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EFFECTS OF USER SELECTED CONDITIONS ON MODELING
OF DYNAMIC SYSTEMS USING ADAPTIVE FUZZY MODEL

MOHD SHAFIEK YAACOB1 & HISHAMUDDIN JAMALUDDIN2

Abstract. In this paper, major properties of an adaptive fuzzy model as a system identifier when
trained by the back-propagation algorithm are discussed. The standard rule-based fuzzy models were
used to identify discrete-time nonlinear dynamic systems. The method of selection of the input
variables, the number of rules, and the learning rate are briefly discussed. Three methods for choosing
the initial parameter of the fuzzy model are considered, namely the on-line, the off-line, and the
random initial parameters. The implementation and the computational aspects of the training algo-
rithm are also highlighted. Three examples of discrete-time nonlinear systems are used in the simula-
tion study to show the effects of user selected conditions on the identification process. The results of the
identification procedure show that they approximate the dynamic plants quite well. The correlation
based model validity tests are used to validate the identified fuzzy model.

Keywords: System identification, modeling, fuzzy system, back-propagation algorithm, dynamic
systems.

Abstrak. Kertas kerja ini membincangkan sifat-sifat utama satu pengenalpasti sistem iaitu model
kabur suai yang dilatih dengan algoritma perambatan balik. Model kabur piawai berasaskan aturan
kabur telah digunakan untuk mengenal pasti sistem dinamik diskret tak lelurus. Kaedah pemilihan
pemboleh ubah masukan, bilangan aturan dan kadar latihan ada dibincangkan dengan ringkas. Tiga
kaedah pemilihan parameter awal telah dipertimbangkan, iaitu kaedah pemilihan dalam talian, luar
talian dan rawak. Aspek pelaksanaan dan pengiraan algoritma ini turut diketengahkan. Tiga contoh
sistem dinamik tak lelurus telah digunakan untuk menunjukkan kesan-kesan keadaan latihan yang
dipilih oleh pengguna dalam proses pengenalpastian ini. Keputusan daripada proses pengenalpastian
model ini menunjukkan ia boleh menganggarkan sistem dinamik dengan baik. Ujian pengesahan
model secara sekaitan telah digunakan untuk mengesahkan kecukupan model berkenaan.

Kata kunci: Pengenalpasti sistem, model kabur, algoritma perambatan balik, sistem dinamik.

1.0 INTRODUCTION

In many scientific problems an essential step toward their solutions is to establish
modeling and identification of some objects or systems under investigation in order
to understand and predict the behavior of the systems. System identification is defined
as the process of deriving a mathematical model from observed data, sometimes
called input-output data, in accordance with some predetermined criterion [1]. The
resultant of the identification process is called a model. There are many areas of appli-
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cation, such as control engineering, electrical engineering, economics, biomedicine,
etc. where adequate mathematical models of the real systems are desirable [1]. Three
main purposes of the identification process include control, signal processing, and
prediction [2].

Here, the application and implementation of fuzzy models as system identifier are
discussed. Basically, fuzzy models approximate mathematical functions and they are
usually called model-free estimators. They can be considered as universal approximators
that can approximate any real nonlinear function to any arbitrary degree of accuracy if
they use enough fuzzy rules [3]. Historically, Lotfi Zadeh almost single handedly brought
about the second wave of multivalued research under the banner and language of
fuzzy logic [4]. In 1965, Zadeh published the landmark paper ‘Fuzzy Sets’, which started
the birth of fuzzy technology and later became the backbone of fuzzy set theory. In
1974, Ebrahim H. Mamdani developed the first fuzzy logic controller to control a
steam engine [5]. Mamdani's work marks the start of fuzzy engineering after which a
plethora of related papers were published [6].

