
Experimental Implementation of Direct-Proportional Length-Based DNA
Computing for Elevator Scheduling Problem

Mohd Saufee Muhammad, Zuwairie Ibrahim, Satomi Ueda, Osamu Ono and Marzuki

Khalid
Institute of Applied DNA Computing

Meiji University
1-1-1 Higashi-mita, Tama-ku
Kawasaki-shi, Kanagawa-ken

JAPAN 214-8571
{msaufee, zuwairie, satomixx, ono}@isc.meiji.ac.jp, marzuki@utmkl.utm.my

Abstract

Previously, ideas and implementation methods for
solving elevator scheduling problem using DNA
computing method had been proposed. In this paper,
results of biochemical experiments that have been
carried out to realize the computing approach are
presented. Every possible elevators travel path
combinations are encoded by DNA sequences of length
directly proportional to the elevator’s traveling time
based on certain initial conditions such as elevators
present and destination floors, and hall calls from a
floor. Parallel overlap assembly is employed for an
efficient initial pool generation of all possible travel
path combinations and polymerase chain reaction for
sequence amplification. Finally, gel electrophoresis is
performed to separate the DNA sequence according to
its length, and the shortest DNA sequence representing
the elevator’s optimal path can thus be visualized from
the gel electrophoresis image. The experimental result
shows that the DNA computing approach can be well-
suited for solving such real-world problem of this type
of nature.

1. Introduction

The practical possibility of using molecules of
Deoxyribonucleic Acid or DNA as a medium for
computation was first demonstrated in 1994 by
Leonard M. Adleman [1]. Using the tools of
biomolecular engineering, Adleman successfully
solved a directed Hamiltonian Path Problem (HPP) in
his experiment.

Instead of the traditional silicon-based computing
technologies, DNA computing is a form of computing
that uses DNA and molecular biology. Adleman’s
pioneering work set the new approach for this new
field of bio-computing research. Computing with DNA
generated a tremendous amount of excitement by
offering a brand new paradigm for performing and
viewing computations. Adleman’s experiment [2]
solved a simple instance of the Traveling Salesman
Problem (TSP) by manipulating the DNA molecules.
This marked the first solution of a mathematical
problem with the tools of biology.

Computing with DNA offers many advantages over
traditional silicon-based computing due to several

reasons. These include massive parallelism and
memory capacity. The primary advantage offered by
most proposed models of DNA based computation is
the ability to handle millions of operation in parallel.
DNA computing can reach approximately 1020
operations per second compared to today’s teraflop
supercomputers. Certain operations in DNA computing
(for example, hybridization − the bonding of two DNA
strands to form the double helix) are over a billion
times more energy efficient as compared to
conventional computers. Also, DNA stores information
at a density of about one bit per nm3 − about a trillion
times as efficiently as videotape.

DNA computation relies on devising algorithms to
solve problems using the encoded information in the
sequence of nucleotides that make up DNA’s double
helix strand, breaking and making new bonds between
them to reach the answer. Each strand may be viewed
as a chain of nucleotides, or bases. An n-letter
sequence of consecutive bases is known as an n-mer or
an oligonucleotide of length n. The four DNA
nucleotides are adenine (A), guanine (G), cytosine (C)
and thymine (T). Each strand has, according to
chemical convention, a 5' and a 3' end, thus any single
strand has a natural orientation. The classical double
helix of DNA is formed when two separate strands
bond together. Bonding occurs by the pairwise
attraction of bases; A bonds with T and G bonds with C.
The pairs (A, T) and (G, C) are known as Watson-Crick
complementary base pairs [3].

Research on DNA computing approach to solve
engineering related problems however has not been
very well established. Since DNA computing is very
suitable to solve combinatorial problems, an elevator
scheduling problem is chosen as a benchmark to be
solved using this computing technique. The elevator
scheduling problem involves finding an optimal path,
or in other words, finding the shortest elevator travel
path of a building with certain number of elevators and
floors. However, this is a complex combinatorial
problem since certain criteria need to be fulfilled for
the problem solution such as initial elevator position,
its destinations and hall calls made for an elevator.

