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Abstract - In this paper, two neuro-controllers utilizing the back 
propagation algorithm are investigated for robot path tracking 
performance: Inverse Neuro-Controller and Neuro-Emulator 
Neuro-Controller schemes. For a given task of moving a robot 
from a rest position to a final specified position in a minimum- 
time, the resulting position and velocity profiles for the 
investigated neuro-control models showed that, the manipulator 
could be moved smoothly and accurately. The tracking 
performance and accuracy are investigated and compared. 

I. INTRODUCTION 

Neural Networks have emerged rapidly in the last few 
years as a possible candidate to solve real-time problems 
because of their parallel computation structure and learning 
ability. The neural network parallel structure can ease the 
real-time problem of high computation requirement. However, 
through on-line or off-line learning, neural network controllers 
can learn the system characteristics from the inpudoutput 
data, and hence find a way to control it. 

In this paper we will make use of these advantages of 
neural networks to solve for the path control problem. Here a 
neural network controller is designed on a multi-layered 
network, for which the adaptation of system changes could be 
accommodated via the back propagation of errors through 
different layers. 

We have reported earlier the investigations in obtaining 
minimum-time path planning [ l ]  and a neural networks 
approach for intelligent path planning [2 ] .  Here we are 
reporting further developments in investigation of use of 
neuro controllers: Inverse Neuro-Controller and Neuro- 
Emulator Neuro -Controller approaches. 

The Neuro-Emulator Neuro-Controller scheme can 
be regarded as an integrated and modified model of the 
inverse nemo-controller scheme. This approach was first 
proposed and then well defined by other researchers [3][4][5]. 

11. PATH PLANNING CONTROL PROBLEM 
The standard task of robot path control is to map a desired 

trajectory q d  (f) onto n joint torque functions Td (t) for the 
corresponding n joint of a manipulator, such that its end- 
effector moving along its actual trajectory qa (f) remains as 
close as possible to 4 d  (f). There are three fundamental levels 
in path control to accomplish this movement: task planning, 
trajectory path planning and path motion control. 
* In task-planning level, the planners manage and 

coordinate the information (e.g., via-points, obstacles, 

end-effector position and orientation, ... etc.,) of the job to 
be performed, which involves providing the solution o f  
inverse kinematics. 
The trajectory planning level, in which, given the initial, 
target coordinates as well as the appropriate constraints, 
the sequence of the points and the desired trajectory 
through which the end-effector must pass are to be found. 
Given such a trajectory (objective position, velocity and 
acceleration), the path control level, consists of finding 
the necessary n joint torques to move the end-effector 
along this desired trajectory, even in presence of 
unexpected load changes. 

The path control problem focuses on the computation of 
the actuating joint torquedforces that are required to produce 
the reference trajectories, which involves solving of the robot 
dynamics problem. The dynamic model which describe the 
motion of n joint robot, that relates the actuating joint torques 
z,(f) with the joint positions , velocities and accelerations 
( qi (t), gi (t), gi ( t )  ) is as given below: 

* 

* 

7 = M(q)!2 + C(q,q)q f G(q) + m, 4 )  (1) 
Where q is (nxl) vector of joint displacements, 4 is the (nxl) 
vector of the joint velocities, is the (n x 1) vector of the 
joint accelerations, z is the (n x 1) vector of applied torques, 
M(q) is the (n x n) symmetric inertia matrix, C (q, 4 ) is the (n 
x 1) vector of centripetal and Coriolis forces, G(q) is the (n x 
1) vector of gravitational forces, F(q,4) is the uncertain 
vector of the dynamics including the friction and any other 
disturbances, n the number of degrees of freedom o f  the robot. 

These equations are typically very complex, highly 
coupled and non-linear. However, most commercial 
manipulators are equipped with controllers that ignore these 
non-linear robot dynamics. These simplified controllers may 
fail to characterize the complex joint dynamics and coupling, 
resulting in oscillations or overshoot of the end effector. As a 
result, the design of an ideal controller for such a system is 
currently one o f  the most challenging tasks to achieve a better 
performance while taking into account the dynamics of the 
robot. Commonly, there are two barriers to the successful 
implementation of the conventional controllers[6]. 
i. The computation of the complex non-linear dynamics 

robot model needs to be done in real time, typically less 
than 10 ms, and this is hard to achieve with present 
single-processor technology. 
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ii. The parameters in the dynamics model of the robot must 
be known precisely. 