The basic problem to be addressed here is the use of fuzzy models for identifica-
tion, namely how to construct a fuzzy model from numerical data. That is, given some
function g: U ⊂ Rn → R, where U is compact, a fuzzy model f: U ⊂ Rn → R that
approximates the function g is to be constructed. Here, only multi-input-single-output
fuzzy models were considered. A multi-output system can always be separated into a
group of single-output systems [3]. Generally, three main types of fuzzy structures have
been presented in the literature [7], namely the Rule-based systems, the Fuzzy rela-
tional systems, and the Fuzzy functional systems, sometimes referred to as Takagi-Sugeno
fuzzy system. Here, only the rule-based adaptive fuzzy model (AFM) as proposed by
Wang and Mendel [3], was proposed. Back-propagation (BP) algorithm was used to
train the fuzzy model.

2.0 FUZZY SYSTEMS AND BACK-PROPAGATION ALGORITHM

In this section, the description of the standard rule-based fuzzy system and the BP
training algorithm are discussed.

2.1 Fuzzy Systems

In general, the input and output of a dynamic plant to be identified are real-valued
variables. The most straightforward way of utilizing a fuzzy system is to add a fuzzifier
to the input and a defuzzifier to the output of the pure fuzzy logic system shown in
Figure 1, as suggested by Mamdani [8]. Here, only a multi-input-single-output fuzzy
system, f: U ⊂ Rn → V ⊂ R, where U is compact, is considered. The fuzzy rule base
consists of a collection of fuzzy IF-THEN rules to determine a mapping from fuzzy
sets in the input universe of discourse U ⊂ Rn to fuzzy sets in the output universe of
discourse V ⊂ R based on fuzzy logic principles.
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The fuzzifier maps crisp points in U to fuzzy sets in U. A fuzzy set A in U is charac-
terized by a membership function µA: U → [0, 1], with µA(u) representing the grade of
membership of u ∈U in the fuzzy set A.  The fuzzy rule base is a set of linguistic rules in
the form of “IF a set of conditions are satisfied, THEN a set of consequences are
inferred”.  For a given fuzzy system with n input variables x1, x2, …, xn and one output
variable ŷ, these rules  can be formally written a

Rl: IF x1 is A1
l and … and xn is An

l, THEN  ŷ is Gl (1)

where l = 1, 2, …, M is the rule number, Ai
l and Gl are fuzzy sets in Ui ⊂ R and V ⊂ R

respectively, x = (x1, …, xn)
T ∈ U1 × … × Un and y ∈V are input and output linguistic

variables [9].  The fuzzy inference engine is a decision-making logic that employs the
fuzzy rule base to map its fuzzified inputs to fuzzy output set using a procedure known
as the compositional rule of inference.  The most commonly used fuzzy logic principle
is the so-called sup-star composition, which is some form of fuzzy relation [9].  Nor-
mally, a crisp output is required from the fuzzy rule base and is computed by a process
known as defuzzification.  The defuzzifier maps fuzzy sets in V to a crisp point ŷ ∈V.

When sup-product compositional rule of inference, singleton fuzzifier, and center
average defuzzifier are used together with Gaussian membership function in the form

µ
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Figure 1 Basic configuration of fuzzy system
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Equation (3) is in fact represents the adaptive fuzzy model (AFM), as proposed by

[9]. The parameter l
ix andσ l

i represent the center and the spread of the input member-

ship functions respectively and ly represents the center of the output membership func-

tions. Meanwhile, l
ia represents the height of the membership functions.

2.2 Back-Propagation Algorithm

The BP training algorithm is an iterative gradient descent algorithm designed to mini-
mize the mean square error between the fuzzy model output f(x) and the desired
output y. This algorithm was initially used to train the multi-layer feed-forward neural
networks. By observing the functional form of Equation (3), Wang showed that the
fuzzy logic system can be represented by a three-layer feed-forward network as shown
in Figure 2 [9]. Therefore the BP algorithm can be used to train them. For a given
input-output pair (xp, yp), xp ∈U ⊂ Rn, yp ⊂ V ⊂ R, the fuzzy logic system f(x) in the
form of Equation (3) is designed such that the error

