
FPGA Implementation of RSA
Public-Key Cryptographic Coprocessor

Mohamed Khalil Hani Tan Siaiig Lin Nasir Shaikh-Husin
kIialiI@suria.fl<e.utin.iny tanlin@pl .jaring.my nasir-s-h@yahoo.com

M i C E Department,
Faculty of Electrical Engineering

Universiti Teknologi Malaysia
8 13 10 U T M Skudai, Johor, Malaysia.

Abstract: The hardware implementation of the RSA
algorithm for public-key cryptography is presented. The
algorithm is dependent on the computation of modular
exponentials. Critical to this computation is a fast
implementation of modular multiplications. A high-
performance systoiic array architecture for modular
multiplication based on the algorithm of P.L. Montgomery
is proposed. The design is targeted for implementation in
reconfigurable logic, which can yield custom-hardware
performance yez maintains all the flexibility of software-
based systems. Reconfigurable computing allows the
designer to respond, in the prototyping stage, to flaws
discovered in implementation or to changes in standards or
data formats. We report the issues involved in the
preliminary design of the prototype to be fabricated in
Altera FLEXIOKE series FPGA mounted on a PCI card.

Keywords: RSA algorithm, Montgomery algorithm,
systolic array architecture, FPGA.

I. INTRODUCTION

Cryptography is the art of using mathematics to address
the issue of information security. The secure transfer and
storage of information in the electronic realm has today
become critical as the digital world becomes more and
more dependent on e-mail, secure telephony, mobile
internet, e-commerce, e-banking and so on. Cryptographic
systems can provide the objectives of information security:
confidentiality, user authentication, data origin
authentication, data integrity and non-repudiation [1 I] . In
contrast to symmetric-key cryptosystems, public-key
cryptosystems are capable of fulfilling all of these
objectives. However, in order to be fast enough and
feasibly practical in the applications mentioned above,
public-key schemes have to be implemented in hardware.
Hardware implementations also provide for ease of
installation as well as security from tampering.

Among the existing algorithms for public-key
cryptography, the Rivest-Shamir-Adleman (RSA)
algorithm is the best known. Its security lies in the
difficulty of the factorizing large integers [l]. In RSA, a
longer key size means better security. Improvements in the
factorization algorithm may inadvertently require that the
size of the key be continually and appropriately

recommended. The .flexibility to change key length or
modify the embedded algorithm to respond to design flaws
or changes in standards or data formats, requires hardware
reconfigurability. Reconfigurable hardware applies to a
device that can be configured, at run-time, to implement a
function as a hardware circuit. Commercially available
reconfigurable devices include Field Programmable Gate
Arrays (FPGA) and Complex Programmable Logic Devices
(C PL D).

The basic operation in RSA algorithm is modular
exponentiation on large integers, and this operation requires
a long computation time. The square and multiply method
[7] is the most popular and effective algorithm for
computing modular exponentiation. The technique reduces
the problem to a series of modular multiplications and
squaring steps. Consequently, it is critical that the modular
multiplication operation is fast, and Montgomery [2] has
proposed a fast method for multiplying two integers
modulo M, while avoiding division by M. The idea is
transform the integers to M-residues and compute the
multiplication with these M-residues. It is then transformed
back to the normal representation [5] . Walter [4] then
proposed a systolic array architecture for high-speed
hardware implementation of the Montgomery algorithm.
This architecture gives a throughput of one digit per clock
cycle and a latency of 2m+2, where m is the number of
digit in the multiplicand. A . However, this architecture
needs several millions of gates for the typical input of 512
bits.

An interesting choice is to implement only one row of
the architecture to perform single message encryption. This
would be realizable in a single IC using today's FPGA
technology. In this paper, a systolic array architecture,
suitable for reconfigurable logic implementation, of the
Montgomery modular multiplication is proposed. This will
become the core module in a proposed RSA coprocessor
that is implemented in a reconfigurable logic device, the
FPGA. This coprocessor will off-load computing-intensive
cryptographic operations off a general-purpose processor,
such that a high performance system can be obtained. To
achieve the required speed-up in the RSA operation a PCI
bus interface is employed. The prototype is fabricated in
Altera FLEXIOKE series FPGA mounted on a PCI card in
a Pentium PC.

0-7803-6355-8/001$10.0002000 IEEE 111-6

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/11778563?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:nasir-s-h@yahoo.com

11. RSA CRYPTOGRAPHY

In RSA, to encrypt a message M to its cipher text C, we
perform C = XE mod M using the public key E. To restore
the message, X = CD mod M is performed, where D is the

private key. In general, E = ei*2i, ei E (0 , l }

denotes a big integer that consists of n bit in radix-2, ei is
the Ch digit.

