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Abstract: An Intelligent Database Engine (IDE) is 
developed to solve any classification problem by providing 
two integrated feahires: deci’sion-making by a Back- 
propagation (BP) neural network (”) and decision support 
by Apriori, a data mining (DM) algorithm. Previous 
experimental result shows the accuracy of NN (90%) and 
DM (60%) distinct drastically. Thus, effort to improve DM 
accuracy is crucial to ensure a well-balanced hybrid 
architecture. The DM poor performance is caused by either 
too few rules or too many poor rules are generated in the 
classifier. Thus, the first problem is curbed by generating 
multiple level rules, through incorporating multiple 
attribute support and level confidence to the initial Apriori. 
While the second problem is tackled by implementing two 
strengthen procedures, confidence and Bayes verification to 
filter out the unpredictive rule. Experiment with more 
dataset is carried out to compare the performance of initial 
and improved Apriori. Great improvement is obtained for 
the latter. 
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I. HYBRID ARCHITECTURE 

The Intelligent Database Engine (IDE) hybrid architecture 
is formed by combining two data analysis techniques: the 
intelligent decision-making (IDM) by neural network (NN) 
and intelligent decision support (IDS) by data mining (DM) 
[l]. For IDM, a set of training data is used to teach the 
network to acquire domain expertise. When the network is 
trained, a set of numerical real value inhabits in the network 
architecture, which represents the leamed knowledge is 
obtained. Meanwhile, the IDS is being inputted with the 
same set of training data, and from this data, a different set 
of knowledge representation is generated. In this IDS, the 
data mining algorithm will model the decision-making 
rationale of the domain expert in the form of simple if-then 
rules. Finally, the trained network and the set of rules 
formed the architecture of this hybrid system which is able 
to perform decision-making and decision support. 

However, before the combination is done, we tested the’ 
performance of the trained net and the rule classifier 
separately with a set of test data (unseen data). After testing 
with four datasets, it is observed that NN surprisingly 
performs much better than the rule classifier. The average 
performance of NN is 90% and rule classifier is around 
60% [I]. The drastic difference alerts that if the two 
techniques were to combine at this stage, the overall 
performance might not be satisfying. Thus, we intent to 
improve the performance of the rule classifier before it is 
integrated into the hybrid system. 

11. PROBLEM IDENTIFIED 

To initiate the improvement, we have identified the cause 
of DM poor performance. It is mainly contributed by the 
cases of “no-rule-match”. This is a case where none of the 
rule generated by the DM algorithm matches with the 
instance being evaluated. As a result, we conclude that with 
the absence of a result, DM makes a wrong decision. Upon 
investigation, the problem of “no-rule-match” is created by 
either too few rules or too many poor rules are generated in 
the classifier. With this observation, we have initiated the 
efforts of improvement. 

/ 

111. IMPROVEMENTS 

The improvements are twofold. First, we try to curb the 
problem of insufficient rule through multiple level rule 
generation. This is to modify the initial Apriori algorithm 
by incorporating the concepts of multiple attribute support 
and level confidence in order to populate the rule. Second, 
the poor quality rule problem is tackled by implementing 
two strengthen procedures, namely confidence verification 
and Bayes verification to filter out the unpredictive rule. 
Experiments with ten datasets are then carried out to test 
the accuracy of the rules generated after the improvements 
are done. Results are compared to the performance of the 
initial Apriori generated rule. 
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A. Rule Insufficiency Problem 

The original Apriori algorithm faces the problem of 
generating insufficient rules to describe the class. 
Obviously, this can be seen -from the original Apriori 
algorithm which uses only the last k-criteria-set to generate 
rules [2]. We argue that this algorithm has two limitations if 
used in digging classification rules. First, it assumes that 
only the last k-criteria-set is significant, other levels such as 
k- 1, k-2.. . criteria-sets are not significant in concluding the 
class output. This is not true because the k-criteria-set is 
actually generated from k-1 criteria-set. Second, if all k- 
criteria-set do not have confidence value higher than the 
user specified minimum confidence (minconf), there is no 
rule generated at all for the particular class. As a result, all 
test records belonging to that class will be assigned to no- 
rule-match category by the classifier and this tremendously 
decrease the accuracy by contributing to the no-rule-match 
percentage. Therefore, measure should be imposed to 
populate the rule candidate in the classifier by keeping the 
valid lower level (k- 1, k-2, . . .) rules. 