The neural network for learning the robot dynamics can 
be regarded as an example of the autonomous driving torque 
generator. i.e. the neural network model generates the 
necessary driving torques in the robot joints as a nonlinear 
mapping of the robot desired joint displacement, joint 
velocities and joint accelerations: 

T i  =f(wji 7 q d  7 Bd 7 qcj) (2) 
where, z is the (n x 1) vector of joint driving torques, qi are 
the adaptive weight matrices between the network layers, and 
A.) is the non-linear mapping sigmoidal activation function. In 
the following sections, we will discuss two different 
approaches suggested to learn the dynamics of the robot 
model in order to control its movement. 

111. INVERSE "0-CONTROLLER SCHEME 
In this scheme the neural network is directly controlling 

the robot, where the neural network is placed at the input path 
of the controlled system acting as a feedforward controller. 
This is regarded as the specialized learning architecture as 
been shown in Fig. 1, where the neural network is trained on- 
line to learn the inverse model of the robot by back- 
propagation of the performance error [7]. However, it is 
necessary at the beginning to train the neural network off-Iine 
using the generalized learning architecture. Once it converges 
(i.e. learns the true inverse of the robot model), it can be put 
in the feedforward path and continue on-line tuning and 
adapting to changes in the environment and within the system 

A. Off-line Learning 

The off-line learning is regarded as the first stage of 
training the network to learn the inverse of the robot 
dynamics. As shown in Fig. 2, a set of commanded torques, 
denoted as (zd), are used to drive the robot producing a set of 
resulting actual trajectories (4,). The network receives the 
actual trajectory (4.) as input and produces a set of actual 
motor torques, denoted as (za ). The goal of the generalized 
learning is to minimize the errors between (z,) and (zd) in the 
least square sense using the back-propagation algorithm. After 
the network is fully trained, if any new applied input (4) is 
sufficiently close to the reference trajectory (qd), then the 
controller should be able to reproduce a proper torque T, 
making the actual movement closely following the desired 
trajectory. Then the network will be used as a feedforward 
controller for the robot. 
B. On-line Learning 

In order to improve the performance of the neural networks 
which have been trained using the off-line general learning 
method, we incorporate the specialized learning stage into the 

[SI. 

I Desired Joint Measured -1 

Actual Joint 
Torques (r, ) Nertwork 

Fig. 1 Generalized ]Learning Configuration 
conuoi system. m e  neum nenlvorK is Eamea oasea on the 
regions of interest, where the desired trajectory (qd ) is applied 
directly to the neural input layers and outputs the appropriate 
torque commands (zd) to drive the robot resulting a movement 
trajectory (qa). The values of the desired trajectory and the 
actual _movement trajectory are compared yielding a 
performance error (E&. The performance error, (qd - q, ) is 
then back-propagated througlh the network at every sample. In 
order to accomplish the on-line learning, the sign of the 

robot's partial derivative -- "la was used to approximate the 

robot Jacobian according to [9]. Thus, when the operating 
points of the system change or when new training patterns is 
added, it should be adequate to use specialized learning to fine 
tune the system. 

dz 

IV. NEURO-EMUL ATOR NEURO-CONTROLLER 

As shown in Fig. 3, tlhis architecture has two Neural 
networks used to control the plant. The first is used as an 
emulator to emulate the plant behavior and trained to learn the 
plant forward dynamics, whille the other is used as a controller 
trained to learn the plant inverse dynamic. Thus, this approach 
allows more accurate training on-line for the nemo-controller 
as the performance error (si,) is backpropagated through the 
emulator at every sample. 

