

NEURAL NETWORK IN CORNER DETECTION OF
VERTEX CHAIN CODE SERIES

S. H. SUBRI, H. HARON, R. SALLEHUDDIN

Department of Modeling and Industrial Computing,
Faculty of Computer Science & Information Systems

Universiti Technologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
syhaniz@hotmail.com, habib@fsksm.utm.my, lina@fsksm.utm.my

Abstract

This paper presents a Neural Network Classifier to be
implemented in corner detection of chain code series. The
classifier directly uses chain code which is derived using
Vertex chain code as training, testing and validation set.
The steps of developing Neural Network Classifier are
included in this paper. Comparison results between
Vertex chain code Neural Network Classifier with other
computational corner detection are presented to show the
reliability of the proposed classifier. This paper ends with
the discussions on the implementation of proposed neural
network in corner detection of chain code series.
Experimental results have shown that the proposed
network has good robustness and detection performance.
This makes this method a great choice for machine vision.

Keywords: Neural network, Chain code, Corner
detection, Line drawing

1. Introduction
Corner detection is an important aspect in image
processing and researchers find many practical
applications in it. Corner that exists in any irregular line
must be detected so that the irregular line can be
interpreted to represent actual line. Corners serve to
simplify the analysis of images by drastically reducing the
amount of data to be processed [1].
 A different chain code named Vertex chain code
(VCC) has been proposed by Bribiesca [2] in the end of
90’s. VCC is a boundary chain code and it is based on the
numbers of cell vertices which are in touch with the
bounding contour of the shape. Shape can be computed
directly from the VCC without going to Cartesian-
coordinate representation. VCC has it own way to
represent a shape. There are three different forms of cells
to represent a shape which are triangular, rectangular and
hexagonal.
 Many researchers’ studies show that corner
detection of chain-code use computational method as their

main methodology. This computational method was used
by Haron [3], Ji [4] and Lee [5]. Previous paper by Haniz
[6] used Freeman chain code (FCC) directly to neural
network and developed FCC neural network corner
detector. This gives motivation for this paper to apply
VCC with neural network. This paper discussed a
biological system which used Artificial Neural Network
technique as a methodology. Neural network applied
Vertex chain code directly to the network and no
computational method was used in this corner detector.
 Artificial intelligence becomes more popular
nowadays. This paper presents an Artificial Neural
Network based approach to corner detection in two
dimensional (2D) line drawings. The idea for initializing
this neural network techniques in corner detection is
based on past works which were done by Dias [6], Tsai
[7] and Sanchiz [8]. However based on the research done,
there was no latest further work done to enhance and
improve this method. This paper is expected to lead other
researchers to do research in this area.
 The organization of this paper is as follows. It is
divided into five sections. Section (1) gives introduction,
several past works and application on neural network to
corner detection using chain code series. Section (2) gives
details of the proposed methodology are discussed.
Section (3) presents experimental result and comparison
of the result with computational method. Section (4) gives
conclusion and finally Section (5) presents future works.

2. Neural Network Classifier
The Neural Network (NN) Classifier in this paper
identifies the corner detection of 2D line drawing. The
line drawing was codified to chain code using Vertex
chain code and was directly used as an input of the NN
Classifier. The outputs of the NN Classifier are
represented either by number 1 or 0. Number 1 represents
corner. On the other hand 0 means no corner.

mailto:habib@fsksm.utm.my

No.

Training
Function Input

Hidden
1

Hidden
2 Output α β Goal Epochs

Accuracy
(%)

MSE
Output

1 Traingdx 9 36
Logsig

9
Logsig

1
Purelin 0.1 0.1 0.015 10576 91.51 0.07468

2 Traingd 9 36
Logsig

9
Logsig

1
Purelin 0.5 nil 0.015 8043 92.25 0.0725

3 Traingdm 9 27
Logsig

9
Logsig

1
Purelin 0.3 0.25 0.015 15772 92.25 0.08502

Table 1: Best model for training function

Analysis is done to determine the best network
architecture of NN Classifier. The analysis was based on
trial and error. From the analysis done, the best network
architecture for NN Classifier is a four-layer network
model which consists of one input layer, two hidden layer
and one output layer.

This analysis is done by training the network using
variation of parameter, training function and differences
of network structure. Three training functions were used
in this analysis. The training functions are:

• Traingdx (batch gradient descent with
momentum and adaptive learning rate). The
function of Traingdx combines adaptive learning
rate with momentum training. The performance
of the algorithm is very sensitive to the proper
setting of the learning rate.