Al.  Multiple Levels of Rules 

To rectify the rule scarcity problem, we have implemented 
a multiple level rules concept to the original algorithm. As 
oppose to single level rule, multiple level rules take all or 
last n level of criteria-set to generate rules. n is the number 
of level of rules users want to keep. n should be set 
carefully for a large n will result in keeping more rules and 
thus consume more storage and processing time. On the 
other hand, a small n will cause the rule scarcity problem 
unsolved. Usually it is the last three levels of the rules 
which are worth keeping. Hence, by using the multiple 
level rules’ concept, a set of rule for n last level criteria-sets 
is generated. Fig. 1 shows a graphical representation of the 
levelled rules. 
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of low predictive power will be produced. Conversely, a 
high setting will result in rare item problem in which item 
with rare frequency will be left out. Thus, in his paper, Liu 
argues that using a single minsup for whole dataset is 
inadequate because it cannot capture the inherent natures 
and/or frequency difference of the items in the database. 

As a result, Liu has suggested a term called minimum item 
support (MIS) affiliated to individual item for his market 
basket analysis. User can specify different MIS for each 
item and thus different rules may need to satisfy different 
minsup depending on what items are in the rules. This 
implementation helps to achieve the objective of producing 
rare item rules without causing frequent items to generate 
too many meaningless rules. 

Referring to Liu’s work, we have initiated a multiple 
minimum support concept, also based on the logic of 
different frequency. We called it minimum attribute support 
(MAS). The idea is to assign different minsup to different 
attribute depends on the number of distinct value it 
contains. Hence, we have derived a formula for 
automatically calculating the MAS for each attribute. The 
principle is that the smaller the number of distinct value an 
attribute contains, the larger the MAS it has to satisfy and 
vice versa. The formula for counting MAS is given below, 

MAS = 

max count of attr - Val 
current count of attr - val 

0.5 * * user defined minsup ( I )  

If MAS user defined minsup then 

End if 
(where the max count of attr-Val is the maximum distinct 
value among the attributes and current count of attr-val is 
the count of distinct value for the current attribute). 

MAS = user defined minsup 

For an illustration, attribute such as “occupation” and 
“gender” in credit approval analysis exhibits a good 
explanation. “Occupation” might contains 5 values 
(professional, govemment servant, skilled worker, unskilled 
worker and foreign worker) while gender has only 2 
possible values (male, female). For a dataset of 1000 
records, and user defined minsup as 20%, table below 
shows the calculation using formula 1 to determine the 
MAS value. 

Fig. 1 : Hierarchical view of levelled rules 

A2. Minimum Attribute Support 

Minimum attribute support is derived from the concept of 
multiple minimum support, which is first discussed by Liu 
[3]. Liu has noticed that in real work dataset, most of the 
items are not equally frequent. For example, in sales 
transaction database of a supermarket, frequency of people 
buying food processor and cooking pan is much less than 

‘frequency or people buying bread and milk. Therefore, 
there is a dilemma in setting the initial minimum support 
(minsup) for mining real world datasets. A low setting will 
cause combinatorial explosion where lots of frequent items 

Table I : Multiple minimum attribute support determination 

From Table I ,  “Gender” which has smaller distinct value 
has to satisfy 5% more MAS than “Occupation” which is 
fairer with regards to their average frequency. 
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A3. Minimum Level Confidence 

Besides MAS, we have initiated a term call minimum level 
confidence, which is derived from multiple minimum 
confidence. Multiple minimum confidence has been 
discussed by Fu in [4], Fu suggested that for finding 
multiple level association rules, different minsup and/or 
minconf could be specified at different “conceptual 
hierarchy” of the database based on a hierarchy-information 
structure. Conceptual hierarchy is a taxonomic organisation 
for concepts or objects in a database [ 5 ] .  For example in a 
shopping transaction, conceptual hierarchy can be viewed 
as below: 

food e bread ...-I 
milk 

....................................................................................................... 
2% A ... A- 

Dairyland A A  ... Foremgst OIdMills ... Wonder 

chocolate white ... 
......................................................................................................... 

