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Abstract

The particle swarm optimization (PSO) is an algorithm for finding optimal regions of complex search space through
interaction of individuals in a population of particles. Search is conducted by moving particles in the space. Some methods

area attempted to improve performance of PSO since is founded, including linearly decreasing inertia weight. The present

paper proposes a new variation of PSO model where inertia weight is sigmoid decreasing, called as Sigmoid Decreasing
Inertia Weight.  Performances of the PSO with a SDIW are studied analytically and empirically.  The exploration–exploitation

tradeoff is discussed and illustrated, as well. Four different benchmark functions with asymmetric initial range settings are

selected as testing functions. The experimental results illustrate the advantage of SDIW that may improve PSO performance
significantly.
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1.Introduction

The difficulties associated with using mathematical

optimization on large-scale engineering problem have 

contributed to the development of alternative solutions.  To

overcome these problems, researchers have proposed

evolutionary-based algorithms for searching near-optimum

solutions to problems. Evolutionary algorithms are 

stochastic search methods that mimic the metaphor of 

natural biological evolution and/or the social behavior or

species. To mimic the efficient behavior of these species,

various researchers have developed computational systems

that seek fast and robust solutions to complex optimization

problems. Particle Swarm Optimization (PSO) is one of 

evolutionary computation technique developed by Kennedy

and Eberhart in 1995 [1, 2]. The method finds the optimal

solution by simulating such social behavior of groups as

fish schooling or bird flocking. A group can achieve the 

objective effectively by using the common information of

every particle, and the information owned by the particle

itself.

However, the PSO algorithm includes some tuning

parameters that greatly influence the algorithm performance,

known as the exploration-exploitation tradeoff. Balancing

between exploration and exploitation searching process will

improve PSO performance. A number of methods have

been provided to get to the bottom of the problem. Early

experience with PSO was proposed by Shi and Eberhart

that introduced inertia weight and maximal velocity which

tuned based on trial and error [3]. Suitable selection of the

inertia weight provides a balance between global and local

searching. Afterward, they presented a new concept about 

inertia weight [4]. In this concept, they attempted to get

better of PSO performance by linearly decreasing inertia

weight (LDIW). They also tried to overcome the problem

by changing inertia weight adaptively based on Fuzzy

System [5] and randomly [6]. Furthermore, recent work

done by Clerc [7] indicates that use of a constriction factor

may be necessary to insure convergence of the PSO. In 

constriction factor, inertia weight adjusted concurrently

with another PSO parameters. In contrast, Zheng et. al.,

investigated increasing inertia weight in their research [8].

According to them, a PSO with increasing inertia weight

outperforms the one with decreasing inertia weight. Though,

the results still not satisfied.

This paper presents an approach to overcome

exploration-exploitation tradeoff problem. A new nonlinear

function modulated inertia weight adaptation with time

proposed for improved performance of PSO algorithm.

Instead of linearly decreasing inertia weight, the schema

attempted to decrease inertia weight by means of sigmoid

function. In this work, some analytical and empirical

studies are investigated. In section 2, philosophy and 

procedure of original PSO are explained. Some analysis

also presented in this section. In section 3, a new PSO 

model with a sigmoid decreasing inertia weight (SDIW) is

suggested. To prove the validity of such method, several

standard benchmark functions are tested in Section 4. The
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empirical data resulted will be emphasized and discussed in

Section 5. Finally Section 6 concludes this paper.

2. PSO Algorithm and Analysis 

2.1. Philosophy and Procedure of Standard PSO

PSO is one of the artificial life or multiple particles’

type techniques designed and developed by Kennedy and

Eberhart [1, 2]. The concept of original PSO can be

described as follows: each potential solution, called particle,

knows its best value so far (pbest) and its position.