Using the back-propagation algorithm, the nemo- 
controller is trained to learn the inverse model of the plant in 
the same way firstly, off-line, and then on-line. On the other 
hand, the emulator is first brained off-line to learn the plant 
forward model by injecting a recorded input data together 
with some delayed output data as the input patterns and the 
corresponding outputs as the target patterns. Then the 
emulator is embodied in Ihe system to continue on-line 
training. 
I Desired Measured 

Neural U Network 

I 
- 

I, 
k%* Joint Torques 4- 

(7d ) 

Fig. 2 Specialized Learning Configuration 
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I I I I 

I 
Fig. 3 Neuro-Emulator and Neuro-Controller 

A. Emulator off-line Learning 

At the first stage of learning, the emulator is trained off- 
line to learn the forward model of the robot such that it would 
approximate its behavior. The training is implemented by 
applying the same inputs of the robot together with some 
delayed outputs. To accomplish this stage of training the 
back-propagation algorithm is again used and the weights of 
the emulator are adjusted using (3) and (4). For the output 
layer 

A WG ( t )  = 6 k y j  + cx A Wji (t  - 1) , 

A Wji ( t  ) = 6 xi + cx A Wji ( t  - 1) , 

(3) 

(4) 

and, for the hidden layer 

where, a is usually a positive number called the momentum 
parameter. 
A. On-line Learning 

At the second stage of learning, the on-line learning 
method is adopted to improve the performance of the system 
being controlled [ 5 ] .  The performance error 

( 5 )  
1 2 

E, = T ( 4 d  - 4,) 7 

is used as the error signal to update the neuro-controller 
weights after being back-propagated through the emulator, 
where 

and, 6 in this case is the error between the hidden and 
output layers of the emulator . Then the errors between the 
hidden and the input layers are adjusted in the same way 
described for the back-propagation algorithm. 

In order to improve the operation of the emulator itself, 
the emulator weights are updated on-line by back-propagating 
the errors resulting by comparing the emulator outputs and the 
robot model outputs at every sample. 

' k  = ( q d - q u )  (6)  

1 
E l  = $4, -az 2 (7) 

where, $ is the emulator output. 

Two advantages will be obtained using this approach: 
Firstly, the Jacobian of the partial derivatives of the plant can 
be approximated by the neuro-emulator instead of using their 
signs because the neuro-emulator is acting as a plant identifier 
which means that the change in the plant output corresponding 
to the plant input can be detected. Secondly, it allows for 
more accurate training of the neuro-controller on-line as the 
performance error (E& is propagated back through the 
emulator at every sample. 

V. CASE STUDIES 

To illustrate the capability of the techniques presented in 
preceding sections, we performed the minimum-time path 
planning control on a model of PUMA like robot. The first 3 
joints (Arm joints) of a 6 joint PUMA manipulator are 
responsible for positioning the end-effector, while the last 
three joints (Wrist joints) were used for the end-effector 
orientation. Thus, in our simulations we performed the path 
planning control for only the first 3 joints, where the payload 
and the mass of the wrist joints were presented as an effective 
load at the end of the third link [lo]. 
A. Pre-training of the Neural Networks 

In this simulation study we use a 3-layer (with one hidden 
layer) back-propagation neural network, with a configuration 
of (3 x n) neurons in the input layer, and n output neurons at 
the output layer yielding the required joint torques, where 3 
represents the input desired trajectory parameters 
( qd , id , iid) for each joint, and n is the number of the robot 
d.0.J The number of the hidden layer neurons is determined 
by simulation and experience rather than any fixed rule, 
therefore we use the trial and error procedure by varying the 
number of the hidden neurons and check for the validity of the 
obtained results. It was found that as the number of the hidden 
neurons increased the neural network accuracy improved, but 
in contrast it caused slower learning. Also, due to the large 
number of the hidden neurons, it may drive the neural network 
to memorization instead of generalization [ 1 11 [ 121. Through 
experiments we found that a hidden layer with 24 neurons is 
optimum for our application in terms of speed and accuracy. 
Thus, the structure of our proposed neural network to learn the 
inverse of the robot model has (9-24-3) (number of neurons 
for input, hidden and output layers respectively). The non- 
linear activation function of the hidden neurons chosen as a 

hyperbolic tangent function f ( x )  = , while for 

the output layers was chosen as a linear function: f(x I =  x , 

Before starting the off-line training all the weights were 
randomly initialized at the range of k 0.5 . 
B. Off-line Learning 

