
Performance of Two Neuro Controllers For Robot Path Planning Control

Shamsudin H.M. Amin, Otman Musa Ahtiwash
Faculty of Electrical Engineering

Universiti Teknologi Malaysia
Locked Bag 791, Skudai

80990 Johor Bahru, Johor, Malaysia
Email: sham@fkesem.fke.utm.my

Abstract - In this paper, two neuro-controllers utilizing the back
propagation algorithm are investigated for robot path tracking
performance: Inverse Neuro-Controller and Neuro-Emulator
Neuro-Controller schemes. For a given task of moving a robot
from a rest position to a final specified position in a minimum-
time, the resulting position and velocity profiles for the
investigated neuro-control models showed that, the manipulator
could be moved smoothly and accurately. The tracking
performance and accuracy are investigated and compared.

I. INTRODUCTION

Neural Networks have emerged rapidly in the last few
years as a possible candidate to solve real-time problems
because of their parallel computation structure and learning
ability. The neural network parallel structure can ease the
real-time problem of high computation requirement. However,
through on-line or off-line learning, neural network controllers
can learn the system characteristics from the inpudoutput
data, and hence find a way to control it.

In this paper we will make use of these advantages of
neural networks to solve for the path control problem. Here a
neural network controller is designed on a multi-layered
network, for which the adaptation of system changes could be
accommodated via the back propagation of errors through
different layers.

We have reported earlier the investigations in obtaining
minimum-time path planning [l] and a neural networks
approach for intelligent path planning [2] . Here we are
reporting further developments in investigation of use of
neuro controllers: Inverse Neuro-Controller and Neuro-
Emulator Neuro -Controller approaches.

The Neuro-Emulator Neuro-Controller scheme can
be regarded as an integrated and modified model of the
inverse nemo-controller scheme. This approach was first
proposed and then well defined by other researchers [3][4][5].

11. PATH PLANNING CONTROL PROBLEM
The standard task of robot path control is to map a desired

trajectory q d (f) onto n joint torque functions Td (t) for the
corresponding n joint of a manipulator, such that its end-
effector moving along its actual trajectory qa (f) remains as
close as possible to 4 d (f). There are three fundamental levels
in path control to accomplish this movement: task planning,
trajectory path planning and path motion control.
* In task-planning level, the planners manage and

coordinate the information (e.g., via-points, obstacles,

end-effector position and orientation, ... etc.,) of the job to
be performed, which involves providing the solution o f
inverse kinematics.
The trajectory planning level, in which, given the initial,
target coordinates as well as the appropriate constraints,
the sequence of the points and the desired trajectory
through which the end-effector must pass are to be found.
Given such a trajectory (objective position, velocity and
acceleration), the path control level, consists of finding
the necessary n joint torques to move the end-effector
along this desired trajectory, even in presence of
unexpected load changes.

The path control problem focuses on the computation of
the actuating joint torquedforces that are required to produce
the reference trajectories, which involves solving of the robot
dynamics problem. The dynamic model which describe the
motion of n joint robot, that relates the actuating joint torques
z,(f) with the joint positions , velocities and accelerations
(qi (t), gi (t), gi (t)) is as given below:

*

*

7 = M(q)!2 + C(q,q)q f G(q) + m, 4) (1)
Where q is (nxl) vector of joint displacements, 4 is the (nxl)
vector of the joint velocities, is the (n x 1) vector of the
joint accelerations, z is the (n x 1) vector of applied torques,
M(q) is the (n x n) symmetric inertia matrix, C (q, 4) is the (n
x 1) vector of centripetal and Coriolis forces, G(q) is the (n x
1) vector of gravitational forces, F(q,4) is the uncertain
vector of the dynamics including the friction and any other
disturbances, n the number of degrees of freedom o f the robot.

These equations are typically very complex, highly
coupled and non-linear. However, most commercial
manipulators are equipped with controllers that ignore these
non-linear robot dynamics. These simplified controllers may
fail to characterize the complex joint dynamics and coupling,
resulting in oscillations or overshoot of the end effector. As a
result, the design of an ideal controller for such a system is
currently one o f the most challenging tasks to achieve a better
performance while taking into account the dynamics of the
robot. Commonly, there are two barriers to the successful
implementation of the conventional controllers[6].
i. The computation of the complex non-linear dynamics

robot model needs to be done in real time, typically less
than 10 ms, and this is hard to achieve with present
single-processor technology.