Modular exponentiation is performed using the square
and multiply method as given below. Here, the exponent E
is treated bit by bit. Note that the two lines in step 2a are
modular multiplications under the same modulus, and they
have same multiplier Zi. Since they are independent of each
other, they can be executed in parallel. The loop runs for n
cycles where n is the number of bit in E. If higher radix is
used in E, then the number of digit to represent E and hence
the number of iteration is reduced. The drawback of this
speedup is that 2k-2 multiple of X have to be precomputed
and stored. k is the number of bit used to represent one
digit.

Algorithm 1 : ModExp(X, E, A4)
compute P = XE mod M ,

E = X-l ei.2i, ei E { 0 , 1)

2. For i = 0 to n- 1 Loop

i=O

I . P o = I ,Z0=X

2a. Ptemp = Pi'Zi mod M
Zi+ = Zlz in od M

2b. If ei 1 Then Pi+, Pt,omp Else Pi+, = Pi
3. End For

The speed of this algorithm relies on the speed of
modular multiplication in step 2a. There are many
algorithms that can be used to perform fast modular
multiplication in hardware. An overview of the techniques
involved can be found in [3].

111. MONTGOMERY'S ALGORITHM

Montgomery's algorithm [2], given in Algorithm 2
below, is a fast and effective method to calculate modular
multiplications. Instead of computing A.B mod M, it
calculates A.B.R-' mod M . R > M and R is chosen to be a
value of power of two so that the operations of mod R and
div R is trivial. A precondition is that R must be relatively
prime to M, but this is always true in the RSA algorithm
because M is an odd number. R-' is the inverse
multiplicative of R modulo M. To describe Montgomery
modular multiplication, we need an extra integer, N' that
satisfy R.R-' - N.N' = 1 . N' can be calculated using the
Extended Euclidean Algorithm. In step 2, the result
satisfies P < 2M provided that A.B < M.R.

Algorithm 2: MonMult(A, B, A4)
compute P = A.B.R' mod A4

1. Q = A . B . M " o d R

3. If P 2 M Then Return P - M Else Return P
2. P = (A . B + Q M) l R

To use MonMulr in ModExp, the input operands A and
B for ModExp are first transformed to the M-residue
domain by performing A.R mod M and B.R mod M
respectively. This is performed in step 1 in Algorithm 3
below, where R2 mod M is precomputed and unchanged
throughout the whole cryptographic processing using the
same key. Thus the product will carry an extra R modulo
M. This product can be reused as the operand in the next
Montgomery modular multiplication. The final product is
transformed back to normal integer by eliminating the extra
R mod M. Now, ModExp function becomes:

Algorithm 3: ModExp(X, E, M)
compute P = XE mod M ,

1 . Po = MonMult(I , R2 mod A4)
Zo = MonMult (X, R2 mod M)

2. For i = 0 to n-1
2a. Ptemp = MonMult (Pi, Zi)

Zi+, = MonMult (Zi, Zi)
If ei = 1 Then Pi+] = Ptemp Else Pi+' = Pi 2b.

3. End For
4. P MonMulf (Pn, 1)

Since the operands involved are very large and can vary
from 5 12 to 2048 bits, multiprecision arithmetic is
employed in MonMult. The operands M , A and B will each
consist of m digits, with each digit occupying k bits. If the
digit is in radix r, then Mod r will yield a digit value, while
div r will be equivalent to a simple operation of a right shift
of one digit. MonMult now becomes:

Algorithm 4: MonMult(A, B)
compute P = A.B.r-m mod M,

1. P,=O
2. F o r i = 0 to m-l Loop
2a.
2b.

qi = @i,o + ai.bo)mo' mod r
Pi+, = (Pi + ai.B + 4i.M) I r

3. End Loop
4. If Pm 2 M Then Return Pm - M Else Return Pm

The notation pi.0 denotes the Oth digit of th integer P. In
step 3, this algorithm produces P 3 A.B.r-(m+') mod M that
satisfies P < 2M, provided that A, B < 2M. Eldridge and
Walter in [3] pointed out that, the Montgomery's
algorithm:

111-7

0 reverses the order of treating the digit of the discussion for the radix-2 (in Algorithm 6) and high-radix
multiplicand A,

0 performs a shift down instead of up on each
iteration, and

0 does an addition rather than subtraction.

(in Algorithm 7) versions.

The digit qi calculated in step 2a determines the
multiple of M to be added in the long addition in step 2b.
This is the most important property of the Montgomery’s
method. In short, the classical modular multiplication
algorithms compute the entire sum in order to decide
whether a reduction needs to be performed [9].

