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Abstract 

Previously, ideas and implementation methods for 
solving elevator scheduling problem using DNA 
computing method had been proposed. In this paper, 
results of biochemical experiments that have been 
carried out to realize the computing approach are 
presented. Every possible elevators travel path 
combinations are encoded by DNA sequences of length 
directly proportional to the elevator’s traveling time 
based on certain initial conditions such as elevators 
present and destination floors, and hall calls from a 
floor. Parallel overlap assembly is employed for an 
efficient initial pool generation of all possible travel 
path combinations and polymerase chain reaction for 
sequence amplification. Finally, gel electrophoresis is 
performed to separate the DNA sequence according to 
its length, and the shortest DNA sequence representing 
the elevator’s optimal path can thus be visualized from 
the gel electrophoresis image. The experimental result 
shows that the DNA computing approach can be well-
suited for solving such real-world problem of this type 
of nature.  

 
1. Introduction 

The practical possibility of using molecules of 
Deoxyribonucleic Acid or DNA as a medium for 
computation was first demonstrated in 1994 by 
Leonard M. Adleman [1]. Using the tools of 
biomolecular engineering, Adleman successfully 
solved a directed Hamiltonian Path Problem (HPP) in 
his experiment. 

Instead of the traditional silicon-based computing 
technologies, DNA computing is a form of computing 
that uses DNA and molecular biology. Adleman’s 
pioneering work set the new approach for this new 
field of bio-computing research. Computing with DNA 
generated a tremendous amount of excitement by 
offering a brand new paradigm for performing and 
viewing computations. Adleman’s experiment [2] 
solved a simple instance of the Traveling Salesman 
Problem (TSP) by manipulating the DNA molecules.  
This marked the first solution of a mathematical 
problem with the tools of biology. 

Computing with DNA offers many advantages over 
traditional silicon-based computing due to several 

reasons. These include massive parallelism and 
memory capacity. The primary advantage offered by 
most proposed models of DNA based computation is 
the ability to handle millions of operation in parallel. 
DNA computing can reach approximately 1020 
operations per second compared to today’s teraflop 
supercomputers. Certain operations in DNA computing 
(for example, hybridization − the bonding of two DNA 
strands to form the double helix) are over a billion 
times more energy efficient as compared to 
conventional computers. Also, DNA stores information 
at a density of about one bit per nm3 − about a trillion 
times as efficiently as videotape. 

DNA computation relies on devising algorithms to 
solve problems using the encoded information in the 
sequence of nucleotides that make up DNA’s double 
helix strand, breaking and making new bonds between 
them to reach the answer. Each strand may be viewed 
as a chain of nucleotides, or bases. An n-letter 
sequence of consecutive bases is known as an n-mer or 
an oligonucleotide of length n. The four DNA 
nucleotides are adenine (A), guanine (G), cytosine (C) 
and thymine (T). Each strand has, according to 
chemical convention, a 5' and a 3' end, thus any single 
strand has a natural orientation. The classical double 
helix of DNA is formed when two separate strands 
bond together. Bonding occurs by the pairwise 
attraction of bases; A bonds with T and G bonds with C. 
The pairs (A, T) and (G, C) are known as Watson-Crick 
complementary base pairs [3]. 

Research on DNA computing approach to solve 
engineering related problems however has not been 
very well established. Since DNA computing is very 
suitable to solve combinatorial problems, an elevator 
scheduling problem is chosen as a benchmark to be 
solved using this computing technique. The elevator 
scheduling problem involves finding an optimal path, 
or in other words, finding the shortest elevator travel 
path of a building with certain number of elevators and 
floors. However, this is a complex combinatorial 
problem since certain criteria need to be fulfilled for 
the problem solution such as initial elevator position, 
its destinations and hall calls made for an elevator.  

