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ABSTRACT 
 

Over the past few years the concept of network-based positioning has been 
developed in support of longer baseline processing compared with 
'traditional' single reference station positioning. In fact network-based 
positioning enables the generation of so-called ‘virtual measurements’, 
which can significantly improve positioning results. Even though the virtual 
measurements are generated from the stochastic network estimates, the error 
propagation into the user position solution has not been investigated in any 
detail. The aim is to understand how the unique stochastic properties of the 
network corrections propagate into the uncertainties of the estimated 
parameters. Test results indicate that by using the virtual measurements and 
considering the propagation of the network stochastic properties can provide 
reliable results, both in terms of ambiguity resolution and baseline 
component estimation.    
 
KEYWORDS: Network-based positioning, virtual measurement, stochastic 
modelling, MINQUE 

 
 
1. INTRODUCTION 
 
Over the past few years, the concept of network-based positioning has been extensively 
developed so that static and kinematic GPS positioning can be undertaken using longer 
baselines than is possible using 'traditional' single-base station techniques. Numerical results 
show that the various implementations that have been tested can significantly reduce the 
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distance-dependent biases in the double-differenced carrier phase and pseudo-range 
measurements (Wanninger, 2002; Chen, 2000). In fact, the reference receiver network permits 
the generation of so-called ‘virtual measurements’. To create these virtual measurements so-
called network corrections terms need to be calculated using data from at least three reference 
stations (Dai, 2002).  
 
The least squares estimation technique can be applied to the virtual measurements after 
constructing appropriate functional and stochastic models. The functional model describes the 
relationships between the measurements and the unknown parameters. Meanwhile, to 
interpret the precision of the estimates, the stochastic model needs to be defined, typically via 
some variance-covariance (VCV) matrix. The functional model of GPS measurements is very 
well accepted, but the definition of the stochastic model remains a somewhat controversial 
issue. Standard procedures can construct the VCV through the error propagation law, 
typically assuming all measurements have the same variance. (This assumption of course will 
make the processing much easier, but in fact all measurements are subject to different noise 
levels and therefore cannot be assigned the same precision). 
 
In the case of virtual measurements, the unique stochastic properties of the network are not 
taken into account. Even though the virtual measurements are generated from the stochastic 
network estimates, their propagation into the user position has not been investigated in any 
detail. A better understanding of the stochastic properties of these virtual measurements could 
lead to an improvement in the ambiguity success rate, and hence ensure fast and reliable 
ambiguity resolution for network-based positioning.  
 
In this paper, the propagation of the stochastic properties of the network through the virtual 
measurement will be investigated. A method known as the Simplified MINQUE (Satirapod, 
2002) has been used in variance component estimation for the virtual measurements. The 
following sections will give a brief discussion on baseline processing, variance component 
estimation, and the generation of the virtual measurements. The stochastic model of the 
virtual measurements will then be discussed, followed by the description of some experiments 
and results. 
 
 
2. DOUBLE DIFFERENCE EQUATIONS AND LEAST SQUARES ESTIMATION  
    FOR CARRIER PHASE MEASUREMENT 
 
Data differencing techniques are well accepted for GPS data processing. The double-
differenced observable reduces many common errors and biases resulting in a simplified 
functional model. For epoch i with two receivers tracking k satellites, the double-differenced 
measurement equation can be formed (Hoffman-Wellenhof et al., 1994): 

 
DD (i) = C SD (i)             (1) 

 
where SD are the single-differenced observables, Ddare the double-differenced observables, 
and C is the differencing operator; given by 
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Applying the error propagation law, the VCV for the double-differences are written as: 
 

VCV (DD) (i) = C.VCV (SD) (i) .CT = σ 2 CCT       (3) 
 
where 
 

VCV(SD) = 2σ 2 I            (4) 
 
is the VCV of single-differences,σ 2 is the variance of the one-way carrier phase measurement 
with expectation value zero, under the assumption that the phase errors show a random 
behavior and follow the normal distribution, and I is the identity matrix. In matrix form, 
Equation (3) can be written as: 

