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Abstract: Present work introduced the aerodynamics analysis of rotor blade helicopter in forward flight. 
The analysis used a combination between a Momentum Theory and The Blade Element Theory. Here the 
inflow ratio was assumed a uniform over the disk plane and it was predicted by using the momentum 
Theory. As the inflow ratio is available, then by using the Blade element theory, the aerodynamics loading 
along the blade span of the rotor are computed, which finally the thrust coefficient CT can be obtained. For 
a given a rotor blade configuration and flight condition, the Thrust coefficient CT is unknown, while the 
momentum theory required this value to be known in predicting the inflow ratio. As result an iteration 
process is required in implementing those two combined approaches. For the assessment purposes, four test 
cases had been studied. The difference between one case to other case had been selected in term: 1) twist 
distribution, 2) the presence of coning angle and 3) the required aerodynamics characteristics.  The result 
showed that the combination of Momentum Theory and The blade element theory could provide a fast 
solution in predicting the aerodynamics performance of rotor blade helicopter.  However a comparison 
result with the experiment result was required in order to asses the degree of accuracy of this approach. 
This was suggested as future work.  

Notation: 

CT  Thrust Coefficient 

CQ Torque Coefficient 
Cd Drag Coefficient 
Cl Lift Coefficient 
P Power 
Q Torque 

RB Blade Radius 

UT 
Velocity normal to blade leading edge 
line 

UP Out plane velocity 

UR  Radial Velocity 
U∞ Incoming flow velocity 
Vi Induced inflow 
α           Angle Of Attack 

αeff       Effective Angle Of Attack 
β Coning Angle 
λave Uniform inflow ratio 
µ Advance ratio 
ψ Azimuth angle  
Ω Rotor rotational speed 
εct Prescribed value 
θ Pitching angle 

 
I. Introduction 
 
The aerodynamics analysis of the rotor blade 
helicopter software is, now, available in the market. 
For the preliminary design stage may one can use 
RaPid software. RaPiD is stand for from: Rotorcraft 
Analysis for Preliminary Design which developed by 
Dr. Omri Rand from Faculty of Aerospace 
Engineering, Technion – Israel Institute of 
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Technology, 1. This software is allowing one to 
model and analyze general rotorcraft configurations, 
conventional helicopter as well as tilt rotors models. 
The uniform inflow model had been used as the basic 
concept in solving the aerodynamics problem in this 
code.  
 
Another computer code for helicopter aerodynamics 
analysis may one use a code a called 
“FLIGHTLAB”2. This code developed by Advanced 
Rotorcraft Technology Inc, US based company. This 
software was designed for  a flight vehicle modeling 
and analysis tool so that allows users to interactively 
produce models from a library of modeling 
components by arbitrarily selecting the modeling 
components, interconnecting them into a custom 
architecture, and assigning aircraft specific data to 
the parameters of these components. Strickly 
speaking FLIGHTLAB's represent simulation 
language, which provides an interpretive operating 
environment with a Matlab-like syntax that supports 
vector/matrix operations and interactive data and 
command access. In solving the aerodynamics 
problem, FLIGHTLAB introduces that each blade is 
divided into segments and the local inertial and 
aerodynamic loads at each blade segment is 
separately computed to model the load distribution 
along the blade. Here the FLIGHTLAB code also 
uses a uniform inflow model as the way how to 
predict the aerodynamics performance of the rotor 
blade helicopter. 

  
The most comprehensive computer code for 
helicopter analysis might be given by CAMRAD II3, 

4, 5. This code incorporates a combination of 
advanced technology, which including multibody 
dynamics, nonlinear finite elements, and rotorcraft 
aerodynamics. As result the code provide the 
capability for the design, testing, and evaluation of 
rotors and rotorcraft at all stages.  The aerodynamics 
rotor blade analysis was developed by using a lifting 
line theory supported by a sophisticated wake 
analysis to calculate non uniform induced velocities. 
Here one has an option to use either Rigid, prescribed 
or free wake geometry.  