There are several research reports on DNA 
computing techniques for solving shortest path 



problems of a weighted graph. Nayaranan and Zorbalas 
[4] proposed a constant proportional length-based DNA 
computing technique for TSP. Yamamoto et al. [5] 
proposed a concentration-controlled DNA computing 
to accomplish local search for solving shortest path 
problem. Lee et al. [6] proposed a DNA computing 
technique based on temperature gradient to solve the 
TSP problem. Ibrahim et al. [7] on the other hand 
proposed a direct-proportional length-based DNA 
computing for shortest path problem. 

All the methods proposed for computing weighted 
graph have not been well applied to solve a real word 
problem. Previously, ideas and implementation 
methods for solving elevator scheduling problem using 
DNA computing method had been proposed [8]. In this 
paper, a direct-proportional length-based DNA 
computing for shortest path problem has been utilized 
to solve the elevator scheduling problem. Results of the 
biochemical experiments to realize the computing 
approach are presented. Using this technique, the 
elevator’s traveled paths and traveling time are 
represented by DNA sequences of specific length.  
These DNA sequences are designed based on certain 
initial conditions such as elevator’s present and 
destination floors, and hall calls for an elevator from a 
floor. Constraints such as node position in the graph, 
and initial pool generation method are investigated and 
discussed in detail for the successful implementation of 
the DNA computing method used. 

 
2. Elevator Scheduling Problem 

Consider a typical situation of a building with M 
elevators and N floors. The present elevator positions, 
its destinations and hall calls on each floor at a 
particular instance can be illustrated as in Table 1. 
 

Table 1. Elevator situation at a particular instance 
Floor 
no. 

Elevator 
1 

Elevator 
2 … Elevator 

M−1 
Elevator 

M 
Hall 
calls 

N  N−3, 3, 1    ↓ 
N−1    7, 2  ↑ 

: : : : : : : 
3      ↑ 
2 5, 6, N−1     ↓ 
1     8, N−4, N  

 

These elevator travel paths can be represented using 
a weighted graph. The elevator positions at floor 1, 2, 3, 
… , N – 2, N – 1, N  are represented with nodes V1, V2, 
V3, … , VN–2, VN–1, VN respectively, and the weight 
between every node can be represented as 

SCij TTij +−=− ||||ω  (1) 

where 
     i  − elevator present floor position 
     j  − elevator destination floor position 
 | j − i| − total number of floors of elevator 
       movement 
    TC − elevator traveling time between two 
       consecutive floors 
    TS − elevator stopping time at a floor 

The graph of all possible travel path combinations 
of one of the elevator can be constructed as shown in 
Fig. 1. 

 

 

Fig. 1. Graph of all possible travel path combinations 
of an elevator 

 
The output of the graph, given by sum of the graph 

weights thus represents the total traveling time of the 
elevator, i.e. 

∑ −= ||)( ijxEG ω  (2) 

For a building with M elevators, M similar graphs 
as shown in Fig. 1 can be duplicated representing all M 
elevators travel paths. The total traveling time of all the 
elevators can now be calculated by summing up each 
of the elevator’s traveling time, i.e. 
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The minimum total traveling time of all the 
elevators with all initial conditions and requirements 
satisfied thus gives the optimal elevator travel path, i.e. 

     Optimal Travel Path = 
               G (E1, E2, … , EM–1, EM ) min 

(4) 

 
3. Direct-proportional Length-based DNA 

Computing Solution  
Let us now consider a building with 2 elevators and 

7 floors. Elevator A is presently at 2nd floor and its 
destinations are 4th and 6th floors, while elevator B is 
presently at 7th floor and its destinations are 4th and 3rd 
floors. There is a hall call at 5th floor going up, and a 
hall call at 4th floor going down, as illustrated in Table 
2. 
 

Table 2. Elevator scheduling problem example 
Floor 
no. 

Elevator 
A 

Elevator 
B 

Hall 
call 

7  (4 , 3)  
6    
5   ↑ 
4   ↓ 
3    
2 (4 , 6)   
1    



In order to solve the elevator scheduling problem 
using direct-proportional length-based DNA computing 
method for solving shortest path problem, several 
computing steps are performed that are discussed 
below. 
 