There are several research reports on DNA
computing techniques for solving shortest path

problems of a weighted graph. Nayaranan and Zorbalas
[4] proposed a constant proportional length-based DNA
computing technique for TSP. Yamamoto et al. [5]
proposed a concentration-controlled DNA computing
to accomplish local search for solving shortest path
problem. Lee et al. [6] proposed a DNA computing
technique based on temperature gradient to solve the
TSP problem. Ibrahim et al. [7] on the other hand
proposed a direct-proportional length-based DNA
computing for shortest path problem.

All the methods proposed for computing weighted
graph have not been well applied to solve a real word
problem. Previously, ideas and implementation
methods for solving elevator scheduling problem using
DNA computing method had been proposed [8]. In this
paper, a direct-proportional length-based DNA
computing for shortest path problem has been utilized
to solve the elevator scheduling problem. Results of the
biochemical experiments to realize the computing
approach are presented. Using this technique, the
elevator’s traveled paths and traveling time are
represented by DNA sequences of specific length.
These DNA sequences are designed based on certain
initial conditions such as elevator’s present and
destination floors, and hall calls for an elevator from a
floor. Constraints such as node position in the graph,
and initial pool generation method are investigated and
discussed in detail for the successful implementation of
the DNA computing method used.

2. Elevator Scheduling Problem

Consider a typical situation of a building with M
elevators and N floors. The present elevator positions,
its destinations and hall calls on each floor at a
particular instance can be illustrated as in Table 1.

Table 1. Elevator situation at a particular instance
Floor
no.

Elevator
1

Elevator
2 … Elevator

M−1
Elevator

M
Hall
calls

N N−3, 3, 1 ↓
N−1 7, 2 ↑

: : : : : : :
3 ↑
2 5, 6, N−1 ↓
1 8, N−4, N

These elevator travel paths can be represented using
a weighted graph. The elevator positions at floor 1, 2, 3,
… , N – 2, N – 1, N are represented with nodes V1, V2,
V3, … , VN–2, VN–1, VN respectively, and the weight
between every node can be represented as

SCij TTij +−=− ||||ω (1)

where
 i − elevator present floor position
 j − elevator destination floor position
 | j − i| − total number of floors of elevator
 movement
 TC − elevator traveling time between two
 consecutive floors
 TS − elevator stopping time at a floor

The graph of all possible travel path combinations
of one of the elevator can be constructed as shown in
Fig. 1.

Fig. 1. Graph of all possible travel path combinations
of an elevator

The output of the graph, given by sum of the graph

weights thus represents the total traveling time of the
elevator, i.e.

∑ −= ||)(ijxEG ω (2)

For a building with M elevators, M similar graphs
as shown in Fig. 1 can be duplicated representing all M
elevators travel paths. The total traveling time of all the
elevators can now be calculated by summing up each
of the elevator’s traveling time, i.e.

)()()()(
),,,,(

121

121

MM

MM

EGEGEGEG
EEEEG

++++
=

−

−

L

L
 (3)

The minimum total traveling time of all the
elevators with all initial conditions and requirements
satisfied thus gives the optimal elevator travel path, i.e.

 Optimal Travel Path =
 G (E1, E2, … , EM–1, EM) min

(4)

3. Direct-proportional Length-based DNA

Computing Solution
Let us now consider a building with 2 elevators and

7 floors. Elevator A is presently at 2nd floor and its
destinations are 4th and 6th floors, while elevator B is
presently at 7th floor and its destinations are 4th and 3rd
floors. There is a hall call at 5th floor going up, and a
hall call at 4th floor going down, as illustrated in Table
2.

Table 2. Elevator scheduling problem example
Floor
no.