Fig. 2 : Conceptual hierarchy for shopping transaction database 

Refer Fig. 2, the information becomes more detail from top 
to bottom. Thus, Fu set minsup as WO, minconf as 50% for 
the first level and minsup as 2%, minconf as 40% for 
second level. The rationale for this decrement is that as the 
data is getting more detail; the frequency of the data is 
decreasing. This hierarchical level gives an idea to us for 
determining the minimum level confidence. 

Despite the absence of a conceptual hierarchy in our 
database model, most of the classification problem can be 
viewed as a hierarchical decision tree where the nodes of 
the tree contains attribute and value, which direct to a leaf 
that contains the class value. Fig. 3 shows a possible 
hierarchical model of a loan application analysis based on 
several criteria-sets. 

Amlication 

Gender: -..pq male Gender: female 
U 

House: own ... House: rent Salary: 2k ... Salary: 8k 1-1 
U 

......................................................................................................... 
Ocp: A A  doctor.. .Ocp: clark Child: 2-4 ... Child: 6-8 

/ 
... .,. ... 

/ 
Approve 

Fig. 3 : Criteria-set hierarchy for loan application analysis 

In Fu’s model, as the levels are going downward, minconf 
is decreasing (Fig. 2). However, instead of decreasing, our 
model increases the minconf as the level is downwarding. 

Refer Fig. 3, minconf for the first level is 20%, second level 
is 23%. This is implemented to ensure that the more details 
the rule provides; the more strength it is suppose to 
contribute to the class result (strength induces by 
confidence). The calculation of multiple level confidence is 
also automatically done based on this logic assumption. The 
formula to calculate the level minconf is given below: 

Minimum level confidence for k-level = 

Where level minconf change = 

where max level count = 

User defined minconf + (k-1)* level minconf change (2) 

0.5 * (user defined minconf / max level count) (3) 

max count of attribute selected for evaluation, 
excluding the class attribute 

and k is the length of the criteria-set. 

An example of calculating minimum level confidence is 
given below. 

Assume: 
User defined minconf = 20% 
Max count of evaluation criteria = 5 

Calculation: 
Max level count = 5 
Level minconf change = 0.5 (20/5) = 2 (using formula 3) 
k-level minconf is given in Table 2 (using formula 2) 

Table 2 : k-level minconf 

Observe that the rules for different levels (k-value) will 
have to satisfy different minconf. At higher level, the rule 
has to satisfy higher minconf to ensure a larger k-criteria- 
set rule is always stronger than k-1 or k-2 or smaller k level 
rule. 

Besides minimum attribute support and level confidence, 
there are two more modifications done to the Apriori 
algorithm. First, the downward closure sorting which is 
meant to ensure the correctness of the initial Apriori and 
second, the pruning 1 -criteria-set by Bayes’ principle, 
which is meant to improve the efficiency of the initial 
algorithm. 

A4. Downward Closure Sorting 

Apriori algorithm is a progressive deepening algorithm, 
more criteria-sets are accumulated in the antecedence of a 
rule at each k level. As the criteria-sets increase, the 
problem of determining the minsup for a rule appears. 
Which MAS should a rule satisfy as the criteria-sets 
involved have different MAS values? 

To ensure a rule which involves frequent criteria-set should 
satisfy higher minsup while rule involves less frequent 
criteria-set should satisfy lower minsup, Liu [3] has defined 
the minsup of a rule as the smallest MAS among the criteria 
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involved in the antecedence. However, this definition will 
break the downward closure property of the initial Apriori, 
in which it states that if a k-criteria-set satisfy minsup, then 
all its (k-1)-subsets should'also satisfy the minsup. Thus, 
criteria-set which has one or more (k-1)-subsets not large in 
L k - 1  can be pruned at an early stage. 