• Traingd (batch gradient descent
backpropagation) is the batch steepest descent
training function. The weights and biases are
updated in the direction of the negative gradient
of the performance function.

• Traingdm (batch gradient descent with
momentum). Momentum allows a network to
respond not only to the local gradient, but also to
recent trends in the error surface. Acting like a
low-pass filter, momentum allows the network to
ignore small features in the error surface.

Traingdx and Traingdm training functions use momentum
(β) for their training. The momentum is set to 0.1, 0.25,
0.5 or 0.9 while Traingd training function does not use
momentum in its training. All these training function use
learning rate (α) in their training. The value of this rate is
set to 0.1, 0.25, 0.3, 0.5 or 0.75. The analysis was also
done using variation of network structure. As shown in
Table 1, 2 and 3 there are training model either with one
hidden node or two hidden nodes. All hidden nodes in this
analysis used Log-Sigmoid (Logsig) transfer function.

More than 363 models were trained during the
analysis. Each training functions have their best model
but for the NN Classifier the best model among the three

models were chosen. Table 1 show the best training
models of Traingdx, Traingd and Traingdm training
function. Among these three models, one of the models
has been identified as the best model with the highest
percentage of accuracy and closest condition with exact
output validation.

The best model is model number 2. This model
uses Traingd training function. As a four-layer network,
this model has two hidden nodes with 36 nodes for first
hidden node and 9 nodes for the second hidden nodes.
Hidden node used Log-Sigmoid transfer function while
output node used Linear transfer function.

This model used feed-forward backpropagation as
its network type. Mean square error (MSE) function was
chosen to evaluate network performance. One value was
set as a goal. All training network should be trained until
the performance of the networks lower than a value of the
goal. For this model, 0.015 has been chosen as a goal
parameter. The other parameters of this model are
learning rate (α) which was set for 0.5 and finally
maximum epoch which was set for 200,000. For training
models which had reached 200,000 epochs but the
performance was still above the goal value, this means the
network was failed. The step on how to train network and
how NN Classifier is developed will be discussed in
Section 2.1.

2.1 Training the Network
The NN Classifier uses supervised training technique. The
process of training the network consists of feeding it with
a set of training samples which is provided with input and
output. The input sets are pieces of chain code which are
9 codes in length for every one output which is extracted
from 2D line drawing. The teaching output is a value
related to the result of the input set. Image in Figure 1
shows cube line drawing for training sessions while
Figure 2 shows L-block line drawing for testing and
Figure 3 is stair line drawing for validation. All of these
line drawings are taken from Haron [3].

Figure 2: A L-Block

A total of 266 sets of input and output were involved in
the training sessions while 271 sets of input and output for
testing and 158 sets of input and output for validation
session. A sample of 2D line drawing and its thinned
binary image from Haron [10] which used computational
method has been codified to chain code as an input and
output set to train the network in the training session.
Below are the steps taken to train the classifier.

Step 1: The input and output were arranged as an array.
Figure 4 shows sets of half input and Figure 5
shows set of half output. Figures 4 and 5 also
show the input and output arranged in column.

Step 2: Using Matlab, a network was trained using the
value and parameter which have been discussed
in section two.

Step 3: Trained network models are tested with a sample
of 271 sets of input and output. In the testing
stage, accuracy and MSE output are determined.
The percentage of the accuracy is based on how
many trained outputs are the same with the real
output. All the trained output which are the same
with real output will be divided by 271 to get the
accuracy percentage. The model with the highest
accuracy percentage is the best network model.

This model is a neural network corner detector
and is known as NN Classifier.

Figure 1: A Cube

Step 4: The best network model is used as NN Classifier
to detect corner and this corner is tested by using
an image. The image has to be first codified to
chain code. The chain code was arranged as an
array and then it is tested with the classifier to
detect corner. Experimental results are discussed
in Section 3.

Figure 3: A stair

3. Exper
 The cla
The line draw
shown in Figu
used to get V
chain code an

Columns 1 through 13

2 3 1 3 1 3 1 3 1 2 2 3 1
2 1 3 1 3 1 3 1 2 2 3 1 3
3 3 1 3 1 3 1 2 2 3 1 3 1
1 1 3 1 3 1 2 2 3 1 3 1 3
1 3 1 3 1 2 2 3 1 3 1 3 1
3 1 3 1 2 2 3 1 3 1 3 1 3
1 3 1 2 2 3 1 3 1 3 1 3 1
2 1 2 2 3 1 3 1 3 1 3 1 3
3 2 2 3 1 3 1 3 1 3 1 3 1