    VCV(DD) (i) = σ 2 
           (5) 
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Note that the VCV of the double-differences in Equation (5) implies that they are 
mathematically correlated, having the same variance and are statistically independent in time 
and space. In standard least squares theory, a set of linearised double-differenced observables 
can be formed (Blewitt, 1998): 
 

vAxz +=              (6) 
 
where z is the column vector of observed-minus-computed observations, A is the design 
matrix, x is the column vector of the unknown parameters, and v is a column vector of errors. 
Assuming the expectation (E) of v is zero, the VCV as constructed in Equations (3) and (5) 
now can be written as: 
 

1T )( −== WVCVvv xE            (7) 
 
where W and VCVx is the weight and variance matrix of the observables. The least squares 
estimator of the unknown parameter x is: 
 

WzAWAAx T1T )(ˆ −=            (8) 
 
To compute Equation (8), approximate values of the unknown parameters are needed. 
Equation (8) is dependent on the design matrix A, VCV and the set of observations z. The 
adjusted observables and least squares residuals can be computed: 
 

xAz ˆˆ =               (9) 
 

zzv ˆˆ −=               (10) 
 
It is usual after computing the least squares residual to also compute the quantity , the unit 
variance (e.g., Cross, 1983): 

2σ̂
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where f is the number of degrees of freedom. Equation (8) has the following statistical 
properties: 
 

xxx == )()ˆ( EE             (12) 
 

           (13) xVCVWAAxx ˆ
1T2T )(ˆ)ˆˆ( ≡= −σE

 
Thus  is dependent only on A and VCVxVCVˆ x. Once the functional and stochastic models 
have been specified, one is already in a position to know the precision of the least squares 
result. It also implies that if one is not satisfied with this precision, one can change it by 
changing A and/or VCVx (Teunissen, 1998). 
 
 
3. VARIANCE COMPONENT ESTIMATION 
 
Tiberius et al. (1999) have reported that by ignoring stochastic modelling when processing 
GPS observations, a lower position precision may result. Their research has shown that 
measurement precision is dependent on satellite elevation angle, cross-correlation and the 
time correlation function. The satellite elevation angle and the signal-to-noise ratio (SNR) 
have been widely used as quality indicators for GPS observations (e.g., Euler and Goad, 1991; 
Han, 1997; Langley, 1997; Spilker, 1996). However, such quality indicators may not always 
reflect reality (Satirapod, 2002).    
 
A rigorous statistical method for estimating VCV components known as the Minimum Norm 
Quadratic Unbiased Estimation (MINQUE) has been developed by Rao (1979). Wang (1999) 
has demonstrated the use of MINQUE procedure to directly estimate elements of the VCV of 
the double-differenced measurements without making any assumptions (as is typical for the 
standard stochastic modelling procedure) or through complicated functional factors. 
Moreover, the reliability of the resolved ambiguities and the relative efficiency of baseline 
estimation were shown to have been significantly improved through the use of the MINQUE 
procedure (Wang, 1999).  
 
For a set of r double-differenced measurements at epoch i, the VCV (Equation 5) can also be 
written as: 
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where θ is the vector of the unknown variance components, T are the so-called accompanying 
matrices and k=r(r+1)/2 is the number of unknown VCV components. The VCV components 
can be estimated as (Rao, 1979): 
 

qSθ 1−=              (15) 
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where the matrix S = {Sij} is 
 

Sij = Trace {RTiRTj}           (16) 
 
and the vector q ={qi} is 
 

qi=zTRTiRz             (17) 
 
and  
 

R = VCV-1[I – A(ATVCV-1A)-1ATVCV-1]       (18) 
 
In addition, the MINQUE computation is burdened with the requirement to compute the 
matrix R, which may require a huge computer memory, for processing 6 satellites and 15 
second sampling interval in 60 minutes session length, MINQUE require 11250 kilobytes 
memory usage (Satirapod 2002). A simplification of the MINQUE procedure can be obtained 
by neglecting the off-diagonal elements of matrix R. This simplified procedure is shown to 
produce results that are close in value to those derived using the rigorous MINQUE 
procedure. Furthermore the computational load is much less than for the case of the MINQUE 
procedure. A complete discussion of the MINQUE and simplified MINQUE procedures can 
be found in Wang (1999, 2002) and Satirapod (2002). 
 