( ) 21
2

 = − 
p p pe f x y (4)

is minimized. By assuming that M is given and 1=l
ia , the problem becomes

training the parameters ly , l
ix , and σ l

i such that ep of Equation (4) is minimized.

layer 3

layer 2

layer 1

Figure 2 Network representation of the fuzzy systems
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To update ly , the gradient descent method gives

( 1) ( ) ,α ∂+ = −
∂ k

p
l l

l
e

y k y k
y

(5)

where l = 1, 2, ..., M is the rule number, k = 1, 2, ... is the iteration step, and α is a
constant step size known as the learning rate. The chain rule from calculus gives

( ) ( ))
( ) ( )

∂∂ = − = −
∂ ∂

pp l
p p p p

l l

f(xe z
f x y f x y

by y
(6)

where
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=1exp
σ

  − = −∏      
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l i in

i l
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x x
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1== ∑l lM
lz z (8)

Substituting Equation (6) into Equation (5), the training algorithm for ly  becomes

( )( 1) ( ) ( ) .α+ = − −
l

l l p p z
y k y k f x y

b
(9)

To update l
ix , the gradient descent method gives

( 1) ( ) .α ∂+ = −
∂ k

p
l l
i i l

i

e
x k x k

x
(10)

Similarly, the chain rule gives

( ) ( ) ( )
2

2) ( )
( ) ( )

σ

−∂ −∂ ∂= − = −
∂ ∂ ∂
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Substituting Equation (11) into Equation (10), the training algorithm for l
ix becomes

( ) ( )
2

2 ( )( )
( 1) ( ) ( )

( )
α

σ

−−+ = − −
p ll p iil l p p l

i i l
i

x x ky f x
x k x k f x y z

b k
(12)

To update σ l
i , the spreads of the membership function, the above procedures

give
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( ) )
( 1) ( ) ( ) ( )σ σ α σ α
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After evaluating the partial derivatives, the training algorithm for σ l
i  becomes

( ) ( )
3

2
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( 1) ( ) ( )
( )

σ σ α
σ

−−
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(14)

There are some evidences that the convergence properties of the gradient method
can sometimes be improved via the addition of a “momentum term” to each of the
update laws in Equation (5), (10), and (13) [10].  For instance, Equation (5) could be
modified into

( )( 1) ( ) ( ) ( 1)α β∂+ = − + − +
∂ k

p
l l l l

l
e

y k y k y k y k
y (15)

where β is the gain of the momentum term.  Similar changes can be made to Equation
(10) and (13). In general, the momentum term will help to keep the updated para-
meters moving in the right direction. Some of the fundamental properties of AFM
with BP algorithm can be found in [11].

3.0 AFM APPLIED TO SYSTEM IDENTIFICATION

A discrete nonlinear dynamic plant to be identified in general is governed by the
difference equation

( 1) ( ( ), ..., ( 1); ( ), ..., ( 1))+ = − + − +y t g y t y t q u t u t r  (16)

where g is the unknown function to be identified, u and y are the input and output of
the dynamic plant respectively, q and r are positive integers representing the number
of output and input lags, describing the dynamic of the model, and t represents the
time instant [9]. In this case, the number of input variables of the fuzzy system is n = q
+ r. In this paper, the series-parallel model [9] or one-step-ahead prediction [12] was
adopted. The identification model is then in the form of

( 1) ( ( ), ..., ( 1); ( ), ..., ( 1))+ = − + − +y t f y t y t q u t u t r  (17)

where y is the output of the plant. If x = {y(t), ..., y(t − q + 1); u(t), ..., u(t − r + 1)} is the
input of the fuzzy system and f is the AFM in the form of Equation (3), then determin-
ing the parameter of AFM is basically a system identification problem. The represen-
tation of the one-step-ahead prediction model, where the output of the plant is fed to
the fuzzy system, is shown in Figure 3.
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The fuzzy system can also be used to predict a time series y(t) where t = 1, 2, ....
Here, the mapping from [y(t − q + 1), y(t − q + 2), ..., y(t)] ∈ Rq to [y(t + s)] ∈ R is to be
determined, where q and s are positive integers. For one-step-ahead prediction, s is set
to be equal to 1 and the identification model becomes