 
Present work was intended to develop computer for 
the aerodynamics analysis of rotor blade helicopter in 
forward flight. The code used a combination 
Momentum Theory and The blade Element Theory6, 7, 

8 where the inflow was assumed to be uniform. The 
inflow ratio was calculated by using the Momentum 
Theory with given an initial value for the thrust 
coefficient CT0. This inflow ratio, then, will be used 
as input for the blade element theory in determining 
the aerodynamics load along blade span. This is 
carried out through  superimposed the inflow velocity  

with the incoming free stream velocity, rotor blade 
rotational speed and the velocity generated by the 
blade coning angle β(Ψ). As the resultant velocity at 
each blade section was obtained then the effective 
angle of attack at that section can be found. Hence 
local lift and drag at each blade section by using a 
look up airfoil table can be obtained.  The thrust 
coefficient CT and torque coefficient CQ was, 
finally, easily obtained through integrating over span 
wise and azimuth position to represent the average 
value for one rotation of rotor. The obtained value of 
CT would not, of course, the same as the initial value 
CT0. Hence iteration process was required to update 
the of CT used in the Momentum Theory until result 
between two successive iteration would not exceed a 
certain prescribed value εct.  

 
For the assessment of the capability of the developed 
code, four test cases of two bladed rotor blade 
helicopters were studied. The blade was assumed a 
simple rectangular plan form with uniform cross 
section. The rotational speed of the rotor blade is 
fixed to 400 RPM, the blade radius is equal to 6 m 
and the chord length for the airfoil section is equal to 
0.4 m. The difference between one case with other 
case in term of twist distribution, the presence of 
coning angle and the aerodynamics data for the 
airfoil section.  

 
The result showed that the combined Momentum 
Theory and The Blade Element Theory could provide 
a fast solution in predicting the aerodynamics 
performance of the rotor blade helicopter. The 
iteration process is almost accomplished in less than 
10 iterations. A comparison with experiment result 
might require in order to assess the degree of 
accuracy of this approach. This suggested for the 
future work. 

 
II. Methodology 
      
2.1   Theoretical Background 
 
As mentioned in the previous subchapter, the present 
work used a combined two approaches: The 
momentum theory for predicting the inflow ratio 
whiles the Blade element theory for the detailed 
blade loading calculation. The detailed derivation of 
those two approaches can be found in Ref. 6 and 7.  

 
Strictly speaking, the momentum theory modeled the 
flow past through helicopter blade in forward flight 
as depicted in the Figure 2.1.  



 
Figure 2.1: Momentum theory of a rotor in forward 
flight (Leishman, 2000) 
 
For a given a thrust coefficient CT, the incoming 
velocity U∞ and  the disk plane angle  α accordingly 
the Momentum theory gives the inflow ratio λ  
governed by : 
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If the rotor rotational speed and the rotor blade radius 
are denoted by Ω and RB respectively. Hence, the 
advance ratio µ in above equations is defined as: 
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The term ΩRB is called as the blade tip speed Utip. 
 

The equation 1-1 represents the non linear equation 
in term of the inflow ratio λ.  Hence the solution for 
the λ needs to be done iteratively.  Using a Newton 
Raphson iterative method, the iterated value of λ at 
the nth iteration would be: 
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The initial value of the inflow ratio  0λ   for starting 
the iteration process is given by: 
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Here one can implement the criteria for finishing the 
iteration process by the following equation: 
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The ε represents a prescribed value which can be 
chosen arbitrary. It could be, normally, below 0.005. 
If the chosen value ε is set equal to 0.005, then the 
iteration process would be terminated at the 
difference value between two successive iteration 
results would not exceeded more than 0.5 %. 

 
The inflow ratio λ was obtained using above method, 
would be as input for the Blade element Theory. 
Basically, The Blade Element Theory is similar to the 
strip theory in fixed wing aerodynamics. The blade is 
considered as composed of a number of 
aerodynamically independent cross-sections, whose 
characteristics are the same as a blade at a proper 
angle of attack. In this respect, as the blade is 
assumed to be made of several infinitesimal strips of 
width ∆r. The lift and drag are estimated at the strip 
using 2-D airfoil characteristics of the airfoil at that 
strip accordingly to the local flow velocity.  It is, 
therefore, necessary to determine the magnitude and 
direction of the airflow in the immediate vicinity of 
the blade element under consideration.  