 
4. GENERATING THE VIRTUAL MEASUREMENTS 
 
The idea behind network-based positioning is to eliminate most/all of the orbit bias, 
ionospheric delay and tropospheric delay. If there are several reference stations whose 
positions are known with high precision, a linear combination model of the single-differenced 
observables can be formed (Han and Rizos, 1996; Han, 1997): 
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where n is the number of reference stations, i indicates the ith reference station, ∆ is the single-
differencing operator, φ is the carrier phase observation, p is the satellite position vector 
minus the station position vector, dp is the effect of orbit error, dT is the receiver clock error 
with respect to GPS time, dion is the ionospheric delay, dtrop is the tropospheric delay after 
model correction, dmp is the multipath on the carrier phase measurement, ε is the carrier phase 
observation noise, λ is the wavelength of the carrier wave, N is the integer ambiguity and αi is 
the weight for the i reference station.   
 
Using only an approximate value of the user’s position, a proper weight (α) can be 
determined that is inversely proportional to the distance from the reference stations (Xi) to the 
user (Xu), satisfying the following conditions: 
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Figure 1 illustrates the geometric situation. This network-based concept was first introduced 
by Wu (1994) and extended by the Satellite Navigation and Positioning (SNAP) research 
group (Han, 1997; Chen, 2001; Dai, 2002). In the event that there are three or more reference 
stations, another constraint should be added to make sure it satisfies Equations (20) and (21). 
This will also provide a unique solution for the weights as the number of reference stations is 
increased. The constraint is: 
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Control Centre 
User Station 
Reference Station
Master Station 

 
Figure 1. Network approach         Figure 2. Network approach with one 

    master control and control centre 
 
 
If one reference station is selected as a master station (m), from the n possible reference 
stations, Equations (20) and (21) can be written as: 
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The master station should be selected so that it is the nearest to the user, which also reduces 
the residual ionospheric effects (even though these effects are already mitigated from the 
network estimates). A suggestion can be made by establishing a communication between the 
reference stations to one control centre for network data processing. Figure 2 illustrates the 
concept in Equation (23). Through a least squares condition estimation process, and satisfying 
Equation (22), a set of parameters can be determined: 

 
LBBBα T1T )( −=              (24) 
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where B is the design matrix and L is [1 ∆Xu,m ∆Yu,m ]T. Through Equations (23) and (24), the 
double-differenced functional model can be written as: 
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where V is defined as the double-difference residual vectors from master station to other 
reference stations after the ambiguities (N) have been resolved and [ ]... ,11,11 mnnm VV −−++ αα  is 
the network corrections term. In fact Equation (25) may also be denoted as a ‘virtual 
measurement’ after applying the network correction term.  
 
 
5. STOCHASTIC MODELLING  
 
Even though the functional model for the virtual measurement (Equation 25) using the 
network estimates can eliminate or mitigate the common biases, residual biases still exist and 
contribute to the noise terms. Dealing with these residual biases is very challenging if one 
tries to use the functional model approach. An alternative approach is to account for them 
within the stochastic model. Han (1997) has proposed a real-time stochastic model estimation 
procedure based on an exponential function of the satellite elevation angle for the virtual 
measurement. The standard deviation of one-way L1 observations for satellite j is written as: 
 

)]/exp(..[ 010 eeaas jj −+=σ           (26) 
 
where ej is the elevation angle, a0, a1 and e0 are approximated by constants, experimentally 
determined from different kinds of GPS receivers (e.g., Euler and Goad, 1991; Han, 1997), 
and s is a scale factor which will weight the contribution of carrier phase measurements, and 
is assumed to be the same over a short period of measurements.  
  