ŷ(t + 1) = f( y(t), y(t − 1), ..., y(t − q + 1)) (18)

Again, if x = {y(t), ..., y(t − q + 1)} is the input of the fuzzy system and f is the AFM in
the form of Equation (3), then determining the parameter of AFM is basically a system
identification problem for time series prediction.

Three methods of choosing the initial value of the AFM parameters are considered
in this paper, namely the on-line, the off-line, and the random initial parameter choos-
ing method. Since the parameters of the AFM have clear physical meaning, namely

the centers of the input and output fuzzy sets, l
ix and ly respectively, the initial para-

meters for f can be approximated based on initially available information. For on-line
initial parameter choosing method as suggested by Wang [9], we use the first M data
pairs as the basis of the initial parameters as follows:

ly (0) = y(l) where l = 1, 2, ..., M  (19a)

l
ix (0) = xi(l) where l = 1, 2, ..., M and i = 1, 2, ..., n  (19b)

Note that since the adaptation is done off-line, the information about xi(M) and y(M)
are available at the beginning of the training. Alternatively, we can start training from
time step M + 1.

We also consider the off-line initial parameter choosing method where the initial
parameters are sampled uniformly throughout the estimation data set as follows:

ly (0) = y(l∆) where l = 1, 2, ..., M  (20a)

l
ix (0) = xi(l∆) where l = 1, 2, ..., M and i = 1, 2, ..., n  (20b)

Figure 3 One-step-ahead prediction identification model using fuzzy system
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Here, the integer ∆ = int(N/M), where int is the integer operator and N is the number
of data pairs in the estimation set. Generally, we can expect that the off-line initial
parameters will give better estimate since it gives better representation of the entire
estimation data set.

Finally, for random initial parameter choosing method, the initial parameters are
chosen randomly in the interval of the universe of discourse of the input-output data as
follows:

ly (0) = rand[max(y(t) : t = 1, 2, ..., N), min(y(t): t = 1, 2, ..., N)]  (21a)

l
ix (0) = rand[max(mi(t) : t = 1, 2, ..., N), min(mi(t): t = 1, 2, ..., N)] (21b)

Here, rand is the random number operator, randomly choosing a real number be-
tween the intervals in the square brackets. Meanwhile, small initial values of

spread σ l
i  are chosen for all three methods of choosing the initial parameters. Here,

we choose a value of 20% of the range of the universe of discourse to be the initial
values of the spreads.

The predictive accuracy of the identification model was computed by defining the
normalized root mean square of the residuals as an error index, Q, and is given by

( )
1

2 2

2

( ) ( )

( )

 −∑ =
∑  

y k y k
Q

y k
(22)

Model validation should form the final stage of any identification procedure. The
model structure and the estimated parameters are considered adequate if they pro-
duce unbiased predictions over different data sets. If the model is valid then the pre-
diction error sequence ε(t) should be unpredictable from all linear and non-linear
combination of past inputs and outputs [11]. This condition will hold if
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φ τ ε τ ε δ τ
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= − = ∀
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= − − − − = ≥

u

u

u

u

E t t

E u t t

E u t u t

E u t u t

E t t u t

(23)

where φ  is the standard correlation functions and τ  is the lag number [12]. The model
is regarded as adequate if these functions fall within 95% confidence bands define as
±1.96/√N, where N is the data length.