Step 1. Represent the elevator position at a floor as 
nodes V1, V2, V3, V4, V5, V6 and V7 for all the 7 floors in 
the building respectively. 
 
Step 2. Assign weights between every node that will 
directly represent the elevator’s traveling time between 
the floors. Since the building is 7 floors high, the 
maximum number of floors that the elevator can travel 
is (7 – 1) = 6 floors. Now, assume that TC = 5 s, TS = 15 
sec, and representing 5 sec of time with 10 units we 
have using (1) 
   ω 1 = 1(5) + 15 = 20 sec = 40 
   ω 2 = 2(5) + 15 = 25 sec = 50 
   ω 3 = 3(5) + 15 = 30 sec = 60 
   ω 4 = 4(5) + 15 = 35 sec = 70 
   ω 5 = 5(5) + 15 = 40 sec = 80 
   ω 6 = 6(5) + 15 = 45 sec = 90 
 
Step 3. Construct a weighted graph representing all 
possible travel path combinations of each elevator with 
either elevator A or B answering one, or both, or none 
of the hall calls as shown in Fig. 2. Note that all 
possible end paths of elevator A are joined with the 
start paths of elevator B. This is done in order that the 
total output of the graph G (A, B) representing the 
travel path combinations of the elevators can be 
calculated. 
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Fig. 2. Weighted graph representing all possible travel 
path combinations of elevators A and B 

Since there are two hall calls with two available 
elevators, it is clearly seen that there are 22 = 4 possible 
travel path combinations for both of the elevators as 
tabulated in Table 3. The required solution for the 
elevator scheduling problem is thus the optimal path 
weight with the total graph output G (A, B)3 = 230 = 
115 sec. 
 
Table 3. Total graph output for all possible travel path 
combinations of elevators A and B 

Elevator Hall 
calls

Elevator 
movements 

Total 
graph output 

A − 

B 4′, 5
VA2 → VA4 → VA6 → 

VB7 →VB4 →VB3 → VB5 

G (A, B)1 
    = (100) + (150) 
    = 250 

A 4′ 

B 5 
VA2 → VA4 → VA6 → VA4 
→ VB7 →VB4 →VB3 → VB5 

G (A, B)2 
    = (150) + (150) 
    = 300 

A 5 

B 4′ 
VA2 → VA4 → VA5 → VA6 
→ VB7 →VB4 →VB3 

G (A, B)3 
    = (130) + (100) 
    = 230 

A 4′, 5

B − 
VA2 → VA4 → VA5 → VA6 
→ VA4 → VB7 →VB4 →VB3 

G (A, B)4 
    = (180) + (100)
    = 280 

 
Step 4. Redraw the graph of Fig. 2 in order to 
distinguish between start, immediate and end nodes 
and also to differentiate between the nodes of different 
travel path combinations as shown in Fig. 3. 
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Fig. 3. Modified weighted graph showing node 
locations and paths of elevators A and B 

 
Note that S, I and E denote start, intermediate and end 
nodes respectively, while J and K denotes the different 
travel paths of the elevators. This is important since 
every different node location and path in the graph will 



be represented with different oligos in order to obtain 
all the possible travel path combinations that fulfill all 
the initial conditions and requirements stated. 
 
Step 5. Generate a unique DNA sequence for each of 
the nodes where each intermediate node of different 
travel paths is assigned with a specific DNA sequence 
and each start or end node of different travel paths is 
assigned with another specific DNA sequence. Hence, 
every DNA sequence assigned to each node will 
identify its location and travel path. Using available 
software for DNA sequence design named 
DNASequenceGenerator [9], the sequence is generated 
as shown in Table 4. The GC contents (GC%), melting 
temperature (Tm) are also shown in the table, and the 
sequence complements are shown in Table 5. 
 