A proper standard deviation for the virtual measurement should be specified that will make 
the estimation result more realistic. It is necessary to understand how the stochastic network 
estimates propagate into the user parameter estimation. Basically the idea is to understand 
how the unique stochastic properties of the network corrections propagate into the uncertainty 
of components which form the network correction parameters. This propagation is best 
explained using the VCV.   
 
Consider the standard deviation of the one-way carrier phase for k satellites is given by σk 
from the geometric correlations of the linear combination model in Equation (19), assuming 
first that each single-differenced observable has equal standard deviation and is independent. 
The VCV of the linear combination is (Han, 1997): 
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It can be seen from Equation (27) that the network geometry is embedded within the VCV. 
Having the double-differencing operator as C in Equation (2), the variance-covariance matrix 
of the double-differenced observables can be constructed by applying Equation (3) to 
Equation (27): 
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Following the same procedure as used to obtain Equation (27), if the VCV of the master-to-
user station can be found as VCV , the VCV of the virtual measurement in Equation (25) 
can also be derived: 
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Following from Equation (29), it is evident that the is dependent on the unique 

geometric correlation of the network. By having a rigorous statistical method such as 
MINQUE, or the simplified MINQUE, for estimating the  components in Equation 
(29), the estimation result for the virtual measurements will probably be more realistic.  
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6. THE EXPERIMENTS 
 
The static positioning technique has been used in these experiments. Only single-frequency 
(L1) GPS data has been used and processed using the SNAP GPS processing software. The 
data was downloaded from the Southern California Integrated GPS Network (SCIGN) 
website (http://www.scign.org). Three different data periods (day of year (DoY) 221 00, 222 
00 and 227 02) were used in these experiments with a 30s observation rate. Figure 3 shows 
part of the network, which consists of three sites as reference stations (FXHS, FMTP, QHTP), 
and another two sites as user stations (CSN1, CMP9). The coordinates of all the stations 
(Table 1) were obtained using the Scripps Coordinates Update Tool (SCOUT) (SOPAC, 
2002). This service computes the coordinates by using the three closest located reference sites 
and the precise GPS ephemerides (Janssen and Rizos, 2003). These coordinates will be 
considered as known coordinates and used in the data processing.  
 
 

SITE X 
(m) 

Y 
(m) 

Z 
(m) 

FXHS -2511943.6388 -4653606.7722 3553873.9778 
FMTP -2545459.7204 -4612207.1586 3584252.1200 
QHTP -2486712.3456 -4629002.0822 3604537.5090 
CSN1 -2520225.8551 -4637082.4402 3569875.3624 
CMP9 -2508505.9552 -4637175.0256 3579499.8619 

 
Table 1. ITRF2000 coordinates of SCIGN  
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The baseline processing was divided into two parts; first the fiducial reference baselines 
(FXHS-FMTP and FXHS-QHTP) were determined, and the inner baselines (FXHS-CSN1 
and FXHS-CMP9) specific to the user sites. All the baselines were processed relative to one 
master station (FXHS). The fiducial baselines were processed in order to generate the network 
correction terms. Using coordinates of the reference stations (Table 1) and approximate user 
station coordinates (about ~100m in error), the network coefficients (α) were calculated using 
Equation (24). Table 2 lists the calculated α1 and α2 coefficients for user sites CSN1 and 
CMP9 with respect to fiducial baselines FXHS-FMTP and FXHS-QHTP. The network 
correction terms (see Equation 25) can be generated using these coefficients values and the 
double-difference residuals (after fixing the ambiguities) of the fiducial baselines.  To ensure 
successful ambiguity resolution amongst the fiducial baselines, observation data sets with 
session lengths of 2hr (DoY 221 00), 3hr (DoY 222 00), 2hr (DoY 227 02) and 2.5hr (DoY 
227 02) were processed.  
 