The conflict between the rule minsup and the downward 
closure property can be illustrated by using four attributes 
with different number of distinct values, W, X, Y, Z. Let 
MAS(i) denotes the MAS of attribute i. Assume that by 
using Formula 1, the calculation of minimum attribute 
support of each attribute is given below. 

MAS(W) = 10% 
MAS(X) = 20% 

MAS(Z) = 6% 
MAS(Y) = 5% 

The conflict happens when we found that 2-criteria-set (W 
and X) has only 9% support, for example. By implementing 
the downward closure in Apriori algorithm, neither one of 
the k-1 subset is large. Thus, this criteria-set will be 
discarded. However, the potential 3-criteria-set {(W and X 
and Y), (W and X and Z)} may be large because the minsup 
for rule involves (W and X and Y) is 5% and involves (W 
and X and Z) is 6%. It is thus wrong to discard (W and X). 
But if we do not discard (W and X), the downward closure 
property is lost. 

Therefore, to curb the conflict between the rule minsup and 
downward closure property, Liu suggested that the 
attributes will be sorted according the their MAS values in 
ascending order before the rule generation process begin. 
This is called the downward closure sorting. The suggested 
minsup of a rule is the lowest MAS value or the first 
criteria-set MAS value among the criteria-sets in the rule. 
Meanwhile, to ensure the downward closure property, a 
constraint is enforced in the pruning step of the Apriori-gen 
function. 

In the modified Apriori algorithm, Apriori-gen function 
also takes L k - 1  as argument and returns a superset of all 
large k-criteria-set. It also consists of two steps, the join 
step and the prune step. The join step is the same as that in 
the initial Apriori-gen function. Basically, it joins any two 
criteria-sets in L k - 1  whose first k - 2 criteria-set are the 
same, but the last criteria-set are different. Next, the prune 
step will delete those candidate criteria-sets that are 
impossible to be large (downward closure property). It 
checks and deletes any (k-1)-subset Sk-1 of c that does not 
exist in L k - 1 .  

However, there is an exception in this modified Apriori 
algorithm, which happens when Sk-1 does not include c[l]. 
This means that the first criteria-set of cy which has the 
lowest MAS value, is not in Sk-1. Then even if Sk-1 is not in 
Lk+ c cannot be deleted because we cannot be sure that Sk-1 

does not satisfy MAS(c[ l]), although we know that it does 
not satisfy MAS(c[2]), unless we known that MAS(c[2]) = 
MAS(c[ 13). 

Therefore, for the previous problem, W, X, Y, Z will be 
sorted as Y (5%), Z (6%), W (10%) and X (20%). For 
example, a criteria-set of (Y,Z,W) will be checked in the 
pruning step of Apriori-gen. If ZW is not found in the 
previous large criteria-set L2, it cannot be pruned as c[1] = 

Y is not in ZW. Unless we confirm that MAS(Z) = 
MAS(Y). 

With this sorting order and the constraint enforced, the 
conflict is solved. NOW, the constraint will help to prune 
those appropriate candidates that are not large at the early 
stage; while the minsup of the rule ensures that an 
appropriate minsup for the rule is assigned. 

AS. Prune 1-Criteria-set by Bayes' Principle 

Another enhancement done to the initial Apriori algorithm 
is the pruning of the first criteria-set using the principle of 
Nafve Bayesian. The Nafve Bayesian principle assumes all 
attributes are independent given the class value. Therefore, 
it is actually logic to prune those 1-criteria-set that 
contribute the least to the class value on which the rules are 
generated based on the probability distribute of the criteria- 
set. 