0-7803-2775-6/96 $4.00 0 1996 IEEE 1856

ii. The parameters in the dynamics model of the robot must
be known precisely.

The neural network for learning the robot dynamics can
be regarded as an example of the autonomous driving torque
generator. i.e. the neural network model generates the
necessary driving torques in the robot joints as a nonlinear
mapping of the robot desired joint displacement, joint
velocities and joint accelerations:

T i =f(wji 7 q d 7 Bd 7 qcj) (2)
where, z is the (n x 1) vector of joint driving torques, qi are
the adaptive weight matrices between the network layers, and
A.) is the non-linear mapping sigmoidal activation function. In
the following sections, we will discuss two different
approaches suggested to learn the dynamics of the robot
model in order to control its movement.

111. INVERSE "0-CONTROLLER SCHEME
In this scheme the neural network is directly controlling

the robot, where the neural network is placed at the input path
of the controlled system acting as a feedforward controller.
This is regarded as the specialized learning architecture as
been shown in Fig. 1, where the neural network is trained on-
line to learn the inverse model of the robot by back-
propagation of the performance error [7]. However, it is
necessary at the beginning to train the neural network off-Iine
using the generalized learning architecture. Once it converges
(i.e. learns the true inverse of the robot model), it can be put
in the feedforward path and continue on-line tuning and
adapting to changes in the environment and within the system

A. Off-line Learning

The off-line learning is regarded as the first stage of
training the network to learn the inverse of the robot
dynamics. As shown in Fig. 2, a set of commanded torques,
denoted as (zd), are used to drive the robot producing a set of
resulting actual trajectories (4,). The network receives the
actual trajectory (4.) as input and produces a set of actual
motor torques, denoted as (za). The goal of the generalized
learning is to minimize the errors between (z,) and (zd) in the
least square sense using the back-propagation algorithm. After
the network is fully trained, if any new applied input (4) is
sufficiently close to the reference trajectory (qd), then the
controller should be able to reproduce a proper torque T,
making the actual movement closely following the desired
trajectory. Then the network will be used as a feedforward
controller for the robot.
B. On-line Learning

In order to improve the performance of the neural networks
which have been trained using the off-line general learning
method, we incorporate the specialized learning stage into the

[SI.

I Desired Joint Measured -1

Actual Joint
Torques (r,) Nertwork

Fig. 1 Generalized]Learning Configuration
conuoi system. m e neum nenlvorK is Eamea oasea on the
regions of interest, where the desired trajectory (qd) is applied
directly to the neural input layers and outputs the appropriate
torque commands (zd) to drive the robot resulting a movement
trajectory (qa). The values of the desired trajectory and the
actual _movement trajectory are compared yielding a
performance error (E&. The performance error, (qd - q,) is
then back-propagated througlh the network at every sample. In
order to accomplish the on-line learning, the sign of the

robot's partial derivative -- "la was used to approximate the

robot Jacobian according to [9]. Thus, when the operating
points of the system change or when new training patterns is
added, it should be adequate to use specialized learning to fine
tune the system.

dz

IV. NEURO-EMUL ATOR NEURO-CONTROLLER

As shown in Fig. 3, tlhis architecture has two Neural
networks used to control the plant. The first is used as an
emulator to emulate the plant behavior and trained to learn the
plant forward dynamics, whille the other is used as a controller
trained to learn the plant inverse dynamic. Thus, this approach
allows more accurate training on-line for the nemo-controller
as the performance error (si,) is backpropagated through the
emulator at every sample.

Using the back-propagation algorithm, the nemo-
controller is trained to learn the inverse model of the plant in
the same way firstly, off-line, and then on-line. On the other
hand, the emulator is first brained off-line to learn the plant
forward model by injecting a recorded input data together
with some delayed output data as the input patterns and the
corresponding outputs as the target patterns. Then the
emulator is embodied in Ihe system to continue on-line
training.
I Desired Measured

Neural U Network

I
-

I,
k%* Joint Torques 4-

(7d)

Fig. 2 Specialized Learning Configuration

1857

I I I I

I
Fig. 3 Neuro-Emulator and Neuro-Controller

A. Emulator off-line Learning

At the first stage of learning, the emulator is trained off-
line to learn the forward model of the robot such that it would
approximate its behavior. The training is implemented by
applying the same inputs of the robot together with some
delayed outputs. To accomplish this stage of training the
back-propagation algorithm is again used and the weights of
the emulator are adjusted using (3) and (4). For the output
layer