 

SITE α1 α2 
CSN1 0.333 0.113 
CMP9 0.178 0.373 

 
Table 2. Network coefficients (α) calculated from coordinates  

at user stations (approximate) and reference stations  
 
 
The inner baselines were processed with different session length (Table 3) using the following 
baseline processing methods: 
 

A. Standard baseline processing with a stochastic model expressed by Equation (5). 
B. Standard baseline processing and the simplified MINQUE stochastic model (Equation 

15). 
C. Virtual measurements with a stochastic model as in method A.  
D. Virtual measurements with a stochastic model as in method B.  

 
 

 

QHTP

64 km

FMTP

CMP9

62km 

Master Station 
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CSN1 31km 
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Figure 3. Test network, part of the SCIGN 
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       Figure 4.1. Method A 
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              Figure 4.3. Method B 
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                Figure 4.2. Method C 
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               Figure 4.4.  Method D 
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Figure 4. Double-differenced residuals (inner baselines) for the same satellite pairs 

processed using method A, B, C and D. Session length is 2hr (DoY 221 00), 3hr 
(DoY 222 00), 1hr (DoY 227 02) and 70 minutes (DoY 227 02). Observations rate 

is 30s. 
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Day of Year (DoY) Inner Baseline Session Length 
221 2000 FXHS-CMP9 2 hr 
222 2000 FXHS-CSN1 3 hr 
227 2002 FXHS-CSN1 1 hr 
227 2002 FXHS-CMP9 70 min 

Table 3. Inner baseline processing 
 
 
Figure 4 shows the double-difference residuals for the inner baselines for the same satellite 
pairs, processed using each of the four methods. The time series in Figures 4.1 and 4.3, which 
refer to the method A and B, indicate not much difference between the two methods. The 
standard deviation of the time series for both methods varies from ±0.01m to ±0.03m (Figure 
4.1 and 4.3). After applying the virtual measurement (in method C and D), both results show 
a significant improvement, as indicated in Figures 4.2 and 4.4, where the standard deviation 
is now reduced to between ±0.004m and ±0.01m. 
 
 

Baseline Method F-ratio W-ratio 

FXHS-CMP9 A 2.088 10.464 
 B 2.421 12.398 

(2hrs) C 6.984 33.167 
 D 9.796 39.878 

FXHS-CSN1 A 4.288 29.050 
 B 3.753 24.853 

(3hrs) C 21.126 75.523 
 D 25.533 83.104 

FXHS-CSN1 A 1.263 2.661 
 B 1.036 0.398 

(1hrs) C 2.975 11.604 
 D 4.720 19.333 

FXHS-CMP9 A 2.000 9.643 
 B 1.818 9.252 

(70 min) C 6.175 21.954 
 D 6.720 23.186 

Table 3. Ambiguity discrimination test for inner baseline; DoY 221 00,  
DoY 222 00 and DoY 227 02 with different session length 

 
 
After all the potential candidates passed the ambiguity acceptance test (in the LAMBDA 
method) the ambiguity discrimination test statistic will be the next step. This statistical test 
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will ensure the most likely integer ambiguity combination is statistically better than the 
second best. Two ambiguity discrimination test statistics, namely the classic F-ratio (Euler & 
Landau, 1992) and the W-ratio (Wang et al. 1998), were used in this experiment. Usually the 
critical value of the F-ratio is chosen as 2.0, but there is no theoretical (statistical) basis for 
using such a fixed value. On the other hand, the W-ratio values are larger than 3 (if the round-
off error is less than 0.2 cycles), which indicates a confidence level of 99.9% for the statistic 
test discriminating between the best and the second best ambiguity combinations, see Wang 
et al. (1998) for details. The larger the values of these statistics, the more reliable the 
ambiguity resolution. Table 3 lists the results of the ambiguity discrimination tests.  
 