Elevator
A

Elevator
B

Hall
call

7 (4 , 3)
6
5 ↑
4 ↓
3
2 (4 , 6)
1

In order to solve the elevator scheduling problem
using direct-proportional length-based DNA computing
method for solving shortest path problem, several
computing steps are performed that are discussed
below.

Step 1. Represent the elevator position at a floor as
nodes V1, V2, V3, V4, V5, V6 and V7 for all the 7 floors in
the building respectively.

Step 2. Assign weights between every node that will
directly represent the elevator’s traveling time between
the floors. Since the building is 7 floors high, the
maximum number of floors that the elevator can travel
is (7 – 1) = 6 floors. Now, assume that TC = 5 s, TS = 15
sec, and representing 5 sec of time with 10 units we
have using (1)
 ω 1 = 1(5) + 15 = 20 sec = 40
 ω 2 = 2(5) + 15 = 25 sec = 50
 ω 3 = 3(5) + 15 = 30 sec = 60
 ω 4 = 4(5) + 15 = 35 sec = 70
 ω 5 = 5(5) + 15 = 40 sec = 80
 ω 6 = 6(5) + 15 = 45 sec = 90

Step 3. Construct a weighted graph representing all
possible travel path combinations of each elevator with
either elevator A or B answering one, or both, or none
of the hall calls as shown in Fig. 2. Note that all
possible end paths of elevator A are joined with the
start paths of elevator B. This is done in order that the
total output of the graph G (A, B) representing the
travel path combinations of the elevators can be
calculated.

E
l
e
v
a
t
o
r

A

VA2

50

40

VA5

VA4

40

VA6
50

VB7

VB3

60

40 VB3

VB5

50

40

VB7

60

VB4VB4

VA4

50VA6 VA4

50

End A

Start B

E
l
e
v
a
t
o
r

B

Fig. 2. Weighted graph representing all possible travel
path combinations of elevators A and B

Since there are two hall calls with two available
elevators, it is clearly seen that there are 22 = 4 possible
travel path combinations for both of the elevators as
tabulated in Table 3. The required solution for the
elevator scheduling problem is thus the optimal path
weight with the total graph output G (A, B)3 = 230 =
115 sec.

Table 3. Total graph output for all possible travel path
combinations of elevators A and B

Elevator Hall
calls

Elevator
movements

Total
graph output

A −

B 4′, 5
VA2 → VA4 → VA6 →

VB7 →VB4 →VB3 → VB5

G (A, B)1
 = (100) + (150)
 = 250

A 4′

B 5
VA2 → VA4 → VA6 → VA4
→ VB7 →VB4 →VB3 → VB5

G (A, B)2
 = (150) + (150)
 = 300

A 5

B 4′
VA2 → VA4 → VA5 → VA6
→ VB7 →VB4 →VB3

G (A, B)3
 = (130) + (100)
 = 230

A 4′, 5

B −
VA2 → VA4 → VA5 → VA6
→ VA4 → VB7 →VB4 →VB3

G (A, B)4
 = (180) + (100)
 = 280

Step 4. Redraw the graph of Fig. 2 in order to
distinguish between start, immediate and end nodes
and also to differentiate between the nodes of different
travel path combinations as shown in Fig. 3.

E
l
e
v
a
t
o
r

A

V2 SJ

50

40

V5 IK

V4 EK

40

V6 EK

50

V4 IJ

V6EJ V4EJ

50

End A

Start B

E
l
e
v
a
t
o
r

B

V6 IJV6 IK

50 50

50

V7 SK

V3 EK

60

40 V3 IJ

V5EJ

50

40

V7SJ

60

V4 IJV4 IK

Fig. 3. Modified weighted graph showing node
locations and paths of elevators A and B

Note that S, I and E denote start, intermediate and end
nodes respectively, while J and K denotes the different
travel paths of the elevators. This is important since
every different node location and path in the graph will

be represented with different oligos in order to obtain
all the possible travel path combinations that fulfill all
the initial conditions and requirements stated.