Before implementing the robot path control, the neural 
network is trained in an off-line way to learn the inverse 
dynamics using the back-propagation. With a fixed 

ex  

ex +e-X 
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momentum coefficient of 0.8 and a learning rate coefficient 
initially chosen at 0.001 to speed up the learning and then 
reduced to 0.0001 to avoid the system instability. The neural 
network weights are updated in accordance to (3) and (4). 

The training patterns consist of uniformly distributed 
values of joint parameters (positions, velocities and 
accelerations) as training inputs, and their corresponding joint 
torques as training outputs. As the training proceeds the neural 
network starts to realize the robot dynamics and provides the 
accurate mapping, and the convergence error decreases 
gradually as the number of iterations increases as can be 
observed in Fig. 4. The performance of the training procedure 
was checked after 50,000 iterations and the results obtained by 
the neural network is shown in Fig. 5, where the improvement 
of learning the plant inverse is clearly observed. It can be 
observed that the neural network performed fairly well in 
learning the robot inverse dynamics model. 

was still trying to adapt itself initially. As time progress 
these errors rapidly disqppeared. 
The position tracking responses for the Neuro-emulator 
Neuro-controller are shown in Fig. 7. It is interesting to 
note that these results demonstrate smaller errors than the 
previous model because of the presence of the neuro- 
emulator which identifiq the exact forward robot model 
which provide the neuro-controller with the performance 
error at every sampling itime. 

A summary of the calculated maximum errors for the 
three proposed architectures in terms of position and velocity 
tracking responses to follow a proposed minimum-time 
trajectory is given in Table 1. 

* 

TABLE 1 
TRACKING EliRORS FOR CASE I 

C o n v e r g e n c e  E r r o r  ( R M  S) 

0 10 2 0  3 0  4 0  

N o .  o f  I t e r a t i o n s  ( X  1 0 0 0 )  

Fig. 4 : Covergence of Error forthe first 50,000 Training Iterations 

C. On-line Learning 

After the neural networks have learned the true inverse of 
the dynamic model of the robot, these trained neural networks 
are employed to act as neuro-controllers in the suggested 
schemes as described earlier, to perform on-line learning in 
the regions of interest and to adapt for any changes during 
controlling the robotic motion in tracking the desired 
trajectory. Two case studies were carried out to demonstrate 
the trajectory tracking capability of the neuro-controllers to 
follow the predefined trajectories. 

1) Case I : The manipulator was required to follow a 
minimum-time trajectory, which started from initial rest 
position (initial velocity and acceleration = 0 )  to a fully stop 
condition at the end of the trajectory (fmal velocity and 
acceleration = 0). The computed torque inputs generated by 
the neuro-controllers were used to drive the robot arm to 
follow and track the desired minimum-time trajectory. The 
simulated manipulator response in terms of joint positions and 
velocities are shown for the different proposed neuro-control 
schemes. 
* Fig. 6 shows the position tracking responses for the three 

joints using the Inverse Neuro-Controller. It was observed 
that there are significant errors during the initial path 
stages which is due to the reason that the nemo-controller 

I CASE m: Maximum Position and Velocitv Errors I 

0.034 

In Table 1, it can be obiserved that the tracking errors for 
all the schemes are relatively small. It appears that the Neuro- 
Emulator Neuro-Controller model gives the best results. 