  
In forward flight, the incoming flow velocity U∞ to 
the   disk plane can be resolved into two  component 
velocities,  namely the component velocity parallel to 
the disk plane U∞// , and  the component velocity  
U∞┴ which is perpendicular to it.  Suppose that the 
motion of the rotor blade under consideration has a 
variable coning angle β.  As the blade rotates, the 
variation of the coning angle β as function of blade 
azimuth position Ψ can be written as: 
 
 ( )   sin  B     cosA      0 ββββ ++=Ψ   
      1-7 

 



The coefficient β0, A and B above equation are 
specified. Each rotor blade configuration might had 
their own values.  
In the presence of angular velocity of the blade Ω, 
induced velocity vi , and the variation of coning angle 
β(Ψ) combine all together with the incoming velocity 
produces a resultant velocity. This resultant velocity 
can be split into three component velocity. They are 
namely: the component velocity normal to blade 
leading edge line UT, the radial velocity UR and the 
out plane velocity UP. Those three component 
velocities, of course, would be function of blade 
azimuth position Ψ and the location of blade section r 
to the center of blade rotation. Figure 2 show the 
schematic diagram of velocities work on the rotor 
blade.  

 
Fig.2.2   Diagram Velocities over the rotor blade         

helicopter (Leishman, 2000) 

The three component velocities as mentioned 

above can be written, respectively as: 

( ) ( ) ( )ΨΨΩ+
∂

∂++= ∞  cos  R    
t

 r       v  αsin  U   U BiTTPp βµβ

      1-8a 
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                   1-8b 

 ( )  Sin   α cos     U  U TTPR Ψ= ∞   

      1-8c 

 Let consider a typical element or strip shown in 

the Figure 2.3.  

 
Figure 2.3: Velocity Diagram on the blade section 

(Leishman, 2000) 

This element has a pitch angle equal to θ. That is, the 

angle between the plane of rotation and the line of 

zero lift. Many rotor blades are twisted, so the pitch 

angle θ varies with r and it should be noted as θ(r).  

The blade sees an in-plane velocity UT, which 

represent the velocity in the direction of tangential to 

the plane of rotation. If there were no an out plane 

velocity U∞┴, and induced inflow vi, this angle 

would be the section angle of attack. Those two 

components of velocity U∞┴, and vi change the flow 

direction by amounts Φ, as shown in the figure 

above, namely, 
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Considering velocity components   equation 1-8a and 

1-8b for Up   and UT . The first equation described 

that the Up is uniform in radial as well as in the 

azimuth direction, which is opposite with the in plane 

component velocity UT. As result that the inflow 

angle Φ need to be presented as Φ(r,Ψ).   

The effective angle of attack effα  , then , can be 

defined as : 

 

 ( )  )(r,  -   (r) θ    Ψ r,α eff ΨΦ=   

                   1-10 

           

The airfoil lift and drag coefficients Cl ( effα ) and 

Cd ( effα ) at this effective angle of attack effα  may 

be looked up from a table of airfoil characteristics. 

The lift and drag forces will be perpendicular to, 

and along the apparent stream direction.  This 

effective velocity works upon the differential blade 

element ∆r,  creates  the differential lift ∆L(r,Ψ)  

and the differential drag ∆D(r,Ψ)  are given by : 
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Those two differential forces must be rotated in 

directions normal to, and tangential to the rotor 

disk, respectively,  and producing the differential 

thrust ∆T(r,Ψ) and the differential axial force  

∆Fx(r,Ψ)  as given below :  
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The differential torque Q∆ (r,Ψ)  and differential 

power P∆ (r,Ψ)   can be obtained , respectively , 

as : 

          ( )  r, F r    )Q(r, x Ψ∆=Ψ∆   

                  1-13a 

and  

( ) ( )Ψ∆Ω=Ψ∆Ω=Ψ∆ r, Q     r, F r    )P(r, x  

                                            1-13b 

      

Finally, the thrust T(Ψ) , torque Q(Ψ)  and power 

P(Ψ)  may be found by integrating ∆T(r,Ψ) , ∆Q(r,Ψ)  

and ∆P(r,Ψ) above from root to tip (r=0 to r=RB), and 

multiplying the results by the total number of blades 

Nb for a given certain blade azimuth position Ψ.  