Moreover, each particle knows the best value in the group

(gbest) among the pbest. All of the best values are based on

fitness function (F(.)) for each problem to be solved. Each 

particle tries to modify its position using the current

velocity and its position. The velocity of each particle can 

be calculated using the following Equation:

)  (1)sgbest)((randc)spbest)((randcvv k

i2

k

i1

k

i

1k
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where vi
k, vi

k+i , and si
k , are velocity vector, modified

velocity and positioning vector of particle i at generation k,

respectively. Then, pbest and gbest are best position found

by particle i and best position found by particle group.

Finally, c1 and c2 are cognitive and social coefficients,

respectively, that influence particles velocity. Afterward,

the current position of a particle is calculated by the 

following Equation:
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Updating process of velocity and position of each particle is

depicted in Fig. 1.

Figure 1. The velocity and position updates in PSO 

An algorithm to find the best positioning vector of PSO

using n particles can be summarized as follows:

1. Initial positioning vector S[n] and velocity vector V[n]

are generated by using random values, where si = [si
1,

si
2, …, si

n] and vi = [vi
1, vi

2, …, vi
n].

2. Velocity vector vi
k+i of particle i is calculated by using

Equation (1).

3. New positioning vector s i
k+1 of particle i is calculated

by using Equation (2).

4. If F(s i
k) is better than the F(pbesti), the positioning

vector s i
k is set to pbest. If F(pbesti) is better than

F(gbest), the positioning vector gbest is set to pbest.

5. If the generation reaches to the pre-determined one,

process will stop. Otherwise, will go to step 2.

In order to get better control exploration and exploitation of

particles searched, the concept of inertia weight, w, is

developed [3, 4]. Introducing inertia weight concept,

Equation (1) and Equation (2) can be written as: 
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Almost previous researches on PSO system have

provided empirical results and informal analyses. This

paper presents formal analysis of traditional simple particle

systems, crucial to understand the dynamics of how particle

behavior depends on parameters for making the right choice

of parameter values.

2.2. Particle Trajectory Analysis

It appears in Equation. (3) and (4) that each dimension

is updated independently from the others. The only link 

between the dimensions of the problem space is introduced

via the objective function, i.e., thorough the locations of the

best positions found so far pbest and gbest. In order to

understand the behavior of a complex system, it often helps

to begin by examining a simpler version of it. Thus, without

loss of generality, the algorithm description can be reduced

to the one-dimensional case: 

)sgbest)((randc)spbest)((randcwvv k2k1k1k ++=+

(5)

1kk1k vss ++ += (6)

For the theoretical analysis of the PSO, the deterministic

version will be considered. The deterministic version is 

obtained by setting the random numbers to their expected

values:

rand ( ) = rand ( ) = ½ (7)

Thus, Equation (7) can be simplified using the notation:
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Using this notation, the deterministic PSO algorithm can be 

expressed as: 

)sp(cwvv kk1k +=+
 (10) 

1kk1k vss ++ +=  (11) 

The algorithm described by Equation (10) and (11) contains

two tuning parameters, w and c, that are truly influence for

PSO performance.

In order to analyze dynamic system of PSO, Equation

(10) and (11) can be combined and written in compact

matrix form as follows:
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In the context of dynamic system theory, zk is the

particle state made up of its current position and velocity, A

is the dynamic matrix whose properties determine the time 

behavior of the particle, p is the external input used to drive

the particle towards a specified position and B is the input

matrix that gives the effect of the external input on the 

particle state.

Standard results from dynamic system theory say that

the time behavior of the particle depends on the eigenvalues

of the dynamic matrix A. The eigenvalues  1 and 2 (either

real or complex) are the solutions of characteristic

polynomial equation:

2 + (c – w – 1)  + w = 0  (13) 

The necessary and sufficient condition to be stable and will

converge is that both eigenvalues of the matrix A have

magnitude less than 1. The analysis of the roots of Equation

(13) leads to the following set conditions:

w < 1, c > 0,  and 2w – c + 2 > 0  (14) 

The convergence domain in the (w,c) plane is the triangle

shown in Fig. (2). For any initial position and velocity, the 

particle will converge to its equilibrium position, p, as in 

Equation. (10) if and only if the algorithm parameters are 

selected inside this triangle.