2) Case I1 : In this case of study, the fKst three joints of 
the robot manipulator are required to move from an initial 
position of { qi E( -0.8, -1.5: -0.5) radians } to a final position 
of { qi E( 1.0, 0.2, 1.2) radians }. The initial and final 
velocities and accelerations are all zero [13]. The three neuro- 
controller architectures are simulated to follow and track this 
desired trajectory. The performance of the different 
architectures is noticed to be improved for this short trajectory 
which needed only a duration of 2 seconds to be 
accomplished. 
* The position and velocity tracking profiles of the Inverse 

Neuro-Controller architecture are shown in Fig. 8. It can 
be observed that the performance of the neuro-controller 
improved and was able to track the desired trajectory very 
smoothly, which represents the efficiency of this model 
to track different desired trajectories. 
Fig. 9 illustrates the por;ition and velocity tracking of the 
Neuro-emulator Neuro-Controller architecture. It can be 
observed that the smoothness and accuracy of tracking of 
the desired trajectory is almost the same as that presented 
by the previous architecture. 
Table 2 illustrates the maximum errors values for the joint 

positions and velocities for ithe three different schemes. From 
Table 2 , it is noticed that the Neuro-emulator Neuro- 
Controller model and the Inverse Nemo-Controller model 

* 
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demonstrate very close performance, and give the best 
tracking results for this short trajectory. 

TABLE 2 
TRACKING ERRORS FOR CASE II 

I CASE (IT): Maximum Position and Velocity Errors I 

Controller 
Neuro-Emulator 
Neuro-Controller 

. ,  
MODEL I1 ERROR 1 Joint 1 11 Joint2 11 Joint3 

Inverse Neuro- 11 PositionError (rad) 11 0.016 11 0.014 11 0.014 
\ ,  

Velocity Error (rad/s) 0.101 0.029 0.036 
Position Error (rad) 0.015 0.014 0.014 
Velocity Error (rad/s) 0.094 0.028 0.036 

VI. CONCL USIONS 
The proposed neural networks were trained to learn the 

inverse dynamic model of the robot in such a way that they 
will be able to produce the necessary actuating torques to 
track a specified minimum-time trajectory. Two schemes 
namely Inverse Neuro-Controller and Neuro-Emulator Neuro- 
Controller model, utilizing the back-propagation algorithm 
have been discussed. 

For a given task of moving a robot from a rest position to 
a final specified position in a minimum-time, the resulting 
position and velocity profiles for the investigated neuro- 
control models showed that using neural networks, the 
manipulator could be moved smoothly and accurately, which 
clearly exhibited the capability of the neural networks towards 
the tracking of a desired motion trajectory. The tracking 
performance and accuracy are investigated and compared. The 
results indicated that the Neuro-Emulator Neuro-Controller 
model gives the best tracking performance because of the 
presence of the neuro-emulator which is used to emulate the 
forward behavior of the robot model. 

\ 
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T I n e  ( I )  

I T l m c  ( I )  I 

I T i s r k l n g  P a i l t l o n  R e s p a n r e  ( J a l n t  13) 

T I m e  (1)  

- - - - -  C o n t r o l l a d P o r i t l o n  - D s s l r e d P o i l t l o n  

Fig. 6 Positions Tracking Responses for Joints 1,2 and 3 Using: 
( Inverse Neuro-Controller Model ) 

P o r l t l o n  T r s e k l n g  R e a p o n a s  ( J o l o t W 1 )  

T l m a  (s) I 

P a a l t l o n  T r . c k l n g  R s r p a n r s  ( J a l n t l l l )  

T l n  e (s) 

P a s l t l a n  T r a c k l n g  R e s p o n s e  ( J o l n t # 3 )  

Fig. 7 Position Tracking Response for Joints 1,2 and 3 Using : 
( Neuro-Controller Neuro-Emulator Model ) 

CASE No. ( I ) 

T l n  L ( 3 )  

T l s c k l n g  J e I n t P a r * m C t e r I  ( J a l . 1  U S )  

9 ~~~ 

8 0  

2 .Q I 

T l n  e (1) Fz 
:. 8 Tracking Joint Velocities and Positions for Joints 1,2 and 3. 

(Inverse Neuro-Controller Model) CASE No. ( 11) 

Fig. 9 Tracking Joint Velooities and Positions for Joints 1,2 and 3. 
( Neuro-Controller NeuriGEmulator Model ) CASE No.( I1 ) 
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