From Table 3, it can be seen that for methods A and B, the F-ratio and the W-ratio passed the 
critical value except for the 1hr session of DoY 227 02 and the 70 minutes session of DoY 
227 02 for method B. These results may be due to systematic errors in the measurement 
which are not cancelled by methods A and B. The estimated baseline components and their a 
posteriori standard deviations (Table 4) show no significant difference for method A and B, 
except for two cases which do not passed the ambiguity discrimination test. Their standard 
deviations are larger and the baseline length significantly different to those calculated using 
the coordinates in Table 1 (baseline FXHS-CSN1 is 24447.7599m and baseline FXHS-CMP9 
is 30635.0437m).  
 
 

Baseline Method Estimated baseline component (m) Baseline 
Length 

Standard Deviation 
(mm) 

  X Y Z (m) X Y Z 
FXHS-CMP9 A 3437.653 16431.677 25625.939 30635.049 1.1 2.3 1.5 

 B 3437.650 16431.660 25625.949 30635.048 1.3 2.0 1.4 
(2hrs) C 3437.655 16431.671 25625.944 30635.049 0.7 1.4 0.9 

 D 3437.654 16431.667 25625.947 30635.050 0.8 1.1 0.7 
FXHS-CSN1 A -8282.219 16524.271 16001.420 24447.743 1.3 2.2 1.5 

 B -8282.227 16524.242 16001.431 24447.732 1.1 2.4 1.7 
(3hrs) C -8282.216 16524.271 16001.420 24447.743 0.5 0.9 0.6 

 D -8282.221 16524.267 16001.423 24447.743 0.5 0.9 0.6 
FXHS-CSN1 A -8282.239 16525.377 16001.088 24448.279 2.9 5.0 3.8 

 B -8282.143 16524.310 16001.320 24447.678 3.3 5.4 3.1 
(1hrs) C -8282.155 16524.291 16001.338 24447.681 1.7 3.0 2.3 

 D -8282.151 16524.290 16001.339 24447.680 1.8 2.7 1.9 
FXHS-CMP9 A 3437.701 16431.760 25625.867 30635.038 1.7 1.7 2.7 

 B 3437.704 16431.760 25625.860 30635.033 1.0 0.8 1.2 
(70min) C 3437.701 16431.760 25625.867 30635.038 0.7 0.8 1.2 

 D 3437.701 16431.760 25625.866 30635.037 0.5 0.6 0.9 
 

Table 4. Estimated baseline components and standard deviations for inner baseline; DoY 221 00, 
DoY 222 00 and DoY 227 02 with different session length 

 
However, after applying the network correction terms through the virtual measurements 
(Equation 25) in method C and D, a significant improvement was achieved where all the 
results passed the critical value for the ambiguity discrimination tests (F-ratio and W-ratio). 
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For the baseline lengths, they are closer to the calculated baseline lengths and their standard 
deviations are smaller compared with method A and B. An advantage of the virtual 
measurements is that the effects of systematic errors are reduced, improving the precision of 
the estimated positioning results and the reliability of ambiguity resolution.  
 
 
7. CONCLUDING REMARKS 
 
Application of network-based positioning techniques has benefited the user with better 
positioning results compared to traditional single-base station techniques. Many functional 
models has been developed to improve the positioning results but less research has been done 
on the stochastic properties of the network. This paper has investigated the propagation of the 
unique stochastic network through the virtual measurement created after applying the 
network correction term. By having redundant virtual measurements, their VCV has been 
estimated using the simplified MINQUE procedure. It has been shown from experiments that 
the proposed virtual measurement with the estimated VCV (method D) gives better results, 
both in terms of ambiguity resolution and baseline component estimation. Note that the 
stochastic model used does not consider the impact of temporal correlations, which will be a 
topic for future research. Including this temporal correlation will ensure an even more 
realistic stochastic model.   
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