IV. ALGORITHM OPTIMIZATION

The long subtraction in every MonMult is an expensive
operation, and it can be avoided by leaving it out until the
final step of the ModExp. So the intermediate result from
the MonMult falls below 2M. In radix-2, in order to reuse
this value as the operands for the next MonMult, two extra
iterations are needed by inserting am+, = 0 [4]. After m+2
iterations. P = A.B.2-(m’’) mod M is produced. In high-radix
cases, only one more iteration is needed since the most
significant digit of B has a maximum value of 1 instead of
r-1. So, R is equal to Y (~ ? + ’) . Algorithm 5 below shows the
radix-2 version of MonMult that accepts A, B < 2M and
produces result below 2M.

Algorithm 5 : MonMult(A, .B)
compute P = A.B.2-(m+?) mod M,

To simplify the determination of digit qi, several
techniques are used [3][lo]. In radix-2, m,’ = 1, and thus q i
= (pi,, + ai’b,) mod r. In the higher radix case, a technique
to avoid multiplication with m,’ is by transforming M into
N , where N = M.m,’. Since no = -1 and thus no’ = 1 . Now, q i
= (pi,, + aib,)n,’ mod r = (pi., + aib,) mod r. Since N is
one digit bigger than M, the final result has to subtract at
most r-1 times of M to reduce to below M. Also, the
acceptable operand size for the MonMult is now A, B < 2N.
An extra iteration is needed to take into account the extra
digit in A .

To further simplify it, we can shift the operand B up 1
digit, in order to make bo = 0. NOW, q i = pi,, mod r = pi,,.
The technique of shifting B up one position is applied in
both radix-2 and high-radix cases. The price for these
simplifications is one more iteration of the loop. Thus, am+>
= 0 is inserted. The algorithms below summarize the above

111-8

Algorithm 6 : MonMult(A, B)
compute P = A.B.2-(m+’) mod M,

mi, bi, ai E CO, I > , am+! = am+, = 0,
1. P,=O
2. For i = 0 to m+2 Loop
2a. 4i Pi.,

3. End Loop
2b. Picl = (Pi + 4i.M) I 2 + u ~ B

Algorithm 7: MonMulf(A, B)
compute P = A.B.r-(m+’) mod M,

Next, we discuss the mapping of above algorithm in the
proposed systolic array architecture, which is based on
Walter’s described in [4] .

V. SYSTOLIC ARRAY ARCHITECTURE

The complexity of Algorithm 6 or Algorithm 7 lies in
the addition of three operands of m+2 bits for calculating
Pm+3. Blum[6] points out that two different strategies have
been pursued: redundant representation and systolic array.
In redundant representation, the intermediate results are
kept in redundant form. Conversion into binary is only
performed at the end of every modular multiplication. In
systolic array approach, there are m processing elements,
each calculating 1 bit per clock cycle. Since the signal is
distributed between adjacent processing elements, faster
clock rate and thus higher bandwidth can be achieved. The
cost is higher latency and more resources.

The systolic array proposed by Walter consists of m+4
columns by m+3 rows for the modular multiplication
operation as described in Algorithm 6 . Due to the limitation
in space of this paper, we will now focus our discussion on
the implementation of Algorithm 6 (radix-2 case) only. At
the outset, note that m+4 columns (i.e. 4 bits more than the
number of bits of M) are needed because the intermediate
result has an upper bound of 10M before div 2. Each row
performs an iteration of the loop, and the columns compute
successive values for a single bit position. The rows and
columns are pipelined so that the data flow from the upper
right cell to the lower left cell and each cell take a cycle to
process. Since there are m+3 iterations to go through, the
latency is thus 2(m+3) cycles. If all the m+3 rows are
implemented, the throughput is one Montgomery modular
multiplication per clock cycle and it can encrypt m+3

different messages simultaneously. Since we are going to
mi,m+? b i,m+i mi,I bi,o mi,() 0

Fig. 1 , One row of modular multiplication cells

implement just one row, the throughput will be one
Montgomery modular multiplication per m+3 clock cycles.
This architecture is able to perform two Montgomery
modular multiplications simultaneously or single message
at a time.

Fig. 1 shows the systolic array of one row. The typical
cell performs a single bit calculation of the operation:

Pi+, = (Pi + 4i.M) I r + ai‘B, i.e.
pi+lj-l + 2.~arryij+, = p i j + ai’bi,j.l + 9i.m’ ‘!I ’ + carryij.