Table 4. Generated DNA sequences for nodes 
Node Vi 20-mer Sequence (5’−3’) GC% Tm (°C) 

V2SJ cggcggtccactaaatacta 50 60.0 
V4IJ cactctttgtgaacgccttc 50 60.8 
V5IK gtgggttagaggtagtccgg 60 60.8 
V6IJ tgaaccggccctttatatct 45 60.7 
V6IK ccgctgatccttgctaagta 50 60.4 
V4EJ tcattcgagttattcctggg 45 59.9 
V4EK aaatgacctttttaacggca 35 59.4 
V6EJ ctataaggccaaagcagtcg 50 59.9 
V6EK atgcctggctaaagtgagac 50 59.3 
V7SJ ggacctgcatcataccagtt 50 59.8 
V7SK tgcacgcaaaactatttcat 35 59.2 
V3IJ aaagcccgtcggttaagtta 45 60.8 
V4IK tctgcactgttaatgagcca 45 60.4 
V3EK ctacggataggtgtctggga 55 59.9 
V5EJ ggaatccattgatcgcttta 40 59.9 

 
Table 5. Complement of generated DNA sequences 

Node Vi 20-mer Sequence (5’−3’) 

SJV2  tagtatttagtggaccgccg 

IJV4  gaaggcgttcacaaagagtg 

IKV5  ccggactacctctaacccac 

IJV6  agatataaagggccggttca 

IKV6  tacttagcaaggatcagcgg 

EJV4  cccaggaataactcgaatga 

EKV4  tgccgttaaaaaggtcattt 

EJV6  cgactgctttggccttatag 

EKV6  gtctcactttagccaggcat 

SJV7  aactggtatgatgcaggtcc 

SKV7  atgaaatagttttgcgtgca 

IJV3  taacttaaccgacgggcttt 

IKV4  tggctcattaacagtgcaga 

EKV3  tcccagacacctatccgtag 

EJV5  taaagcgatcaatggattcc 
 

Step 6. Synthesize the oligos for every node path in the 
graph according to the following rules [7] so that the 
oligos length will directly represent the weight between 
the nodes: 

 (i)   If i is a start node and j is an intermediate 
node, synthesize the oligo as 

  V i (20) + W ij (ω ij − 30) + V j (20) 
 (ii)  If i is an intermediate node and j is an end 

node, synthesize the oligo as 
  V i (20) + W ij (ω ij − 30) + V j (20) 
 (iii) If i and j are both intermediate nodes, 

synthesize the oligo as 
  V i (20) + W ij (ω ij − 20) + V j (20) 
 

where V denotes the DNA sequence for node, W 
denotes the DNA sequence for weight, ω denotes the 
weight value, and ‘+’ denotes a ‘join’ between the DNA 
sequence. All the synthesized oligos based on the 
stated rules are shown in Table 6 where capital letters 
denote the nodes and small letters denote the weight 
between the nodes. 
 

Table 6. Synthesized DNA sequences for node paths 
Node Path DNA Sequence (5’ – 3’) 

V2SJ → V4IJ 
CGGCGGTCCACTAAATACTAaggtcgttta 

aggaagtacgCACTCTTTGTGAACGCCTTC 

V4IJ → V5IK CACTCTTTGTGAACGCCTTCacgtcgtgta 
acgaagtcctGTGGGTTAGAGGTAGTCCGG 

V4IJ → V6IJ 
CACTCTTTGTGAACGCCTTCccgtcggttaagcaa
gtaatgtactatgctTGAACCGGCCCTTTATATCT 