A WG (t) = 6 k y j + cx A Wji (t - 1) ,

A Wji (t) = 6 xi + cx A Wji (t - 1) ,

(3)

(4)

and, for the hidden layer

where, a is usually a positive number called the momentum
parameter.
A. On-line Learning

At the second stage of learning, the on-line learning
method is adopted to improve the performance of the system
being controlled [5] . The performance error

(5)
1 2

E, = T (4 d - 4,) 7

is used as the error signal to update the neuro-controller
weights after being back-propagated through the emulator,
where

and, 6 in this case is the error between the hidden and
output layers of the emulator . Then the errors between the
hidden and the input layers are adjusted in the same way
described for the back-propagation algorithm.

In order to improve the operation of the emulator itself,
the emulator weights are updated on-line by back-propagating
the errors resulting by comparing the emulator outputs and the
robot model outputs at every sample.

' k = (q d - q u) (6)

1
E l = $4, -az 2 (7)

where, $ is the emulator output.

Two advantages will be obtained using this approach:
Firstly, the Jacobian of the partial derivatives of the plant can
be approximated by the neuro-emulator instead of using their
signs because the neuro-emulator is acting as a plant identifier
which means that the change in the plant output corresponding
to the plant input can be detected. Secondly, it allows for
more accurate training of the neuro-controller on-line as the
performance error (E& is propagated back through the
emulator at every sample.

V. CASE STUDIES

To illustrate the capability of the techniques presented in
preceding sections, we performed the minimum-time path
planning control on a model of PUMA like robot. The first 3
joints (Arm joints) of a 6 joint PUMA manipulator are
responsible for positioning the end-effector, while the last
three joints (Wrist joints) were used for the end-effector
orientation. Thus, in our simulations we performed the path
planning control for only the first 3 joints, where the payload
and the mass of the wrist joints were presented as an effective
load at the end of the third link [lo].
A. Pre-training of the Neural Networks

In this simulation study we use a 3-layer (with one hidden
layer) back-propagation neural network, with a configuration
of (3 x n) neurons in the input layer, and n output neurons at
the output layer yielding the required joint torques, where 3
represents the input desired trajectory parameters
(qd , id , iid) for each joint, and n is the number of the robot
d.0.J The number of the hidden layer neurons is determined
by simulation and experience rather than any fixed rule,
therefore we use the trial and error procedure by varying the
number of the hidden neurons and check for the validity of the
obtained results. It was found that as the number of the hidden
neurons increased the neural network accuracy improved, but
in contrast it caused slower learning. Also, due to the large
number of the hidden neurons, it may drive the neural network
to memorization instead of generalization [1 11 [121. Through
experiments we found that a hidden layer with 24 neurons is
optimum for our application in terms of speed and accuracy.
Thus, the structure of our proposed neural network to learn the
inverse of the robot model has (9-24-3) (number of neurons
for input, hidden and output layers respectively). The non-
linear activation function of the hidden neurons chosen as a

hyperbolic tangent function f (x) = , while for

the output layers was chosen as a linear function: f(x I = x ,

Before starting the off-line training all the weights were
randomly initialized at the range of k 0.5 .
B. Off-line Learning

Before implementing the robot path control, the neural
network is trained in an off-line way to learn the inverse
dynamics using the back-propagation. With a fixed

ex

ex +e-X

1858

momentum coefficient of 0.8 and a learning rate coefficient
initially chosen at 0.001 to speed up the learning and then
reduced to 0.0001 to avoid the system instability. The neural
network weights are updated in accordance to (3) and (4).

The training patterns consist of uniformly distributed
values of joint parameters (positions, velocities and
accelerations) as training inputs, and their corresponding joint
torques as training outputs. As the training proceeds the neural
network starts to realize the robot dynamics and provides the
accurate mapping, and the convergence error decreases
gradually as the number of iterations increases as can be
observed in Fig. 4. The performance of the training procedure
was checked after 50,000 iterations and the results obtained by
the neural network is shown in Fig. 5, where the improvement
of learning the plant inverse is clearly observed. It can be
observed that the neural network performed fairly well in
learning the robot inverse dynamics model.

was still trying to adapt itself initially. As time progress
these errors rapidly disqppeared.
The position tracking responses for the Neuro-emulator
Neuro-controller are shown in Fig. 7. It is interesting to
note that these results demonstrate smaller errors than the
previous model because of the presence of the neuro-
emulator which identifiq the exact forward robot model
which provide the neuro-controller with the performance
error at every sampling itime.