They are namely:  
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The average thrust Tave, torque Qave and power Pave  

can be found by integrating T(Ψ) , Q(Ψ)  and ∆P(Ψ) 

from Ψ = 00  to  Ψ = 3600. as :  
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and 
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The above integration can, in general, be only 

numerically done since the chord c, the sectional 

lift and drag coefficients may vary along the span 

wise as well as in the azimuth direction. The inflow 

velocity vi depends on T. Thus, an iterative process 

will be needed to find the quantity vi.  The iteration 

process would be accomplished, if the difference 

value between two successive iterations for the 

average thrust coefficient  1i
TC +   and  i

TC   defined 

as:  

 ε    
C

 C  - C
1i

T

i
T

1i
T ≤+

+
     

                                            1-16 



 

In the right hand side above equation ε represents 

an arbitrary prescribed value which here may one 

can chose to be equal 0.005. 

  

2.2 Numerical Procedure. 
 

The implementation of the combined Momentum 
theory and the blade Element theory for the 
aerodynamics rotor blade helicopter analysis can 
be described as shown by the flow diagram as 
depicted in the Figure 2.4. 

 
Given rotor blade parameter geometry which 
involve: chord distribution c(r), twist 
distributionθ(r) , aerodynamic airfoil data for the 

blade section ( ( )     c α and ( )     c αd , Coning 

angle as function of blade azimuth position ( )Ψβ , 
blade radius and blade number.  The input for the 
flight condition involve: the incoming flow 
velocity U∞, the angle of attack with respect to the 
disk plane TPPα , and the rotational speed rotor 
blade NRPM. 
 
Introduce the initial value of thrust coefficient for 
starting calculation the induced velocity by solving 
the induced velocity equation derived from the 
Momentum Theory as given by Eq. 1.1. This 
equation represents the non linear equation in term 
of the unknown induced velocity, so an iteration 
process was required. It can be done by using 
Newton Raphson’s iteration Method. As the 
induced velocity available the effective velocity at 
each blade section r and the blade azimuth position 
can be calculated. The effective angle angle of 
attack, then, can be obtained and so the differential 
lift and drag by using look up table airfoil data can 
be found. Finally the total thrust, torque and power 
at each blade azimuth through numerical 
integration along blade span can be obtained. If the 
blade azimuth position over one revolution divided 
into NR number of blade azimuth position, then 
carried out the calculation rotor blade 
aerodynamics performance over those NR number 
of blade position. Sum up to those obtained Thrust 
coefficient and then the result divided by NR  
would give the average thrust coefficient. In a 
similar way for obtaining the average torque and 
power coefficient. 

 
III. Discussion and Result 

 

It had been identified that there are various factors 
influence the aerodynamics performance of the rotor 
blade helicopter. Among of those: the number of 
blade, blade airfoil section, twist distribution, chord 
distribution and the coning angle β as the blade 
rotates from one blade azimuth position to other. 
Another factors are, of course, the incoming 
velocities with respect to the rotor disk plane and the 
rotational speed of the rotor blade. 

 
For the purpose of assessment of the capability of the 
present method the following data which had been 
fixed, namely: 

 
1. Blade number  NB : 2  
2. Blade radius   RB  :  6  meters 
3. Uniform blade chord  c( r )  : 0.4 meter 
4. Rotational speed rotor blade  : 400 Rpm 
5. Angle of attack with respect to the rotor disk 

plane TPPα  = 80 
6. Number of blade element NBE : 40  
7. Number of division of blade azimuth position 

NR: 60 
8. Inner blade radius for starting the Blade Element 

theory applied  Ro = 0.1 meter  
The others required data to allow the present method 
to accomplish aerodynamics performance analysis 
can be considered as the test cases under 
investigation in this study. 