V4IJ → V6EJ 
CACTCTTTGTGAACGCCTTCgcgtcgcttaccgaa

gcacgCTATAAGGCCAAAGCAGTCG 

V5IK → V6IK GTGGGTTAGAGGTAGTCCGGcgctcgttga 
agccagtaccCCGCTGATCCTTGCTAAGTA 

V5IK → V6EK GTGGGTTAGAGGTAGTCCGGGcgtcttttaATG
CCTGGCTAAAGTGAGAC 

V6IJ → V4EJ 
TGAACCGGCCCTTTATATCTacgtgtttta 

cccaagtcagTCATTCGAGTTATTCCTGGG 

V6IK → V4EK CCGCTGATCCTTGCTAAGTAgcggcgtgtc 
acgaactacGAAATGACCTTTTTAACGGCA 

V4EJ → V7SJ 
TCATTCGAGTTATTCCTGGGGGACCTGCAT

CATACCAGTT 

V6EJ → V7SJ 
CTATAAGGCCAAAGCAGTCGGGACCTGCA

TCATACCAGTT 

V4EK → V7SK AAATGACCTTTTTAACGGCATGCACGCAA
AACTATTTCAT 

V6EK → V7SK ATGCCTGGCTAAAGTGAGACTGCACGCAA
AACTATTTCAT 

V7SJ → V4IJ 
GGACCTGCATCATACCAGTTacgtggtttaaggaag

tacggtactatgctCACTCTTTGTGAACGCCTTC 

V7SK → V4IK TGCACGCAAAACTATTTCATccgtgggttaaagaa
gtcctgtactctcctTCTGCACTGTTAATGAGCCA 

V4IJ → V3IJ 
CACTCTTTGTGAACGCCTTCacgtcgctgc 

aagaactacGAAAGCCCGTCGGTTAAGTTA 

V4IK → V3EK TCTGCACTGTTAATGAGCCAacgtcttgtcCTAC
GGATAGGTGTCTGGGA 

V3IJ → V5EJ 
AAAGCCCGTCGGTTAAGTTAggtcttttaa 
tcaactaatgGGAATCCATTGATCGCTTTA 

 
Step 7. All the synthesized oligos are then poured into 
a test tube for initial pool generation using parallel 
overlap assembly (POA) method [10]. POA is used as 
suggested by Lee et al. [11] who demonstrated that 
POA is a more efficient and economical initial pool 



generation method for weighted graph problems. POA 
operation consists of three steps: hybridization, 
extension, and denaturation. During the annealing step, 
the temperature is decreased slowly so that partial 
hybridization is allowed to occur at respective 
locations. The extension on the other hand is applied 
with the presence of polymerase enzyme and the 
polymerization can be done from 5’ to 3’ direction. The 
generated double stranded DNA molecules are then 
separated during denaturation step in which the 
temperature is increased until the double stranded DNA 
molecules are separated to become single stranded 
DNA molecules. An example of the POA showing the 
optimal path for this elevator scheduling problem is 
depicted in Fig. 4. 
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Fig. 4. POA for elevator optimal path VA2 → VA4 → VA5 

→ VA6 → VB7 →VB4 →VB3. The continuous arrows 
represent the synthesized oligos and dotted arrows 

represent the elongated part during polymerization. The 
arrowhead indicates the 3’ end 

 
Step 8. An initial pool of solution is produced at this 
stage. The optimal path combinations among many 
other alternative path combinations of the problem 
have to be filtered. This filtering process copies the 
target DNA duplex exponentially using polymerase 
chain reaction (PCR) process [12]. PCR proceeds in 
cycles of 3 steps at different temperatures: denaturation 
(95°C), involves separation of the double strand DNA 
molecules, annealing (55°C) where primers are 
‘annealed’ to both the single strands ends and extension 

(75°C) process where polymerase enzymes are used to 
extend the primers into replicas of the DNA molecules. 
This sequence is repeated causing an exponential 
growth in the number of target DNA molecules. For 
this problem, all the DNA molecules containing start 
node V2SJ and end node V3EK are amplified 
exponentially. Numerous amounts of DNA strands 
representing the start node V2SJ and end node V3EK 
passing through all possible travel path combinations 
will be presented once the PCR operation is 
accomplished.  