The procedure works as follows. After generating all 
potential 1-criteria-set for a particular class, for each 
candidate cI in I-criteria-set, we calculate the confidence it 
contributes to each classy; by using the formula below: 

(4) 

The y value of minimum Po.lilcl) is selected and checked 
against the current class value. If is it equal, this means that 
the 1-criteria-set is actually the least frequent for that class. 
Instead, it is actually frequent for others and thus can be 
pruned to safe processing time in the later steps. By 
implementing this pruning step, we can discard those 
criteria-sets that are not significant for a particular output 
value at an early stage. 

B. Poor Quality Rule Problem 

By modifying the original Apriori to generate multiple level 
rules, we might generate more rules. However, among these 
rules, there exist many poor quality rules. These rules if can 
be filtered, will increase the accuracy of the classifier 
besides reducing the processing time and data storage. 
Therefore, measures should be taken to ensure the rules are 
correct and applicable. To achieve this objective, we have 
used two strengthen procedures, confidence verification and 
Bayes verification. These two verification techniques 
promise for a set of rules of higher quality. 

B1. Confidence Verification 

Confidence verification is a procedure for calculating the 
confidence validity of a rule. Confidence validity (CV) is a 
parameter used to measure the degree of confidence for the 
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antecedence to the consequence of the rule. It has 
maximum value of 1 and minimum value of 0. 

This CV is being exploited by Ali [6] to ensure every rule 
generated is individually accurate though the rules may not 
cover all classes or all examples of a given class. It is 
calculated by using the follow below. 

cv = 

3) 
4) 
5) 
6 )  

7) 

8) 

( 5 )  P(C I4 - sup(CA'4) / sup(A) 
P(C I T A )  - (sup(C) - sup(CAA)) /(1- sup(A)) 

Thus, we will filter the multiple level rules by pruning the 9) 

Input: a set of evaluation criteria and the output field, 
Output: a set of large k-criteria-set) 
Filter for records that have output field value = y 
Calculate the total number of record consisting y (N,) 
For each evaluation criteria 

Calculate the MAS in terms of number of records 

(9) 
MAS(x) 

100 minsup = - *NY 
End for 
LI = (<cl>, cl.count 2 MAS(cl)} 
Call Prune-byBayesian(L,, output-value) 

rule which has CV < 0.5 (Formula 5). This enforcement 
ensures that all rules left are highly predictive because the 
probability of the criteria-set being present in the class is 
higher than the probability of t s  absence. 

B2. Bayes Verification 

Besides the confidence verification, we also adopt the naWe 
Bayesian Classifier concept [7] to the rules generated by the 
modified Apriori, aiming to improve the quality of the 
rules. Similar to confidence validity, we calculate a 
parameter based on narve Bayes principle of classification. 
This Bayes verification is meant to make sure that 
statistically, each rule is contributing maximally to the class 
of the rule based on individual criteria-set of the rule. 

To explain further, suppose we are given the values of N 
input attributes, A = {xl, xz, ... xN}, which can be 
considered independent both unconditionally and 
conditionally given y, the class-set. We are going to 
calculate the probability of the joint outcome of x which 
can be written as a product, 

P(A) = P(x~)  . P(x2) . ... P(xN), A = {XI, xZ, .. . xN} (6 )  

And so can the probability of A within each class y where y 
E C be written as follows, 

(7) P(Aly) = p(xllY) . p(x21Y) ... p(xNIY) 

With the help of this, it is possible to write 

The Bayes verification is summarised as follows. For each 
rule generated by Apriori, the P(y1A) for each y in C, the 
class attribute will be calculated by using Formula 8. We 
then identify the min P(y1A) of y. If y = rule.y, delete the 
rule. With this, we ensure that every rule is significant in 
terms of probability distribution. Notice that this 
verification is similarly used in pruning l-criteria-set with 
Bayes ' principle. 

