one digit per clock 
cycle and a latency of 2m+2, where m is the number of 
digit in the multiplicand. A .  However, this architecture 
needs several millions of gates for the typical input of 512 
bits. 

An interesting choice is to implement only one row of 
the architecture to perform single message encryption. This 
would be realizable in a single IC using today's FPGA 
technology. In this paper, a systolic array architecture, 
suitable for reconfigurable logic implementation, of the 
Montgomery modular multiplication is proposed. This will 
become the core module in a proposed RSA coprocessor 
that is implemented in a reconfigurable logic device, the 
FPGA. This coprocessor will off-load computing-intensive 
cryptographic operations off a general-purpose processor, 
such that a high performance system can be obtained. To 
achieve the required speed-up in the RSA operation a PCI 
bus interface is employed. The prototype is fabricated in 
Altera FLEXIOKE series FPGA mounted on a PCI card in 
a Pentium PC. 
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11. RSA CRYPTOGRAPHY 

In RSA, to encrypt a message M to its cipher text C, we 
perform C = XE mod M using the public key E. To restore 
the message, X = CD mod M is performed, where D is the 

private key. In general, E = ei*2i, ei E (0 ,  l }  

denotes a big integer that consists of n bit in radix-2, ei is 
the Ch digit. 

Modular exponentiation is performed using the square 
and multiply method as given below. Here, the exponent E 
is treated bit by bit. Note that the two lines in step 2a are 
modular multiplications under the same modulus, and they 
have same multiplier Zi. Since they are independent of each 
other, they can be executed in parallel. The loop runs for n 
cycles where n is the number of bit in E. If higher radix is 
used in E, then the number of digit to represent E and hence 
the number of iteration is reduced. The drawback of this 
speedup is that 2k-2 multiple of X have to be precomputed 
and stored. k is the number of bit used to represent one 
digit. 

Algorithm 1 : ModExp(X, E, A4) 
compute P = XE mod M ,  

E = X-l ei.2i, ei E { 0 , 1 )  

2. For i = 0 to n- 1 Loop 

i=O 

I .  P o =  I ,Z0=X 

2a. Ptemp = Pi'Zi mod M 
Zi+ = Zlz in od M 

2b. If ei 1 Then Pi+, Pt,omp Else Pi+, = Pi 
3. End For 

The speed of this algorithm relies on the speed of 
modular multiplication in step 2a. There are many 
algorithms that can be used to perform fast modular 
multiplication in hardware. An overview of the techniques 
involved can be found in [3]. 

111. MONTGOMERY'S ALGORITHM 

Montgomery's algorithm [2], given in Algorithm 2 
below, is a fast and effective method to calculate modular 
multiplications. Instead of computing A.B mod M, it 
calculates A.B.R-' mod M .  R > M and R is chosen to be a 
value of power of two so that the operations of mod R and 
div R is trivial. A precondition is that R must be relatively 
prime to M, but this is always true in the RSA algorithm 
because M is an odd number. R-' is the inverse 
multiplicative of R modulo M. To describe Montgomery 
modular multiplication, we need an extra integer, N' that 
satisfy R.R-' - N.N' = 1 .  N' can be calculated using the 
Extended Euclidean Algorithm. In step 2, the result 
satisfies P < 2M provided that A.B < M.R. 

Algorithm 2: MonMult(A, B, A4) 
compute P = A.B.R' mod A4 

1. Q = A . B . M " o d R  

3. If P 2 M Then Return P - M Else Return P 
2. P = ( A . B + Q M ) l R  

To use MonMulr in ModExp, the input operands A and 
B for ModExp are first transformed to the M-residue 
domain by performing A.R mod M and B.R mod M 
respectively. This is performed in step 1 in Algorithm 3 
below, where R2 mod M is precomputed and unchanged 
throughout the whole cryptographic processing using the 
same key. Thus the product will carry an extra R modulo 
M. This product can be reused as the operand in the next 
Montgomery modular multiplication. The final product is 
transformed back to normal integer by eliminating the extra 
R mod M. Now, ModExp function becomes: 

Algorithm 3: ModExp(X, E, M) 
compute P = XE mod M ,  

1 .  Po = MonMult( I ,  R2 mod A4) 
Zo = MonMult (X,  R2 mod M) 

2. For i = 0 to n-1 
2a. Ptemp = MonMult (Pi, Zi) 

Zi+, = MonMult (Zi, Zi) 
If ei = 1 Then Pi+] = Ptemp Else Pi+' = Pi 2b. 