 
Step 9. Finally, in order to separate all the possible 
travel path combinations according to its length, gel 
electrophoresis [13, 14] is performed onto the output 
solution of the PCR. The gel electrophoresis image are 
then captured, where the DNA duplex representing the 
shortest path starting from V2SJ and end node V3EK 
could be visualized representing the required optimal 
path solution of the problem. 

 
4. Experiment Setup and Results 

The POA method for initial pool generation is 
performed in a 100 µl solution consisting of 64.0 µl 
distilled water (Maxim Biotech), 15.5µl oligos (Proligo 
Primers & Probes, USA), 10 µl dNTP (TOYOBO, 
Japan), 10 µl 10× KOD dash buffer (TOYOBO, Japan), 
and 0.5 µl KOD dash polymerase (TOYOBO, Japan). 
The solution is then subjected to POA reaction of 25 
cycles where the different temperatures for each cycle 
are 94ºC for 30sec, 55ºC for 30sec and 74ºC for 10sec 
respectively. 

PCR is then performed for DNA amplification in 
order to select the paths that begin with node V2SJ and 
ending at node V3EK and V5EJ. PCR is performed in a 25 
µl solution consisting of 17.375 µl distilled water 
(Maxim Biotech), primers V2SJ , EKV3 , and EJV5 of 0.5 
µl each, 1 µl POA template, 2.5 µl dNTP (TOYOBO, 
Japan), 2.5 µl 10× KOD dash buffer (TOYOBO, Japan), 
and 0.125 µl KOD dash polymerase (TOYOBO, Japan). 
The solution is then subjected to PCR reaction of 25 
cycles where the different temperatures for each cycle 
are 94ºC for 30sec, 55ºC for 30sec and 74ºC for 10sec 
respectively, i.e. the same as POA process. 

Finally, the PCR solution is subjected to gel 
electrophoresis for 30 minutes in order to visualize the 
computation result. SYBR Gold (Molecular Probes) is 
used to stain the gel after gel electrophoresis process 
before the gel image is captured. 

The captured image for the POA and PCR process 
is shown in Fig. 5. Lane M denotes 20bp ladder while 
lanes 1 and 2 denote POA and PCR products 
respectively. It is clearly seen from the POA gel image 
that the band is blurs denoting that all possible travel 
paths are successfully generated. The PCR gel image 
shows 4 bands indicating all the four possible travel 
paths, i.e. G(A, B)3 = 230bp,  G(A, B)1 = 250bp, G(A, 
B)4 = 280bp and G(A, B)2 = 300bp. This confirms the 
expected result that the optimal elevator’s travel path is 
given by G(A, B)3 = 230bp = 115 sec. 
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Fig. 5: Gel electrophoresis image result. Lane M 
denotes 20bp ladder and lanes 1 and 2 is the POA and 

PCR products respectively 
 

5. Conclusions 
Implementation ideas and experimental procedures 

for an application of direct-proportional length-based 
DNA computing method to solve an elevator 
scheduling problem have been presented and discussed 
in details in this paper. Experimental result that has 
been carried out verifies that the shortest DNA 
sequence length represents the required optimal path 
for the elevator scheduling problem. This can be 
visualized from the gel electrophoresis image of Fig. 5 
where all the four possible travel paths combination of 
the elevator movement are represented by the four 
bands of PCR product image sorted in sequence of 
DNA lengths representing the travel time of each travel 
path combination. For a larger problem with M 
elevators, N floors and Y hall calls, all the M Y travel 
path combinations can be represented by specific DNA 
sequences synthesized using the rule as in [7]. POA 
and PCR can thus be performed to extract the required 
computing solution from the gel electrophoresis image. 
This research shows that this type of engineering 
problem is applicable and achievable to be solved 
using DNA computing approach. Hence, the 
applicability and feasibility of DNA computing could 
therefore be extended into many more complex 
problems of this type of nature.  
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