Columns 14 through 26

1 3 3 1 3 1 3 1 3 1 2 3 1
2 2 1 3 1 3 1 3 1 2 3 1 2
3 1 3 1 3 1 3 1 2 3 1 2 2
1 3 1 3 1 3 1 2 3 1 2 2 3
2 3 3 1 3 1 2 3 1 2 2 3 1
1 1 1 3 1 2 3 1 2 2 3 1 3
3 2 3 1 2 3 1 2 2 3 1 3 1
1 3 1 2 3 1 2 2 3 1 3 1 3
2 1 2 3 1 2 2 3 1 3 1 3 1

to

Columns 248 through 260

1 3 1 3 2 1 1 1 2 1 3 1 3
3 1 3 2 2 3 3 3 2 3 1 3 1
1 3 2 1 1 1 1 1 2 1 3 1 3
3 2 1 3 3 3 3 3 2 3 1 3 1
2 1 3 1 1 1 1 2 1 2 2 2 2
1 3 1 3 3 3 2 1 3 3 1 3 1
3 1 3 1 1 2 2 3 1 1 3 1 3
1 3 1 3 3 1 2 1 2 2 2 2 2
3 1 3 2 1 3 2 3 3 3 1 3 1

Columns 261 through 266

1 3 2 2 3 1
3 1 2 2 1 3
2 2 2 2 3 1
1 3 2 2 1 3
3 1 1 3 2 2
1 3 3 1 1 3
2 2 1 3 3 1
2 2 2 2 2 2
2 2 1 3 2 2

Figure 4: Sets of input
Columns 1 through 13

 1 0 0 0 0 0 0 0 0 0 0 0 0

Columns 14 through 26

 1 1 0 0 0 0 0 0 0 0 0 0 0

to

Columns 248 through 260

 0 0 0 0 0 0 1 0 1 1 1 1 1

 Columns 261 through 266

 1 1 1 1 1 1

Figure 5: Sets of output
imental Results
ssifier is tested on line drawing in Figure 3.
ing is based on thinned binary which is

re 6. Thinned binary image from Figure 6 is
ertex chain code and shape. The Vertex
d shape of the line drawing is shown in

 Figure 7. The line drawing and thinned binary image is
taken from Haron [3]. Line drawing in Figure 3 has been
codified to Vertex chain code and shape. Then the chain-
code was arranged as an array in length of nine codes
every one column. The chain code of the line drawing is
based on chain code of boundary list only.

Columns 1 thr

 0 0 0

 Columns 16

 0 0 0

 Columns 31

 1 0 0

 Columns 46

 0 0 0

 Columns 61

 0 0 0

 Columns 76

 0 0 0

 Columns 91

 0 0 0

 Columns 106

 0 1 0

 Columns 121

 0 0 0

 Columns 136

 0 0 0

 Columns 151

 0 0 0

 After the chain code was arranged as an array, the
boundary list in Figure 7 becomes 158 inputs. When the
tested image was codified to Vertex chain code and shape,
there are 11 corners found in the drawing and in the 158
inputs. Table 5 shows the real output and Table 6 shows
output using NN Classifier to detect corner where 0
means it’s not a corner and 1 means there is a corner in
that column.

Fig

As shown in Table 6, there are columns which are not the
same as real output in Table 5. Column 125 and column
142 show that corner exists in each column. In the real
output there was no corner in that column. However in
column 107,126 and 137, result shows that corner does
not exist but there should be a corner in that column. It
shows that NN Classifier detected 10 corners. All 10
corners were in the range of the corner column and 2
corners were not detected by NN Classifier.