3. End For 
4. P MonMulf (Pn, 1) 

Since the operands involved are very large and can vary 
from 5 12 to 2048 bits, multiprecision arithmetic is 
employed in MonMult. The operands M ,  A and B will each 
consist of m digits, with each digit occupying k bits. If the 
digit is in radix r, then Mod r will yield a digit value, while 
div r will be equivalent to a simple operation of a right shift 
of one digit. MonMult now becomes: 

Algorithm 4: MonMult(A, B)  
compute P = A.B.r-m mod M, 

1.  P,=O 
2. F o r i =  0 to m-l Loop 
2a. 
2b. 

qi = @i,o + ai.bo)mo' mod r 
Pi+, = (Pi  + ai.B + 4i.M) I r 

3. End Loop 
4. If Pm 2 M Then Return Pm - M Else Return Pm 

The notation pi.0 denotes the Oth digit of th integer P. In 
step 3, this algorithm produces P 3 A.B.r-(m+') mod M that 
satisfies P < 2M, provided that A,  B < 2M. Eldridge and 
Walter in [3] pointed out that, the Montgomery's 
algorithm: 
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0 reverses the order of treating the digit of the discussion for the radix-2 (in Algorithm 6 )  and high-radix 
multiplicand A, 

0 performs a shift down instead of up on each 
iteration, and 

0 does an addition rather than subtraction. 

(in Algorithm 7) versions. 

The digit qi  calculated in step 2a determines the 
multiple of M to be added in the long addition in  step 2b. 
This is the most important property of the Montgomery’s 
method. In short, the classical modular multiplication 
algorithms compute the entire sum in order to decide 
whether a reduction needs to be performed [9]. 

IV. ALGORITHM OPTIMIZATION 

The long subtraction in every MonMult is an expensive 
operation, and it can be avoided by leaving it out until the 
final step of the ModExp. So the intermediate result from 
the MonMult falls below 2M. In radix-2, in order to reuse 
this value as the operands for the next MonMult, two extra 
iterations are needed by inserting am+, = 0 [4]. After m+2 
iterations. P = A.B.2-(m’’) mod M is produced. In high-radix 
cases, only one more iteration is needed since the most 
significant digit of B has a maximum value of 1 instead of 
r-1. So, R is equal to Y ( ~ ? + ’ ) .  Algorithm 5 below shows the 
radix-2 version of MonMult that accepts A, B < 2M and 
produces result below 2M. 

Algorithm 5 :  MonMult(A, .B) 
compute P = A.B.2-(m+?) mod M, 

To simplify the determination of digit qi, several 
techniques are used [3][ lo]. In radix-2, m,’ = 1, and thus q i  
= (pi,, + ai’b,) mod r. In the higher radix case, a technique 
to avoid multiplication with m,’ is by transforming M into 
N ,  where N = M.m,’. Since no = -1 and thus no’ = 1 .  Now, q i  
= (pi,, + aib,)n,’ mod r = (pi., + aib,) mod r.  Since N is 
one digit bigger than M,  the final result has to subtract at 
most r-1 times of M to reduce to below M. Also, the 
acceptable operand size for the MonMult is now A, B < 2N. 
An extra iteration is needed to take into account the extra 
digit in A .  

To further simplify it, we can shift the operand B up 1 
digit, in order to make bo = 0. NOW, q i  = pi,, mod r = pi,,. 
The technique of shifting B up one position is applied in 
both radix-2 and high-radix cases. The price for these 
simplifications is one more iteration of the loop. Thus, am+> 
= 0 is inserted. The algorithms below summarize the above 
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Algorithm 6 :  MonMult(A, B )  
compute P = A.B.2-(m+’) mod M, 

mi, bi, ai E CO, I > ,  am+! = am+, = 0, 
1. P,=O 
2. For i = 0 to m+2 Loop 
2a. 4i Pi., 

3. End Loop 
2b. Picl = (Pi  + 4i.M) I 2  + u ~ B  

Algorithm 7: MonMulf(A, B )  
compute P = A.B.r-(m+’) mod M, 

Next, we discuss the mapping of above algorithm in the 
proposed systolic array architecture, which is based on 
Walter’s described in [4] .  