Step 5. Generate a unique DNA sequence for each of
the nodes where each intermediate node of different
travel paths is assigned with a specific DNA sequence
and each start or end node of different travel paths is
assigned with another specific DNA sequence. Hence,
every DNA sequence assigned to each node will
identify its location and travel path. Using available
software for DNA sequence design named
DNASequenceGenerator [9], the sequence is generated
as shown in Table 4. The GC contents (GC%), melting
temperature (Tm) are also shown in the table, and the
sequence complements are shown in Table 5.

Table 4. Generated DNA sequences for nodes
Node Vi 20-mer Sequence (5’−3’) GC% Tm (°C)

V2SJ cggcggtccactaaatacta 50 60.0
V4IJ cactctttgtgaacgccttc 50 60.8
V5IK gtgggttagaggtagtccgg 60 60.8
V6IJ tgaaccggccctttatatct 45 60.7
V6IK ccgctgatccttgctaagta 50 60.4
V4EJ tcattcgagttattcctggg 45 59.9
V4EK aaatgacctttttaacggca 35 59.4
V6EJ ctataaggccaaagcagtcg 50 59.9
V6EK atgcctggctaaagtgagac 50 59.3
V7SJ ggacctgcatcataccagtt 50 59.8
V7SK tgcacgcaaaactatttcat 35 59.2
V3IJ aaagcccgtcggttaagtta 45 60.8
V4IK tctgcactgttaatgagcca 45 60.4
V3EK ctacggataggtgtctggga 55 59.9
V5EJ ggaatccattgatcgcttta 40 59.9

Table 5. Complement of generated DNA sequences

Node Vi 20-mer Sequence (5’−3’)

SJV2 tagtatttagtggaccgccg

IJV4 gaaggcgttcacaaagagtg

IKV5 ccggactacctctaacccac

IJV6 agatataaagggccggttca

IKV6 tacttagcaaggatcagcgg

EJV4 cccaggaataactcgaatga

EKV4 tgccgttaaaaaggtcattt

EJV6 cgactgctttggccttatag

EKV6 gtctcactttagccaggcat

SJV7 aactggtatgatgcaggtcc

SKV7 atgaaatagttttgcgtgca

IJV3 taacttaaccgacgggcttt

IKV4 tggctcattaacagtgcaga

EKV3 tcccagacacctatccgtag

EJV5 taaagcgatcaatggattcc

Step 6. Synthesize the oligos for every node path in the
graph according to the following rules [7] so that the
oligos length will directly represent the weight between
the nodes:

 (i) If i is a start node and j is an intermediate
node, synthesize the oligo as

 V i (20) + W ij (ω ij − 30) + V j (20)
 (ii) If i is an intermediate node and j is an end

node, synthesize the oligo as
 V i (20) + W ij (ω ij − 30) + V j (20)
 (iii) If i and j are both intermediate nodes,

synthesize the oligo as
 V i (20) + W ij (ω ij − 20) + V j (20)

where V denotes the DNA sequence for node, W
denotes the DNA sequence for weight, ω denotes the
weight value, and ‘+’ denotes a ‘join’ between the DNA
sequence. All the synthesized oligos based on the
stated rules are shown in Table 6 where capital letters
denote the nodes and small letters denote the weight
between the nodes.

Table 6. Synthesized DNA sequences for node paths
Node Path DNA Sequence (5’ – 3’)

V2SJ → V4IJ
CGGCGGTCCACTAAATACTAaggtcgttta

aggaagtacgCACTCTTTGTGAACGCCTTC

V4IJ → V5IK CACTCTTTGTGAACGCCTTCacgtcgtgta
acgaagtcctGTGGGTTAGAGGTAGTCCGG

V4IJ → V6IJ
CACTCTTTGTGAACGCCTTCccgtcggttaagcaa
gtaatgtactatgctTGAACCGGCCCTTTATATCT