A summary of the calculated maximum errors for the
three proposed architectures in terms of position and velocity
tracking responses to follow a proposed minimum-time
trajectory is given in Table 1.

*

TABLE 1
TRACKING EliRORS FOR CASE I

C o n v e r g e n c e E r r o r (R M S)

0 10 2 0 3 0 4 0

N o . o f I t e r a t i o n s (X 1 0 0 0)

Fig. 4 : Covergence of Error forthe first 50,000 Training Iterations

C. On-line Learning

After the neural networks have learned the true inverse of
the dynamic model of the robot, these trained neural networks
are employed to act as neuro-controllers in the suggested
schemes as described earlier, to perform on-line learning in
the regions of interest and to adapt for any changes during
controlling the robotic motion in tracking the desired
trajectory. Two case studies were carried out to demonstrate
the trajectory tracking capability of the neuro-controllers to
follow the predefined trajectories.

1) Case I : The manipulator was required to follow a
minimum-time trajectory, which started from initial rest
position (initial velocity and acceleration = 0) to a fully stop
condition at the end of the trajectory (fmal velocity and
acceleration = 0). The computed torque inputs generated by
the neuro-controllers were used to drive the robot arm to
follow and track the desired minimum-time trajectory. The
simulated manipulator response in terms of joint positions and
velocities are shown for the different proposed neuro-control
schemes.
* Fig. 6 shows the position tracking responses for the three

joints using the Inverse Neuro-Controller. It was observed
that there are significant errors during the initial path
stages which is due to the reason that the nemo-controller

I CASE m: Maximum Position and Velocitv Errors I

0.034

In Table 1, it can be obiserved that the tracking errors for
all the schemes are relatively small. It appears that the Neuro-
Emulator Neuro-Controller model gives the best results.

2) Case I1 : In this case of study, the fKst three joints of
the robot manipulator are required to move from an initial
position of { qi E(-0.8, -1.5: -0.5) radians } to a final position
of { qi E(1.0, 0.2, 1.2) radians }. The initial and final
velocities and accelerations are all zero [13]. The three neuro-
controller architectures are simulated to follow and track this
desired trajectory. The performance of the different
architectures is noticed to be improved for this short trajectory
which needed only a duration of 2 seconds to be
accomplished.
* The position and velocity tracking profiles of the Inverse

Neuro-Controller architecture are shown in Fig. 8. It can
be observed that the performance of the neuro-controller
improved and was able to track the desired trajectory very
smoothly, which represents the efficiency of this model
to track different desired trajectories.
Fig. 9 illustrates the por;ition and velocity tracking of the
Neuro-emulator Neuro-Controller architecture. It can be
observed that the smoothness and accuracy of tracking of
the desired trajectory is almost the same as that presented
by the previous architecture.
Table 2 illustrates the maximum errors values for the joint

positions and velocities for ithe three different schemes. From
Table 2 , it is noticed that the Neuro-emulator Neuro-
Controller model and the Inverse Nemo-Controller model

*

I a59

demonstrate very close performance, and give the best
tracking results for this short trajectory.

TABLE 2
TRACKING ERRORS FOR CASE II

I CASE (IT): Maximum Position and Velocity Errors I

Controller
Neuro-Emulator
Neuro-Controller

. ,
MODEL I1 ERROR 1 Joint 1 11 Joint2 11 Joint3

Inverse Neuro- 11 PositionError (rad) 11 0.016 11 0.014 11 0.014
\ ,

Velocity Error (rad/s) 0.101 0.029 0.036
Position Error (rad) 0.015 0.014 0.014
Velocity Error (rad/s) 0.094 0.028 0.036

VI. CONCL USIONS
The proposed neural networks were trained to learn the

inverse dynamic model of the robot in such a way that they
will be able to produce the necessary actuating torques to
track a specified minimum-time trajectory. Two schemes
namely Inverse Neuro-Controller and Neuro-Emulator Neuro-
Controller model, utilizing the back-propagation algorithm
have been discussed.

For a given task of moving a robot from a rest position to
a final specified position in a minimum-time, the resulting
position and velocity profiles for the investigated neuro-
control models showed that using neural networks, the
manipulator could be moved smoothly and accurately, which
clearly exhibited the capability of the neural networks towards
the tracking of a desired motion trajectory. The tracking
performance and accuracy are investigated and compared. The
results indicated that the Neuro-Emulator Neuro-Controller
model gives the best tracking performance because of the
presence of the neuro-emulator which is used to emulate the
forward behavior of the robot model.