Before convergence, the particle exhibits harmonic

oscillation around the equilibrium point when the

eigenvalues of the matrix A, which are also the roots of 

Equation (14), are complex. This equivalent to:

w2 + c2 – 2wc – 2w – 2c + 1 < 0  (15) 

The corresponding domain in the (w,c) plane is elliptical

function as depicted in Fig. (2).

The particle may also exhibit zigzagging behavior around

the equilibrium point when at least one of the eigenvalues

of the matrix A, whether real or complex, has negative real

part. This is equivalent to:

w < 0 or w – c + 1 < 0  (16) 

The corresponding domain in the (w,c) plane is drawn in

Fig. (2). Zigzagging may be combined with harmonics

oscillation.

Figure 2. Domain of dynamic behavior in the (w,c)

parameter space

.3. Convergence Analyses

ting regions for the analyses

bas

2

There are several interes

ed on integration of the three figures aforementioned

before, such as shown in Fig. (2). In Region 1, the

eigenvalues are complex number with real positive number,

Re  1 and Re 2 > 0. In this region, the particle exhibits

harmonic oscillation around the equilibrium point before

convergence. In Region 2, the eigenvalues are complex

number as well, but with negative real number, Re  1 and 

Re 2 <0. In this region, the particle exhibits combination of 

harmonic oscillation and zigzagging around the equilibrium

point before convergence. Furthermore, in Region 3, the

eigenvalues are positive real number,  1 and 2 > 0, where 

the particle in this region directly convergence to

equilibrium point without harmonic oscillation and

zigzagging. In Region 4, the eigenvalues are negative real

number,  1 and 2 < 0. The particle exhibits symmetric

zigzagging around the equilibrium point before

convergence without harmonic oscillation. Finally, in

Region 5, the eigenvalues are positive and negative real 

number,  1 > 0 and 2 < 0. In this region, the particle

exhibits asymmetric zigzagging around the equilibrium

point before convergence without harmonic oscillation.

Outside of these regions, the particle will diverge. Particle 

trajectories of these regions are depicted in Fig. (3).

Figure 3. Particle Trajectories and Regions

However, beside determine the shape of particle

aj

c

tr ectories, parameter couples agree on speed of

convergence. As a general rule, the value of w and c which

close to the center of the stability triangle induce quick

convergence, while the values close to its borders require

many generations to converge, as illustrated in Fig. (4).

According to convergence analysis aforementioned

before, a large inertia weight has slow convergence to 

facilitate a global search, while, a small inertia weight has

quick convergence to facilitate a local search. Therefore, by

decreasing the inertia weight, w, from a relatively large

value to a small one with associated cognitive and social 

coefficients, c  ̧through the course of the PSO run, the PSO

tends to have more global search ability at the beginning of

w

4

3

2

1

-1

Region 1 

Region 2 

Region 3 

Region 4 

Region 5 

1
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the run and have more local search ability near the end of 

the run.

Figure 4. Particle Trajectories and Regions

However, how to decrease inertia weight effectively to

ach

3. PSO with Sigmoid Decreasing Inertia 

The present paper proposes a new nonlinear function

mo

ieve good balancing of global and local search is not an

easy task. Sigmoid decreasing inertia weight (SDIW) is

implemented in this paper to find a better compromise of

exploitation-exploration trade-off.

Weight

dulated inertia weight adaptation with time for improved

performance of PSO algorithm. Instead of linearly

decreasing of inertia weight, the schema attempted to 

decrease inertia weight by means of sigmoid function, as 

shown in Fig. 5.