V4IJ → V6EJ
CACTCTTTGTGAACGCCTTCgcgtcgcttaccgaa

gcacgCTATAAGGCCAAAGCAGTCG

V5IK → V6IK GTGGGTTAGAGGTAGTCCGGcgctcgttga
agccagtaccCCGCTGATCCTTGCTAAGTA

V5IK → V6EK GTGGGTTAGAGGTAGTCCGGGcgtcttttaATG
CCTGGCTAAAGTGAGAC

V6IJ → V4EJ
TGAACCGGCCCTTTATATCTacgtgtttta

cccaagtcagTCATTCGAGTTATTCCTGGG

V6IK → V4EK CCGCTGATCCTTGCTAAGTAgcggcgtgtc
acgaactacGAAATGACCTTTTTAACGGCA

V4EJ → V7SJ
TCATTCGAGTTATTCCTGGGGGACCTGCAT

CATACCAGTT

V6EJ → V7SJ
CTATAAGGCCAAAGCAGTCGGGACCTGCA

TCATACCAGTT

V4EK → V7SK AAATGACCTTTTTAACGGCATGCACGCAA
AACTATTTCAT

V6EK → V7SK ATGCCTGGCTAAAGTGAGACTGCACGCAA
AACTATTTCAT

V7SJ → V4IJ
GGACCTGCATCATACCAGTTacgtggtttaaggaag

tacggtactatgctCACTCTTTGTGAACGCCTTC

V7SK → V4IK TGCACGCAAAACTATTTCATccgtgggttaaagaa
gtcctgtactctcctTCTGCACTGTTAATGAGCCA

V4IJ → V3IJ
CACTCTTTGTGAACGCCTTCacgtcgctgc

aagaactacGAAAGCCCGTCGGTTAAGTTA

V4IK → V3EK TCTGCACTGTTAATGAGCCAacgtcttgtcCTAC
GGATAGGTGTCTGGGA

V3IJ → V5EJ
AAAGCCCGTCGGTTAAGTTAggtcttttaa
tcaactaatgGGAATCCATTGATCGCTTTA

Step 7. All the synthesized oligos are then poured into
a test tube for initial pool generation using parallel
overlap assembly (POA) method [10]. POA is used as
suggested by Lee et al. [11] who demonstrated that
POA is a more efficient and economical initial pool

generation method for weighted graph problems. POA
operation consists of three steps: hybridization,
extension, and denaturation. During the annealing step,
the temperature is decreased slowly so that partial
hybridization is allowed to occur at respective
locations. The extension on the other hand is applied
with the presence of polymerase enzyme and the
polymerization can be done from 5’ to 3’ direction. The
generated double stranded DNA molecules are then
separated during denaturation step in which the
temperature is increased until the double stranded DNA
molecules are separated to become single stranded
DNA molecules. An example of the POA showing the
optimal path for this elevator scheduling problem is
depicted in Fig. 4.

V2SJ V4IJ V5IK

V2SJ V5IKV4IJ

V5IKV4IJ

V2SJ V4IJ

V2SJ

V5IK

V2SJ V4IJ V5IK V6EK

V6EK V7SK

V7SK

V2SJ V5IKV4IJ

V2SJ V4IJ V5IK V6EK V7SK

V4IK V3EKV7SK

V4IK V3EK

V5IK V6EKV4IJV2SJ

V2SJ V4IJ V5IK V6EK V7SK

V4IKV7SK

V4IK

V5IK V6EKV4IJV2SJ

V6EK

V6EK

3rd cycle

4th cycle

2nd cycle

1st cycle

Fig. 4. POA for elevator optimal path VA2 → VA4 → VA5

→ VA6 → VB7 →VB4 →VB3. The continuous arrows
represent the synthesized oligos and dotted arrows

represent the elongated part during polymerization. The
arrowhead indicates the 3’ end

Step 8. An initial pool of solution is produced at this
stage. The optimal path combinations among many
other alternative path combinations of the problem
have to be filtered. This filtering process copies the
target DNA duplex exponentially using polymerase
chain reaction (PCR) process [12]. PCR proceeds in
cycles of 3 steps at different temperatures: denaturation
(95°C), involves separation of the double strand DNA
molecules, annealing (55°C) where primers are
‘annealed’ to both the single strands ends and extension