\

151

VII. REFERENCES

O.M. Ahtiwash, S.H.M. Amin, “Intelligent Robot Path
Trajectory Control. ” in Proceedings of International
Conference on Robotics, Vision And Parallel Processing
For Industrial Automation. ROVPIA’94, pp.420-426
O.M. Ahtiwash, S.H.M. Amin, “A Neural Network
Approach For Robot Path Trajectory Control.”
Proceedings of First Asian Control Conference ASCC-

P.J. Werbos, P. J. (1990). “Back Propagation through
time : What it does and how to do it ?.” IEEE Vo1.78,
no.10; 1550-1560.
D. Nguyen, B. Widrow, “The truck backer-upper : an
example of self-learning in neural networks”
Proceedings of International Joint Conference on Neural
Networks, 1989, Vol. 1, pp.357-353.
J. Tanomaru, S. Omatu, “Process Control by On-Line
Trained Neural Controllers.” IEEE Trans. on Industrial
Electronics, vol. 39, pp. 511-521.

94, vol. 2, pp. 793-796.

A.N. Poo, M.H. Ang Jr., C.L. Teo, Q. Li, “Performance
Of A Neuro-Model-Based Robot Controlller:
Adaptapility And Noise Rejection. ” Intelligent Systems
Engineering, Autumn 1992, pp.50-62.
D. Psaltis, A. Sideris, A. Yamamura, “A multilayered
neural network controller.” IEEE Control System
Magazine , 1988,vol. 8, no.3,pp.17-21.
S. Kung, J. Hwang, “Neural Network Architecture for
Robotic Applications”, IEEE Trans on Robotics and
Automation, 1989, vo1.5. n0.5, pp.641-653.
M. Saerens, A. Soquet, J.M. Renders, H. Bersini,
“Preliminary comparisons between a neural adaptive
controller. and a model adaptive reference controller.”
Proceedings of the International Conference on Neural
Networks, 1990,

[lo] K. Jouaneh Musa, D.A. Dornfeld, M. Tomizuka,
“Trajectory planning for coordinated motion of a robot
and a positioning table: Part 2 - Optimal trajectory
specification”, IEEE Transactions on Robotics and
Automation., 1990, vo1.6, n0.6; 746-751.

[l l] M. Jamshidi, B. Home, N. Vadice, “A Neural Network
Based Controller for a Two Link Robot” Proceedings of
1990 IEEE Proc. on Decision and Control, pp. 3256-
3257.

[12] J.M. Zurada, Introduction to ArtGcial Neural Systems,
Info Access & distribution Pte Ltd, Singapore, 1992

[13] J.H.S. Osman, Decentralized and Hierarchical Control
of Robot Manipulators, 1991, PbD. Thesis, City
University of London

N ~ . . r s ._ _ _ _ _ _ _ _ D m 3 r i . d -C o m P “ t a d

%gure 5 Computed and Demanded Joint Torques for 3-d.0.f Robot Using
Generalized Learning Technique (Inverse Robot Model)

1860

T I n e (I)

I T l m c (I) I

I T i s r k l n g P a i l t l o n R e s p a n r e (J a l n t 13)

T I m e (1)

- - - - - C o n t r o l l a d P o r i t l o n - D s s l r e d P o i l t l o n

Fig. 6 Positions Tracking Responses for Joints 1,2 and 3 Using:
(Inverse Neuro-Controller Model)

P o r l t l o n T r s e k l n g R e a p o n a s (J o l o t W 1)

T l m a (s) I

P a a l t l o n T r . c k l n g R s r p a n r s (J a l n t l l l)

T l n e (s)

P a s l t l a n T r a c k l n g R e s p o n s e (J o l n t # 3)

Fig. 7 Position Tracking Response for Joints 1,2 and 3 Using :
(Neuro-Controller Neuro-Emulator Model)

CASE No. (I)

T l n L (3)

T l s c k l n g J e I n t P a r * m C t e r I (J a l . 1 U S)

9 ~~~

8 0

2 .Q I

T l n e (1) Fz
:. 8 Tracking Joint Velocities and Positions for Joints 1,2 and 3.

(Inverse Neuro-Controller Model) CASE No. (11)

Fig. 9 Tracking Joint Velooities and Positions for Joints 1,2 and 3.
(Neuro-Controller NeuriGEmulator Model) CASE No.(I1)

1861