Untitled-5 02/16/2007, 16:5652



EFFECTS OF USER SELECTED CONDITIONS ON MODELING 53

5.0 SIMULATION

In order to illustrate the effects of user selected conditions on system identification
using AFM trained by BP algorithm, two dynamic plants and one time series data
sets were used. The first plant, P1, to be identified is governed by the difference
equation

g(t + 1) = (0.3 g(t) + 0.6 g(t − 1) + 0.6 sin (πu(t)) + 0.4 sin (3πu(t)))/5.5, (24)

and the plant output data are corrupted by random measurement noise with values
between the interval of −0.1 and +0.1 as follows:

y(t + 1) = g(t + 1) + rand[−0.1, +0.1] (25)

The input u(t) is chosen to be

u(t) = sin(2πt/250) (26)

One thousand input-output data pairs were generated. The original plant output g, the
measured output data y, and the input u of plant P1 are as shown in figure 4.

The second plant, P2, is the benchmark data originating from the work of Box and
Jenkins concerning the identification of a gas oven [14]. It consists of 296 pairs of input-
output measurements. The input uo(k) of the original plant is the gas flow rate into the
furnace, and the output yo(k) is the percentage concentration of CO2 gas in the outlet.
The sampling interval is 9 s. The original data pairs were normalized so that they lie
within the interval of −1.0 and +1.0 as follows:

Figure 4 The original plant g, measured output data y, and the input u of P1
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u(k) = uo(k)/2.9 (27)

y(k) = yo(k) − 53.0)/7.5 (28)

The normalized input and output data of P2 are as shown in figure 5.  The third plant,
P3, is the time series data of the Wolfer annual sunspot [14].  The data consists of 288
values of the sunspot numbers tabulated for a period from the year 1700 to 1987.  The
data set was divided by 200 so that values of the series lie within the interval of [0, +1].
The normalized time series data set of P3 is as shown in Figure 6.

Figure 5 The normalized input and output data of P2

Figure 6 The normalized time series data for P3
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For plant P1, the first 500 data pairs were used as the estimation set and the next 500
data pairs were reserved as test set.  Since the data pairs for plant P2 and P3 are not
enough to be separated into estimation set and test set, all data pairs were used as
estimation set.

5.1 Effects of the Number of Rules and Input Variables

Before further training can be done, the number of fuzzy rules, M, and the number of
input variables, q and r, must be selected.  Figure 7 and 8 show the one-dimensional
search for the number of rules M and the output lags q. Here, the on-line initial param-
eter choosing method and the learning rate α = 0.2 were used for the training. The
input lags r = 1 were chosen for the training of P1 and P2. The error index was evalu-
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ated after 10 passes were made through the estimation data set. In general, the predic-
tive accuracy of the AFM increases with the number of rules. However, the number of
output lags q must be carefully chosen since unnecessary large value may result in a
higher value of error index as shown in Figure 8.

5.2 Effects of Learning Rate and Momentum Gain

To show effects of the learning rate α, the plant P2 was trained using the on-line initial
parameter choosing method with M = 30, q = 3, and r = 1 for different values of learn-
ing rate. Figure 9 shows the effect of learning rate α on the convergence properties of
AFM. Small value of α usually results in slower convergence rate, while bigger value
of α tends to make the AFM settled at a sub-optimal level.  figure 10 shows the effect
of momentum gain β when plant P3 was trained using the on-line initial parameter
choosing method with M = 36, q = 6, r = 0, and α = 0.1 for different values of momen-
tum rate. There are some evidences that the convergence properties of gradient method
can sometimes be improved via the addition of the momentum term in updating the
parameters. For a good value of learning rate, the addition of momentum term is
usually not necessary.

5.3 Effects of Initial Parameters

Conditions for the subsequent training of the AFM are as shown in Table 1. Figures
11, 12, and 13 show the effect of different initial values of the AFM parameters for plant
P1, P2, and P3 respectively. The results clearly show that the performance of BP algo-

Figure 7 Effects of the number of
rules on identification of P1,
P2, and P3

Figure 8 Effects of the number of output
lags on identification of P1, P2,
and P3
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Figure 9 Effects of the learning rates on
identification of P2

Figure 10 Effects of the momentum gain
on identification of P3
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Table 1 The subsequent training conditions for P1, P2, and P3.