Each cell generates a carry. These carries are bounded by 2
and thus 2 bits are needed, while the rest of the signals
connected to each cell are 1 bit in length. The leftmost cell
is much simpler due to the fact that mi,m+3, mi,m+,, mi,m+l,
mi,m and bi.m+2 are all zero. The signal caryi,m+, is
therefore bounded by 1 . This row performs m+3 iterations
of the looping by feeding back the previous Pi+l, i.e. feed
the bit p i j to the right cells as pi+l/.l. qi is calculated in the
rightmost processing element by simply taking the value of
previous pi,,. Both qi and ai are pumped through the
processing elements.

The signal flow for Algorithm 6 in this architecture is
described as follows. Initially, all the registers that store P
are reset, i.e. P, = 0. At clock cycle 1, the first iteration
starts: q, is assigned to p,,, = 0, while m,,,, 0 and the first a,
are fed to PEPO to generate carry,,, and pI,.,. This bit p
from PEPO is always equal to zero and it is discarded. In
clock cycle 2, m,,, and bo,, are fed to PE-1 to generate
carry,,, and p,,,. At the same time, m,,,, 0 and the second a,
are fed to PE-0. The p, , , from PE-I is used to calculate q,
of second iteration in clock cycle 3. After 2(m+3) clock
cycles, the first bit of the result of first modular
multiplication is generated at PE-I. At the next clock
cycle, P E 2 generates the second bit. At the same time, the
first bit of the second modular multiplication also appears
out of PE-1. As soon as the first bit result of a modular
multiplication is generated, the next modular multiplication
can commence. Both modular multiplications in step 1 or
step 2a in Algorithm 3 are thus run in parallel using this
one row architecture.

Inspection of Algorithm 3 shows that the modular
squaring result is reused as B in both the modular squaring
and modular multiplication of next iteration. Also, both
modular squaring and modular multiplication results are
reused as A s in next iteration. Thus a register B is needed to
store the squaring result, and two RAMS are needed to store
the variables P and Z. These RAMS feed the one row
architecture with ai by alternatively selecting the bit of P

111-9

and Z from the least significant bit to the most significant
bit. Initially, register B is filled with the precomputed value

For both cost and speed evaluation, the gate count and
gate delay model in [4] for VLSI implementation is not

I
Windows-PC (Software) PCI card (Hardware)

IT-

programmer n Cryptographic
Application

(Altera FPGA)

I EEPROM I
Fig. 2. Top-level block diagram of the RSA Coprocessor and its environment

of R2 mod A4 while P and Z are filled with 1 and X,
respectively, in order to perform step I . Before executing
step 4, the value 1 is fed to the register B. A long
subtraction has to be performed finally before we get the
result of the modular exponentiation.

VI. FPGA IMPLEMENTATION

In this section, we present some of the features of the
Altera FLEXlOKE that makes it particularly suitable to
implement the systolic array architecture. This device
consists of four types of reconfigurable elements, the logic
array blocks (LAB), embedded array blocks (EAB), the I/O
elements (IOE) and the routing resource [SI. Each LAB
contains eight logic elements (LE) and a local interconnect.
An LE consists of a look-up-table (LUT) that can perform
any Boolean functions of 4-bit input. Its 1 bit output can
either passed out directly or registered in a flop-flop. The
EAB is a 2048 bits RAM block that can be configured in
size from 2048 x 1 to 256 x 8. This is appropriate for
storing the key in RSA algorithm, which is typically 512 to
2048 bi ts in length. The routing resource connects the
LAB, EAB and IOE into a network. This routing provides
predictable performance because it is a series of continuous
horizontal and vertical routing channels that traverse the
device. Another feature of the LAB is the ability to fast
perform arithmetic function via the fast carry chain
between LEs, thus avoiding the long carry propagation
delay as found in the adder.

Fig. 2 shows a functional block diagram of the proposed
RSA coprocessor, and its interface to the PC environment.
The modular exponentiation using the one row systolic
array architecture described above is the main module in
the RSA processing unit. For preprocessing and post
processing purposes in the RSA algorithm, this unit also
contains other modules that perform Extended Euclidean
algorithm, and long integer subtraction, multiplication and
division. Several RAM blocks are employed using the EAB
to store various intermediate results. The PCI core acts as
the PCI controller that interface the system PCI bus and the
backend design.

Dataln
Address
DataOut

cs
RD
WR
Clk

1 Unit I RSA

Execution

suitable in the FLEXlOKE device. The timing information
in our design is obtained from the timing analyzer of Altera
MAX+plusll software. It is calculated based on the timing
model of the building blocks of the FLEX 1 OKE such as the
LE’S delay, the flip-flop setup/hold time and the routing
path’s delay.