(75°C) process where polymerase enzymes are used to
extend the primers into replicas of the DNA molecules.
This sequence is repeated causing an exponential
growth in the number of target DNA molecules. For
this problem, all the DNA molecules containing start
node V2SJ and end node V3EK are amplified
exponentially. Numerous amounts of DNA strands
representing the start node V2SJ and end node V3EK
passing through all possible travel path combinations
will be presented once the PCR operation is
accomplished.

Step 9. Finally, in order to separate all the possible
travel path combinations according to its length, gel
electrophoresis [13, 14] is performed onto the output
solution of the PCR. The gel electrophoresis image are
then captured, where the DNA duplex representing the
shortest path starting from V2SJ and end node V3EK
could be visualized representing the required optimal
path solution of the problem.

4. Experiment Setup and Results

The POA method for initial pool generation is
performed in a 100 µl solution consisting of 64.0 µl
distilled water (Maxim Biotech), 15.5µl oligos (Proligo
Primers & Probes, USA), 10 µl dNTP (TOYOBO,
Japan), 10 µl 10× KOD dash buffer (TOYOBO, Japan),
and 0.5 µl KOD dash polymerase (TOYOBO, Japan).
The solution is then subjected to POA reaction of 25
cycles where the different temperatures for each cycle
are 94ºC for 30sec, 55ºC for 30sec and 74ºC for 10sec
respectively.

PCR is then performed for DNA amplification in
order to select the paths that begin with node V2SJ and
ending at node V3EK and V5EJ. PCR is performed in a 25
µl solution consisting of 17.375 µl distilled water
(Maxim Biotech), primers V2SJ , EKV3 , and EJV5 of 0.5
µl each, 1 µl POA template, 2.5 µl dNTP (TOYOBO,
Japan), 2.5 µl 10× KOD dash buffer (TOYOBO, Japan),
and 0.125 µl KOD dash polymerase (TOYOBO, Japan).
The solution is then subjected to PCR reaction of 25
cycles where the different temperatures for each cycle
are 94ºC for 30sec, 55ºC for 30sec and 74ºC for 10sec
respectively, i.e. the same as POA process.

Finally, the PCR solution is subjected to gel
electrophoresis for 30 minutes in order to visualize the
computation result. SYBR Gold (Molecular Probes) is
used to stain the gel after gel electrophoresis process
before the gel image is captured.

The captured image for the POA and PCR process
is shown in Fig. 5. Lane M denotes 20bp ladder while
lanes 1 and 2 denote POA and PCR products
respectively. It is clearly seen from the POA gel image
that the band is blurs denoting that all possible travel
paths are successfully generated. The PCR gel image
shows 4 bands indicating all the four possible travel
paths, i.e. G(A, B)3 = 230bp, G(A, B)1 = 250bp, G(A,
B)4 = 280bp and G(A, B)2 = 300bp. This confirms the
expected result that the optimal elevator’s travel path is
given by G(A, B)3 = 230bp = 115 sec.

M

20bp

40bp

60bp

80bp

100bp

120bp

140bp

160bp

180bp
200bp
220bp
240bp
260bp
280bp
300bp

230bp G(A, B)3

250bp G(A, B)1

280bp G(A, B)4

300bp G(A, B)2

1 2

Fig. 5: Gel electrophoresis image result. Lane M
denotes 20bp ladder and lanes 1 and 2 is the POA and