Fig. 5. Sigmoid and Linearly Decreasing Inertia eight

The proposed function of sigmoid is given as:

W

)e1(

)ww(w
w )gen*nk(*p(

endstartstart
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part
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4. Experimental Setting

To illustrate the behavior of the proposed method, four

non

1i

i0

where x = [x1, x2, …, xn] is an n-dimensional real-valued

1i

2

i

22

i1i1 ))1x()xx(100(  (20) 

The third function is the generalized Rastrigin function

1i

ii2 )10)x2cos(10  (21) 

The fourth function is the generalized Griewank function

)2)gen(log(10p =

eight at k, w  and w  are inertia

weight at the start and the final inertia weight at the end of a 

given run, respectively.  Furthermore, p is the constant to 

adjust sharpness of the function, gen is the maximum

number of generations to run and n is the constant to set

partition of sigmoid function.

In sigmoid, a large inertia

 of PSO process to assure a global search. Afterwards, a

small inertia weight is retained to facilitate a local search in

final part of PSO process. There is very short inertia weight

gradation between large and small one. This method will

provide a balance between global and local searching to

give the PSO a superior performance.

In order to further illustrate the e

e experiments are set. The results are shown and

discussed in next sections.

-linear benchmark functions are used here. The first

function is the Sphere function described by Equation (19):
n

2x)x(f (19)

=

=

vector. The second function is the Rosenbrock function

given as:
n

)x(f
=

+ +=

formulated as: 
n

2x()x(f
=

+=

shown as: 

��
= =

+=

n

1i

n

1i

i2

i3 1)
i

x
cos(x

400

1
)x(f  (22) 

For the purpose of evaluation, the asymmetric

init

Table 1. Asymmetric Initialization Range

Fu

ialization method is adopted her for the population

initialization. Table 1 lists the initialization ranges of the

four functions:

nction Asymmetric Initialization Range

f0 (50 , 100)n

f1 (15 , 30)n

f2 (2.56 , 5.12)n

f3 (300 , 600)n

or each function, three different dimension sizes are

tes

that are: 0.25, 0.5 and 0.75.

F

ted. They are dimension sizes: 10, 20 and 30. The 

maximum number of generations is set as 1000, 1500 and

2000 corresponding to the dimensions 10, 20 and 30,

respectively. In order to investigate whether the PSO

algorithm scales well or not, different population sizes are

used for each function with different dimensions. They are

population sizes: 20, 40 and 80. A sigmoid decreasing

inertia weight is used which starts at 0.9 and ends at 0.4,

which c1 = 2 and c2 = 2. With aim to find the best partition

of sigmoid function, different sigmoid constants, n, are used,
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5. Experimental Results

earching methods was to

achieve faster speed convergence and better solution

acc

spectively. Table 2 lists 

the

As the main objective of s

uracy, the experiments results will be shown in table and

graphs. Linear Decreasing Inertia Weight (LDIW) used as

comparison to proposed method.

Figure 6 shows the results for the sphere function with

two different population sizes, re

mean fitness values of the best particle found for the 30

runs for each function. It is easy to see for the sphere

function, that PSO can find the more optima values vary

fast and PSO algorithm also scales very well, especially for 

n equal to 0.25.

Figure 6. Curve of Sphere function

Table 2. T functionhe mean fitness values for the Sphere

SDIWDim LDIW

n = 0.25 n = 0.5 n = 0.75
Pop = 20

10 2.6897e-09 5.8519e-35 7.2656e-22 1.3174e-10 

20 2.9122e-07 3.5893e-21 9.0725e-08 3.1900e-04

30 5.5721e-05 2.6329e-15 3.7966e-08 3.0000e-03

Pop = 40

10 4.3735e-18 1.6285e-42 6.8196e-27 1.0791e-11

20 6.2059e-10 1.6278e-28 4.9444e-17 1.3624e-06

30 1.0369e-06 4.6623e-21 1.3846e-12 2.9829e-04

Pop = 80

10 8.7638e-19 7.3267e-49 1.3887e-31 1.1554e-12

20 5.7939e-12 6.9927e-32 1.8691e-19 1.4061e-09

30 2.1866e-08 5.6160e-25 2.3648e-15 2.6464e-06

Figu t r ro

ith two different population sizes, respectively. Figure 8

and

e 30 runs for the other three functions,

res

re 7 shows he results fo the Rosenb ck function

w

Figure 9 show the results for the Rastrigin and

Griewank functions with two different population sizes,

respectively.