The design in this project is described in VHDL using
VHDLmg (VHDL module generator), an in-house
developed EDA tool [12]. Synopsis FPGA Express is used
as the logic synthesis tool, while Altera MAX+plusII is the
compilation tool.

VII. CONCLUSION

We have presented the development of a modular
multiplication algorithm suitably mapped to a systolic array
architecture targeted for implementation in a reconfigurable
logic device. A high-speed implementation of this
algorithm is critical to fast modular exponentiation
operation required in a RSA cryptographic coprocessor.
The proposed implementation in hardware reconfigurable
logic also provides the necessary flexibility required to deal
with changes in standards and responds to design flaws in
prototyping.

Acknowledgement: This work is supported by a fellowship
grant from Intel Technology Sdn. Bhd. Penang.

REFERENCE

R. L. Rivest, A. Shamir, and L. Adleman, “A Method
for Obtaining Digital Signature and Public-Key
Cryptosystems,” Commun. ACM, vol. 21, pp 120-
126, 1978.
P. L. Montgomery, “Modular Multiplication Without
Trial Division,” Mathemat. of Computat., vol 44, pp
512-521, April 1985.
S. E. Eldridge and C. D. Walter, “Hardware
Implementation of Montgomery’s Modular
Multiplication Algorithm,” IEEE Trans. Comput., vol.
42, no. 6, pp 693-699, June 1993.
C. D. Walter, “Systolic Modular Multiplication,”
IEEE Trans. Comput., vol42, no. 3, pp 376-378, Mar.
1993.

111- 10

[5] C. K. Koc, T. Acar, and B. S. Kaliski, Jr, “Analyzing
and Comparing Montgomery Multiplication design and computer engineering.
Algorithms,” IEEE Micro., vol. 16, no. 3, pp 26-33,
June 1996.

[6] T. Blum and C. Paar, “Montgomery Modular
Exponentiation on Reconfigurable Hardware,” 14Ih
IEEE symposium on Comput. Arith., pp 70-77, 1999.
D. E. Knuth, The Art of Computer Programming,
Volume 2: Seminumerical Algorithms, Znd edition,
Reading, MA: Addison-Wesley, 1981.

[8] Altera Inc., San Jose, CA, Device Data Book 1999.
[9] M. Shand, J . Vuillemin. “Fast Implementation of RSA

Cryptography,” In Proceedings 1 1 Ih IEEE Symposium
on Computer Arithmetic, pp 252-259, 1993.

[I O] H. Orup, “Simplifying Quotient Determination in
High-Radix Modular Multiplication,” In Proceedings
12Ih Symposium on Computer Arithmetic, pp 193-
199, 1995.

[I I] B. Schneier. Applied Cryptography: Protocols,
Algorithm arid Source Code in C, 2’ld Edition, New
York: John Wiley & Sons, Inc., 1996.

[12] Mohamed Khalil, Koay Kah Hoe, ” VHDL Module
Generator: A Rapid-prototyping Design Entry Tool
for Digital ASICs,” Jurnal Teknologi, 3 1 (D)I 999,
Univ. Teknologi Malaysia, Dec. 1999, pp.45-61.

institution. His research interest includes digital hardware

[7]

BIOGRAPHY

Mohamed Khalil Hani obtained his B.Eng. in
Communication from University of Tasmania, Australia in
1978, M. Eng. in Computer Engineering from Florida
Atlantic Univ., Boca Raton in 3985, and Ph.D. in Digital
System and Computer Engineering from Washington State
University, Pullman in 1992. He is currently the Vice Dean
at the Faculty of Electrical Engineering, Universiti
Teknologi Malaysia, Skudai. His research interests include
digital system design and computer architecture, VHDL
and FPGA hardware implementations, CAD or digital
design automation, artificial intelligence with focus on
hardware implementations of neural networks, fuzzy logic
and expert systems, and emergent technologies in
reconfigurable computing, embedded multimedia and
cryptography.

Nasir Shaikh-Husin is a Lecturer at Faculty of Electrical
Engineering, Universiti Teknologi Malaysia. He is
presently also head of VLSl CAD Lab. Nasir obtained his
B. Eng. (Electrical) degree from Lakehead University,
Canada in 1985 and M.Sc. (Microelectronics) in 1987 from
University of Durham, United Kingdom. His research
interests are applications of neural networks for solving
optimization problems and IC design, especially related to
hardware implementation of neural networks.

Tan Siang Lin obtained his first degree with second
class upper in Electrical Engineering from Universiti
Teknologi Malaysia in 1999. Currently, he is pursuing his
master degree in Electronic Engineering at the same

111- 1 1