V. SYSTOLIC ARRAY ARCHITECTURE 

The complexity of Algorithm 6 or Algorithm 7 lies in 
the addition of three operands of m+2 bits for calculating 
Pm+3. Blum[6] points out that two different strategies have 
been pursued: redundant representation and systolic array. 
In redundant representation, the intermediate results are 
kept in redundant form. Conversion into binary is only 
performed at the end of every modular multiplication. In 
systolic array approach, there are m processing elements, 
each calculating 1 bit per clock cycle. Since the signal is 
distributed between adjacent processing elements, faster 
clock rate and thus higher bandwidth can be achieved. The 
cost is higher latency and more resources. 

The systolic array proposed by Walter consists of m+4 
columns by m+3 rows for the modular multiplication 
operation as described in Algorithm 6 .  Due to the limitation 
in space of this paper, we will now focus our discussion on 
the implementation of Algorithm 6 (radix-2 case) only. At 
the outset, note that m+4 columns (i.e. 4 bits more than the 
number of bits of M) are needed because the intermediate 
result has an upper bound of 10M before div 2. Each row 
performs an iteration of the loop, and the columns compute 
successive values for a single bit position. The rows and 
columns are pipelined so that the data flow from the upper 
right cell to the lower left cell and each cell take a cycle to 
process. Since there are m+3 iterations to go through, the 
latency is thus 2(m+3) cycles. If all the m+3 rows are 
implemented, the throughput is one Montgomery modular 
multiplication per clock cycle and it can encrypt m+3 

different messages simultaneously. Since we are going to 
mi,m+? b i,m+i mi,I bi,o mi,() 0 

Fig. 1 ,  One row of modular multiplication cells 

implement just one row, the throughput will be one 
Montgomery modular multiplication per m+3 clock cycles. 
This architecture is able to perform two Montgomery 
modular multiplications simultaneously or single message 
at a time. 

Fig. 1 shows the systolic array of one row. The typical 
cell performs a single bit calculation of the operation: 

Pi+, = (Pi  + 4i.M) I r + ai‘B, i.e. 
pi+lj-l + 2.~arryij+, = p i j  + ai’bi,j.l + 9i.m’ ‘!I ’ + carryij. 

Each cell generates a carry. These carries are bounded by 2 
and thus 2 bits are needed, while the rest of the signals 
connected to each cell are 1 bit in length. The leftmost cell 
is much simpler due to the fact that mi,m+3, mi,m+,, mi,m+l, 
mi,m and bi.m+2 are all zero. The signal caryi,m+, is 
therefore bounded by 1 .  This row performs m+3 iterations 
of the looping by feeding back the previous Pi+l, i.e. feed 
the bit p i j  to the right cells as pi+l/.l. qi is calculated in the 
rightmost processing element by simply taking the value of 
previous pi,,. Both qi and ai are pumped through the 
processing elements. 

The signal flow for Algorithm 6 in this architecture is 
described as follows. Initially, all the registers that store P 
are reset, i.e. P, = 0. At clock cycle 1, the first iteration 
starts: q, is assigned to p,,, = 0, while m,,,, 0 and the first a, 
are fed to PEPO to generate carry,,, and pI,.,. This bit p 
from PEPO is always equal to zero and it is discarded. In 
clock cycle 2, m,,, and bo,, are fed to PE-1 to generate 
carry,,, and p,,,. At the same time, m,,,, 0 and the second a, 
are fed to PE-0. The p, , ,  from PE-I is used to calculate q,  
of second iteration in clock cycle 3.  After 2(m+3) clock 
cycles, the first bit of the result of first modular 
multiplication is generated at PE-I. At the next clock 
cycle, P E 2  generates the second bit. At the same time, the 
first bit of the second modular multiplication also appears 
out of PE-1. As soon as the first bit result of a modular 
multiplication is generated, the next modular multiplication 
can commence. Both modular multiplications in step 1 or 
step 2a in Algorithm 3 are thus run in parallel using this 
one row architecture. 