~~ 

10)k = 2. 
11)Do while Lk-1 f 4 
1 2) Call Calculate-minimum-level-conf(k, 

13) ck = Apriori-gen(Lkel) 

15) c.count = count-c(c,y) 
16) End for 

(Part II: 
Input: a set of large k-criteria-set 
Output: a set of " if... then ... " rule) 
Rk = {r E Rk 1 r.confidence 2 minconfk} 

max-level-cnt) 

14) For each C E Ck 

17) Lk = {C E ck I C.COUnt 5 MAS(c[l])} 

18) 
19) k = k +  1 
20) end while 
2l)end for 
22)Levelled Rules = U k R k  

Prune-by-Bayesian(L I ,  output-value) 
For each cI  in LI 

Calculate its confidence for all the class value by 
using Formula 4 below: 

if min(P(yilcl)) ofy = output-value then 
delete c, 

Next cI  
End Prune-by-Bayesian 

Calculate-minimum-level-conf(k, max-level-cnt) 
Level-minconf-change = 
0.5 * (user-defined-minconf / max-level-cnt) 
minconfk = 

user-defined-minconf + (k- 1) * evel-minconf-change 
End Calculate-m in im um-level-conf 

Apriori-gen(Lk.,) 
(join step) 
insert into Ck 
select p.criteria-set,, p.criteria-setz, . . ., p.criteria-setk.1, 
q.criteria-setk.l from Lk-1 p, Lk-1 q 
where p.criteria-setl = q.criteria-setl, . . . , p.criteria-se&.z 
= q.criteria-setk.2, p.criteria-setkqI < q.criteria-setk-l 
(prune step) 
for each c E Ck do 

Modified Apriori 

M = sort(A, MAS) (using Formula I to calculate MAS) 
For each distinct value in the output field (y) 
(Part I: 

for each (k-1)-subset Sk.1 c c do 

if (sk-l 4 Lk-I) then 
if (c[ 13 E Sk-1) or (MAS(c[2]) = MAS(c[ 13)) then 
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Remove c from Ck 
next Sk.1 

next c 
End Apriori-gen 

- 

3. 
4. 
5. 

count-c(c,y) 
count-c = count the number of records with 

End count-c 
(antecedence = c and consequence = y) 

Nursery 2.4 78.0 0.0 90.5 
Dermatology 55.2 22.9 2.5 70.9 
zoo 40.0 60.0 12.5 80.0 

IV. EXPERIMENTS AND COMPARISON 

10. I Australian credit I 36.2 I 57.3 0.0 
Average : I 36.6 I 53.1 I 3.9 

Two experiments have been carried out. The first 
experiment is meant to compare the performance of the rule 
classifier generated by initial and improved Apriori (refer 
Table 1). The second experiment is aim to compare the 
accuracy rate of the IDE, NN and DM (refer Table 2). 

77.2 
80.8 

Table 3 : Accuracy comparison between initial and enhanced Apriori 

2. 
3. 
4. 

I I 2. I Breast-cancer I 65.7 I 34.3 I 10.3 1 83.6 I 

Breast-cancer 98.3 96.1 83.6 
Nursery 99.2 96.9 90.5 
Dermatologv 92.3 79.7 70.9 

5. 
6. 
7. 

Car 

Y I  

zoo 97.0 95.0 80.0 
Mushroom 100.0 100.0 87.7 
Iris 97.6 95.6 93.3 

From Table 3, it is observed that the no-rule-match rate-has 
been reducing by 32.7%, which is from 36.6% to 3.9%. 
Meanwhile, accuracy rate has been increased by 27.7%, 
which is from 53.1% to 80.8%. It is proved that multiple- 
level rules are valid and successful in eradicating rule 
scarcity problem. 

Table 4 : Comparison of accuracy 

Japanese credit 
Australian credit 

Average: 

From Table 4, it is observe that the accuracy of the IDE is 
the highest (94.5), 3.6% higher than NN and 13.7% higher 
than DM. 

V. CONCLUSION 

Significant improvements are obtained by the enhanced 
Apriori. No-rule-match rate is reduced to 3.9% and 
accuracy is increased to 80.8%. When the two classipers 
(NN and DM) are combined in the IDE, it is proved that the 
accuracy of the IDE result is more reliable. Therefore, it is 
concluded that the IDE is a unique classification tool which 
has the benefit of decision-making and decision support for 
automating many decision-making processes. 
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