Figure 7: Vertex chain code and

shape

Table 5: Real outputs
ough 15

 0 0 0 0 0 1 0 0 0 0 0 0

through 30

 0 0 0 0 0 0 0 0 0 0 0 0

through 45

 0 0 0 0 0 0 0 0 0 0 0 0

through 60

 0 0 0 0 0 0 0 0 0 0 0 0

through 75

 1 0 0 0 0 0 1 0 0 0 0 0

through 90

 0 0 0 0 0 0 0 0 0 0 0 1

through 105

 0 0 0 1 0 0 0 0 0 0 0 0

 through 120

 0 0 0 0 0 0 0 1 0 0 0 0

 through 135

 0 0 1 0 0 0 0 0 0 1 0 0

 through 150

 0 0 0 0 1 0 0 0 0 0 0 0

 through 158

 0 0 0 0 0
 01234567890123456789012345678901234567890123456789
 0 00
 1 00000000000000000000000000100000000000000000000000
 2 00000000000000000000000001010000000000000000000000
 3 00000000000000000000000010001100000000000000000000
 4 00000000000000000000000100000011000000000000000000
 5 00000000000000000000001000000000110000000000000000
 6 00000000000000000000010000000000001000000000000000
 7 00000000000000000000011000000000000111000000000000
 8 00000000000000000000100100000000000000100000000000
 9 00000000000000000000100010000000000000010000000000
10 00000000000000000000100001100000000000101000000000
11 00000000000000000000100000011000000001000100000000
12 00000000000000000000100000000110000010000100000000
13 00000000000000000000100000000001000100000100000000
14 00000000000000000000100000000000101000000100000000
15 00000000000000000011011000000000010000000100000000
16 00000000000000001100000110000000010000000100000000
17 00000000000000110000000001110000100000000100000000
18 00000000000001001000000000001100100000000100000000
19 00000000000001000100000000000011000000000100000000
20 00000000000001000010000000000000100000000100000000
21 00000000000001000001100000000000100000000100000000
22 00000000000001000000011000000001000000000100000000
23 00000000000001000000000100000110000000000100000000
24 00000000000001000000000011111000000000000100000000
25 00000000000001000000000010000000000000000100000000
26 00000000000111000000000010000000000000000100000000
27 00000011111000100000000010000000000000000100000000
28 00000100000000010000000010000000000000000100000000
29 00001010000000001100000010000000000000000100000000
30 00001001100000000011000010000000000000000100000000
31 00001000010000000000110010000000000000000100000000
32 00001000001100000000001100000000000000000100000000
33 00001000000011000000000100000000000000001000000000
34 00001000000000110000011000000000000000010000000000
35 00000100000000001011100000000000000001100000000000
36 00000010000000000100000000000000000010000000000000
37 00000001000000000100000000000000011100000000000000
38 00000000100000000100000000000011100000000000000000
39 00000000010000000100000000011100000000000000000000
40 00000000001000000100000001100000000000000000000000
41 00000000000100000100000010000000000000000000000000
42 00000000000010000100001100000000000000000000000000
43 00000000000001000100010000000000000000000000000000
44 00000000000000111101100000000000000000000000000000
45 00000000000000000010000000000000000000000000000000
46 00
47 00
48 00
49 00

01234567890123456789012345678901234567890123456789

ure 6 : Thinned binary image

Table 6: Neural Network classifier
 outputs

 Columns 1 through 15

 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

 Columns 16 through 30

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 31 through 45

 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 46 through 60

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

 Columns 61 through 75

 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0

 Columns 76 through 90

 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

 Columns 91 through 105

 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

 Columns 106 through 120

 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

 Columns 121 through 135

 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

 Columns 136 through 150

 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0

 Columns 151 through 158

0 0 0 0 0 0 0 0

Figure 9: Corner for VCC

Comparison results between proposed Artificial Neural
Network method and computational method is shown in
Table 7. Out of all 10 corners, the computational method
detects 9 corners and the proposed NN Classifier detects 9
corners out of 11. The corner at location 5 has not been
detected by computational method while location 7 and
10 has not been detected by NN Classifier. Comparison
results between NN Classifier and computational method
shows that NN Classifier performance using VCC is
average with computational method in terms of the
number of corners detected. How ever performance of
NN Classifier can be better by give more sample of
training set to train the network classifier.

3.1 Comparison of Results

Method
No. of
Corner

Detected

Corner
Location

The Proposed NN Classifier 9 1, 2, 3, 4, 5, 6,
8, 9 and 11

Computational Method (Haron [3]) 9 1, 2, 3, 4, 6, 7,
8, 9 and 10

Table 7: Comparison table

In order to test the performance of the NN Classifier, the
experimental results are compared to the computational
method done by Haron [3]. Since the boundary line chain
code is used to test the classifier, by looking at the sketch,
there are 10 corners that exist along the boundary line as
shown in Figure 8. How ever there were 11 corners exist
when the tested image was codified to Vertex chain code
and shape. It is shown in Figure 9

Figure 8: Corner from Haron [3]

4. Conclusion
The results shows that the strength of applying neural
network in corner detection is it makes corner detector
more sensitive in detecting a corner. That is why more
corner points are detected using this method in one
corner. Corner detection in neural network is based on
pattern training sample which trained the network. Corner
is detected when there is a similarity between corner
chain-code trained pattern and chain code of the line
drawing. The proposed method used chain code series
directly without any calculation to fit it with the network.
It makes this method easy to be used and applied. The
chain code series just need to be arranged as an array to
make it an input.