Plant M q r α β
P1 30 2 1 0.2 0

P2 30 3 1 0.2 0

P3 36 6 0 0.1 0

Figure 11 Effects of the initial parameters on identification of P1
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rithm depends very much on the initial values of these parameters. Most of the time
the AFM will be trapped at the local minimum for a randomly chosen initial para-
meters. The off-line method of choosing the initial parameters consistently gave good
identification. However, if the number of rule M is large enough for the input-output
data pairs to cover large range of the universe of discourse in the first M time steps,
then the on-line initial parameter choosing method gave similar good results as shown
in Figures 12 and 13.

Figures 14, 15, and 16 show the one-step-ahead prediction of the identification model
(dashed line) superimposed on the plant output (solid line) when the training was

Figure 14 Output of AFM (dashed line) with the off-line initial parameters andthe prediction
error for P1
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Figure 12 Effects of the initial parameters
on identification of P2

Figure 13 Effects of the initial parameters
on identification of P3
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stopped after 15 passes through the estimation set for plants P1, P2, and P3 respec-
tively. The original plant output is not shown in figure 14 since it would be difficult to
distinguish the lines. However, it is clear that the AFM has filtered out the noise and
the model resembles the original function g it supposes to identify in the first place.
The corresponding estimation errors at each time instant are also provided in those
figures in order to give the insight of the accuracy of the identification model.

5.4 Model Validity Test

The final step in system identification is to conduct the model validity tests. The corre-
lation based model validity tests were conducted on the one-step-ahead identification
model of P1 in Figure 14. It was found that the model is not adequate since portions of

Figure 16 Normalized plant output (solid line), output of AFM (dashed line) with on-line initial
parameters, and the prediction error for P3

Figure 15 Normalized plant output (solid line), output of AFM (dashed line) with the on-line
initial parameters, and the prediction error for P2
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Figure 17 Correlation tests for identification of P1 using AFM with 30 fuzzy rules

Figure 18 Correlation tests for identification of P1 using AFM with 45 fuzzy rules

 

��� � �� 
�� 

� 

� 
φ ε

ε

��� � �� 
�� 

� 

� 

φ u
ε

��� � �� 
�� 

� 

� 

φ u
2 ′

ε

��� � �� 
�� 

� 

� 

φ u
2 ′

ε2

��� � �� 
�� 

� 

� 

φ ε
εu

 

��� � �� 
�� 

� 

� 

φ ε
ε

��� � �� 
�� 

� 

� 

φ u
ε

��� � �� 
�� 

� 

� 

φ u
2 ′

ε

��� � �� 
�� 

� 

� 

φ u
2 ′

ε2

��� � �� 
�� 

� 

� 

φ ε
εu

the correlation function φεε lie outside the 95% confidence band as shown in Figure 17.
However, when the number of rules were increased from 30 to 45 and the plant P1 was
trained under the same condition as before, the correlation tests revealed that the
model is adequate as shown in Figure 18.
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6.0 CONCLUSION

In this paper, the standard rule-base fuzzy model was used for the purpose of identify-
ing the nonlinear dynamic systems. The BP algorithm, a gradient descent method,
was used to train them. Three methods for choosing the initial parameter of the AFM
were considered. The use of additional momentum terms to update the centers of the
input and output membership functions was also explored.  Some of the fundamental
properties of the AFM with BP algorithm were highlighted, illustrating the advantages
and shortages of these approaches.

Through simulations, the effects of the number of rules, the input variables, the
learning rate, the momentum gain, and the initial values of the parameter on the con-
vergence of AFM have been demonstrated. The results clearly show that the perfor-
mance of BP algorithm depends very much on the initial values of the parameters.
Most of the time, the AFM will be trapped at the local minimum for a randomly
chosen initial parameters. The off-line method of choosing the initial parameters con-
sistently gave good identification results.
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