Inspection of Algorithm 3 shows that the modular 
squaring result is reused as B in both the modular squaring 
and modular multiplication of next iteration. Also, both 
modular squaring and modular multiplication results are 
reused as A s  in next iteration. Thus a register B is needed to 
store the squaring result, and two RAMS are needed to store 
the variables P and Z. These RAMS feed the one row 
architecture with ai by alternatively selecting the bit of P 
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and Z from the least significant bit to the most significant 
bit. Initially, register B is filled with the precomputed value 

For both cost and speed evaluation, the gate count and 
gate delay model in [4] for VLSI implementation is not 

I 
Windows-PC (Software) PCI card (Hardware) 

IT- 

programmer n Cryptographic 
Application 

(Altera FPGA) 

I EEPROM I 
Fig. 2. Top-level block diagram of the  RSA Coprocessor and its environment 

of R2 mod A4 while P and Z are filled with 1 and X, 
respectively, in order to perform step I .  Before executing 
step 4, the value 1 is fed to the register B. A long 
subtraction has to be performed finally before we get the 
result of the modular exponentiation. 

VI. FPGA IMPLEMENTATION 

In  this section, we present some of the features of the 
Altera FLEXlOKE that makes it particularly suitable to 
implement the systolic array architecture. This device 
consists of four types of reconfigurable elements, the logic 
array blocks (LAB), embedded array blocks (EAB), the I/O 
elements (IOE) and the routing resource [SI. Each LAB 
contains eight logic elements (LE) and a local interconnect. 
An  LE consists of a look-up-table (LUT) that can perform 
any Boolean functions of 4-bit input. Its 1 bit output can 
either passed out directly or registered in a flop-flop. The 
EAB is a 2048 bits RAM block that can be configured in 
size from 2048 x 1 to 256 x 8. This is appropriate for 
storing the key in RSA algorithm, which is typically 512 to 
2048 bi ts  in length. The routing resource connects the 
LAB, EAB and IOE into a network. This routing provides 
predictable performance because it is a series of continuous 
horizontal and vertical routing channels that traverse the 
device. Another feature of the LAB is the ability to fast 
perform arithmetic function via the fast carry chain 
between LEs, thus avoiding the long carry propagation 
delay as found in the adder. 

Fig. 2 shows a functional block diagram of the proposed 
RSA coprocessor, and its interface to the PC environment. 
The modular exponentiation using the one row systolic 
array architecture described above is the main module in 
the RSA processing unit. For preprocessing and post 
processing purposes in the RSA algorithm, this unit also 
contains other modules that perform Extended Euclidean 
algorithm, and long integer subtraction, multiplication and 
division. Several RAM blocks are employed using the EAB 
to store various intermediate results. The PCI core acts as 
the PCI controller that interface the system PCI bus and the 
backend design. 

Dataln 
Address 
DataOut 

cs 
RD 
WR 
Clk 

1 Unit I RSA 

Execution 

suitable in the FLEXlOKE device. The timing information 
in our design is obtained from the timing analyzer of Altera 
MAX+plusll software. It is calculated based on the timing 
model of the building blocks of the FLEX 1 OKE such as the 
LE’S delay, the flip-flop setup/hold time and the routing 
path’s delay. 

The design in this project is described in VHDL using 
VHDLmg (VHDL module generator), an in-house 
developed EDA tool [12]. Synopsis FPGA Express is used 
as the logic synthesis tool, while Altera MAX+plusII is the 
compilation tool. 

VII. CONCLUSION 

We have presented the development of a modular 
multiplication algorithm suitably mapped to a systolic array 
architecture targeted for implementation in a reconfigurable 
logic device. A high-speed implementation of this 
algorithm is critical to fast modular exponentiation 
operation required in a RSA cryptographic coprocessor. 
The proposed implementation in hardware reconfigurable 
logic also provides the necessary flexibility required to deal 
with changes in standards and responds to design flaws in 
prototyping. 
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