 The drawbacks of the this method is it can be
classified as tedious and trial and error process. It is
tedious because it involves training samples that have to
pass through three stages while the trial and error process
will sometime lead to no result.

 This proposed method is limited for 2D line
drawings only. However, this method can be applied in
line drawing interpretations. It is not possible to
implement this method to sketch interpreter like SILK
which was developed by Landay [11] and made the
sketch interpreter faster and more efficiently.

 The experiment shows that the optimal parameter
of the classifier are alpha is equal to 0.5, and beta is equal
to 0.015, and finally maximum epoch is equal to 200,000.
The parameters is considered the optimal parameter after
the training is conducted.

5. Future Works
This proposed method is a 2D line drawing corner
detector. The corner detection by neural network
Classifier is based on chain code series by Bribiesca [2].
An improvement can be done to this proposed method.
The lists of the improvement are given below:

• Give more samples of training set to train the
network classifier so the NN Classifier can detect a
corner more accurate and precise.

• Chain code techniques are widely used because they
preserve information and allow considerable data
reduction. In this proposed method, we use the
proposed Vertex chain code to represent 2D drawing
by Bribiesca [2]. Bribiesca [12] also proposed chain
code to represent 3D curve. For detecting corner of
these curves using NN classifer, the 3D chain code
proposed by Bribiesca [12] can be used to detect a
corner of 3D drawing.

• Besides neural network, fuzzy logic is another one of
the artificial intelligence techniques. A research of
fuzzy in corner detection done by Pahor [13] can be
applied to detect corner of chain code series.

References
[1] H.C. Liu and M.D Srinath, Corner Detection from

Chain-Code. Patt. Recognition Lett., vol. 23, pp.
51-68, 1990.

[2] E. Bribiesca, A New Chain Code, Pattern
Recognition, vol. 32, pp. 235-251, 1999.

[3] H. Haron, S. M Shamsuddin and D. Mohamed, A
New Corner Detection Algorithm for Chain-Code
Representation of Thinned Binary Image,
International Journal of Computer Mathematics,
U.K., vol. 81 no. 3/4, 2004.

[4] Q. Ji and R.M. Haralick, Corner Detection of
Covariance Propagation, Computer Vision and
Pattern Recognition, pp. 362-367, 1997.

[5] J. Lee, Y-N Sun and C-H Chen, Boundary-Based
corner Detection Using Wavelet Transform,
Systems, Man and Cybernetics, vol. 4, pp. 513-516,
1993.

[6] Haniz, S., Haron, H and Roselina, S., Neural
Network in Corner Detection of Chain Code
Series. Proceedings of the International Arab Conf.
IT ACIT 2004 Algeria, Vol. 1, 426-431, 2004.

[7] P.G.T. Dias, A.A. Kassim and V. Srinivasan, Neural
Network Classifier for detecting Corners in 2D
Images, Systems, Man and Cybernetics.’Intelligent
for the 21st Century, vol. 1, pp. 661-666, 1995.

[8] D-M Tsai, Boundary-Based Corner Detection
Using Neural Networks, Pattern Recognition, vol.
30 no. 1, 1997, pp. 85-97, 1997.

[9] J.M. Sanchiz, J.M. Inesta and F. Pla, A Neural
Network-Based Algorithm to Detect Dominant
Points From the Chain-Code of a Contour, Pattern
Recognition Proceeding of ICPR, vol. 4, pp. 325-
329, 1996.

[10] H. Haron, Enhanced Algorithms for Three-
Dimensional Object Interpreter, PhD Thesis,
University Technology of Malaysia, 2004.

[11] J.A. Landay and B.A. Myers, Sketching Interfaces:
Toward more human Interface, Computer, vol. 34,
pp. 56-64, 2001.

[12] E. Bribiesca, A Chain Code for Representing 3D
Curves, Pattern Recognition, vol. 33, pp. 755-765,
2000.

[13] V. Pahor and S. Carrato, A Fuzzy Approach to
Mouth Corner Detection, Image Processing, ICIP
99, vol. 1, pp. 667-671, 1999.

http://www.fsksm.utm.my/~habib/fail2/iajit_04.pdf
http://www.fsksm.utm.my/~habib/fail2/iajit_04.pdf

	ICGST-All.pdf
	ICGST-All.pdf
	VCC NN Corner Detection latest (AIML).pdf
	VCC NN Corner Detection latest (AIML).pdf
	Abstract