PCR products respectively

5. Conclusions
Implementation ideas and experimental procedures

for an application of direct-proportional length-based
DNA computing method to solve an elevator
scheduling problem have been presented and discussed
in details in this paper. Experimental result that has
been carried out verifies that the shortest DNA
sequence length represents the required optimal path
for the elevator scheduling problem. This can be
visualized from the gel electrophoresis image of Fig. 5
where all the four possible travel paths combination of
the elevator movement are represented by the four
bands of PCR product image sorted in sequence of
DNA lengths representing the travel time of each travel
path combination. For a larger problem with M
elevators, N floors and Y hall calls, all the M Y travel
path combinations can be represented by specific DNA
sequences synthesized using the rule as in [7]. POA
and PCR can thus be performed to extract the required
computing solution from the gel electrophoresis image.
This research shows that this type of engineering
problem is applicable and achievable to be solved
using DNA computing approach. Hence, the
applicability and feasibility of DNA computing could
therefore be extended into many more complex
problems of this type of nature.

 References
[1] L.M. Adleman, “Molecular Computation of
Solutions to Combinatorial Problems,” Science, Vol.
266, 1994, pp. 2021-1024.

[2] L.M. Adleman, “Computing with DNA,” Scientific
American, 1998, pp. 34-41.
[3] J.D. Watson, and F.H.C. Crick, “A Structure for
Deoxyribose Nucleic Acid”, Nature, Vol. 171, 1953, pp.
737-738.
[4] Narayanan, and S. Zorbalas, “DNA Algorithms for
Computing Shortest Paths,” Proceedings of Genetic
Programming, 1998, pp. 718-723.
[5] Y. Yamamoto, A. Kameda, N. Matsuura, T. Shiba, Y.
Kawazoe, and A. Ahochi, “Local Search by
Concentration-controlled DNA Computing,”
International Journal of Computational Intelligence and
Applications, Vol. 2, 2002, pp. 447-455.
[6] J.Y. Lee, S.Y. Shin, S.J. Augh, T.H. Park, and B.T.
Zhang, “Temperature Gradient-based DNA Computing
for Graph Problems with Weighted Edges,” Lecture
Notes in Computer Science, Springer-Verlag, Vol. 2568,
2003, pp. 73-84.
[7] Z. Ibrahim, Y. Tsuboi, O. Ono, and M. Khalid,
“Direct-proportional Length-based DNA Computing
for Shortest Path Problem,” International Journal of
Computer Science and Applications, Vol. 1, Issue 1,
2004, pp. 46-60.
[8] M.S. Muhammad, S. Ueda, O. Ono, and M. Khalid,
“DNA-based Computing for Solving Elevator
Scheduling Problem,” 3rd International Conference on
Computer Applications (ICCA2005), 2005, pp. 507-
514.
[9] F. Udo, S. Sam, B. Wolfgang, and R. Hilmar, “DNA
Sequence Generator: A Program for the Construction
of DNA Sequences,” Proceedings of the Seventh
International Workshop on DNA Based Computers,
2001, pp. 23-32.
[10]P.D. Kaplan, Q. Ouyang, D.S. Thaler, and A.
Libchaber, “Parallel Overlap Assembly for the
Construction of Computational DNA Libraries,”
Journal of Theoretical Biology, Vol. 188, Issue 3, 1997,
pp. 333-341.
[11]J.Y. Lee, H.W. Lim, S.I. Yoo, B.T. Zhang, and T.H.
Park, “Efficient Initial Poo Generation for Weighted
Graph Problems using Parallel Overlap Assembly,”
Preliminary Proceeding of the 10th International
Meeting on DNA Computing, 2004, pp. 357-364.
[12]J. P. Fitch, Engineering Introduction to
Biotechnology, SPIE Press, 2001.
[13]G. Paun, G. Rozenberg, and A. Salomaa, “DNA
computing: New Computing Paradigms,” Lecture
Notes in Computer Science, Springer-Verlag, Vol. 1644,
1998, pp. 106-118.
[14]Y. Yamamoto, A. Kameda, N. Matsuura, T. Shiba,
Y. Kawazoe, and A. Ahochi, “A Separation Method for
DNA Computing based on Concentration Control,”
New Generation Computing, Vol. 20, No. 3, 2002, pp.
251-262.