Table 3 to 5 list the mean fitness values of the best

particle found for th

pectively.

Figure 7. Curve of Rosenbrock function

Table rock

function

3. The mean fitness values for the Rosenb

SDIWDim LDIW 

= 0.25 n = n 0.5 n = 0.75
Pop = 20

10 5.0990 3.8001 4.4028 6.2818

20 5.3858 3.9866 4.0420 5.3584

30 6.2131 3.9866 4.0801 5.8690

Pop = 40

10 4.8889 3.3509 4.0093 5.4973

20 4.3776 4.1118 3.9998 8.6896

30 5.5788 4.4133 4.2580 10.5898

Pop = 80

10 4.5707 3.3854 3.9582 5.1686

20 14.3539 10.4202 6.5787 14.5359

30 18.3061 8.8637 4.0649 4.1416

ooki a e c  all 

easy to see the proposed PSO converges quickly under

the

n
ectories of simple PSO process

d. Significant parameters, inertia weight

and

By l ng at the sh pe of th urves in the figures,

it

all cases and will slow its convergence speed down 

when reaching the optima values. Nevertheless, the results

shown illustrate that by using a SDIW, the performance of 

PSO can be improved greatly and have better results than

LDIW. From the figures, it is also clear that the PSO with

different population sizes has almost the similar

performance.

6. Conclusio
In this paper, particle traj

have been analyze

 cognitive and/or social constants, have been studied.

The sigmoid function to improve PSO performance has

been described. The performance of the PSO algorithm

with Sigmoid Decreasing Inertia Weight has been

investigated and extensively compared with Linear

Decreasing Inertia Weight by experimental studies of four
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nonlinear functions. Experiments results shows that propose

method has more robust property with the available PSO

method, that is, not sensitive to population size in all four 

functions test. Moreover, the new PSO method greatly 

improves the accuracy and convergence speed of search,

especially for sigmoid function with n equal 0.25.

Figure 8. Curve of Rastrigin function

Table 4. T nctionhe mean fitness values for the Rastrigin fu

SDIWDim LDIW 

n = 0.25 n = 0.5 n = 0.75
Pop = 20

10 5.9698 3.9798 4.9748 7.9597

20 22.8917 16.9143 19.8992 23.9236

30 4 2 40.7933 49.48585.7682 0.8941

Pop = 40

10 3.9798 2.9489 2.9849 4.9760

20 15.9194 11.8387 14.9244 17.2506

30 4 3 38.8033 46.76300.7939 1.8387

Pop = 80

10 2.9849 1.9899 3.9798 4.0131

20 13.9294 11.9395 12.9345 15.9195

30 2 2 27.8588 28.93937.4395 2.8840

Tab . Th tne fo ewa onle 5 e mean fi ss values r the Gri nk functi

SDIWDim LDIW 

n = 0.25 n = 0.5 n = 0.75
Pop = 20

10 0.0984 0.0836 0.0763 0.0960

20 0.0713 0.0662 0.0636 0.0320

30 0.0742 0.6364 0.0271 0.0999

Pop = 40

10 0.0640 0.0787 0.0684 0.0935

20 0.0835 0.0711 0.0614 0.1250

30 0.0737 0.0246 0.0197 0.0866

Pop = 80

10 0.0813 0.0713 0.0615 0.0866

20 0.0492 0.0246 0.0123 0.0710

30 0.0172 0.0148 0.0123 0.0197

Figure 9. Curve of Griewank function
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