 
First test case:  

 
The blade was assumed to have a uniform pitch 
angle   8   (r) 0=θ . The aerodynamics characteristic 
of the airfoil section defined to follow as given in 
Ref. 6 as : 

 
  ( ) απα  2    =c  
       ( ) 2 0.65    0.025  0.1      ααα ++=dc    
                   1-17 

       α   in radian. 
 

The conning angle as function of blade azimuth 
position β (Ψ) is set equal to zero.  

 
The incoming velocity of forward flight had been 
selected to be 20 m/sec, 40 m/sec and 50 m/sec 
respectively.  With the rotor rotational speed at 400 
RPM and the tip to tip plane angle TPPα =80, would 
correspond to the advance ratio at µ = 0.111,   µ = 
0.111 and µ = 0.111. All calculations used the initial 
value for the thrust coefficient, CT0 = 0.002. The 
criteria of convergence between two successive 
iteration was defined by equation 1-16.  The 
aerodynamic performance for above rotor blade for 



three different values of velocity in term of thrust 
coefficient, torque coefficient and the required 
number of iteration were summarized as shown in the 
Table 1.  

 
                   
 

Table 1: Comparison result of thrust coefficient and 
torque coefficient at different velocity of the forward 
flight  
 
Figure 3.1 shows the comparison result of thrust 
coefficient as function of blade azimuth position for 
three different value of forward speed. While in term 
of torque coefficient as shown in the Fig. 3.2. 
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Figure 2 
 

Second test case : 
 
The following test case used a similar configuration 
of rotor blade in the previous test case. The 
difference with the previous case is in term of twist 
angle. If in the previous case there is no twist, now, 
the problem in hand the blade has twist angle. Here 
two types of twist angle are presented, they are 
namely: 1) ideal twist and 2) linear twist, are given 
respectively as: 

 
 

 Ideal twist   :   
r
θ

     (r) θ tip=    

   1-18a 
 

   And  
 

  Linear twist: r  θ     θ    (r) θ tw0 +=   
  1-18b 

 
 

For the ideal twist model, three values of pitch at 
the tip θTip had been selected, namely: Tipθ  = 80,  

40   and Tipθ = 20.  The problem in hand had been 
run at the forward speed 50 m/sec. The result in 

term thrust coefficient, torque coefficient and the 
required number of iterations as shown in the Table 
2 bellows: 

  
 

 
Figure 3.3 showed the comparison result for the 
thrust coefficient as function of blade azimuth 
position between an ideal twist and linear twist at 
the forward speed 50 m/sec. Both ideal and linear 
twist model have pitch angle at the tip Tipθ   = 2.0.  
The linear twist used Eq. 1-18b as the pitch 
distribution along span wise with 0

0 9  θ =    and    
0

tw 7-  θ =   . The comparison result of torque 
coefficients CT plotted as function of blade azimuth 
position between ideal and linear twist as shown in 
the Figure 3.4 
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Figure 3.3 

 

U∞ 
(m/sec) 

Advance 
ratio 

µ 

Thrust 
Coef. 

CT 

Torque 
Coef. 

CQ 

Iteration 
number 

20 0.079 0.00621 0.00511 12 
40 0.158 0.00682 0.00548 7 
50 0.197 0.00684 0.00546 6 

ΘTip 
Angle 
(deg) 

Advance 
ratio 

µ 

Thrust 
Coef. 

CT 

Torque 
Coef. 

CQ 

Iteration 
number 

8 0.197 0.01231 0.00780 6 
4 0.197 0.00477 0.00295 6 
2 0.197 0.00103 0.00057 6 
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Figure 3.4 
 
 

    Third test case: 
 

Here the blade had coning angle β which varying 
with respect to the blade azimuth position as 
adopted from Ref. 6.  

 
            ( ) ( ) ( )ΨΨ=Ψ sin  4 -   cos 4 -  6     000β   
              

The blade was assumed to have a linear twist as it 
was discussed in the second test case.  
The problem in hand was run under a similar 
condition as carried out to the first and second test 
case. Here the blade was assumed a linear twist as 
described in the second test case. Figure 3.5 
showed a comparison result of thrust coefficient as 
function of blade position between the rotor blade 
with and with out coning angle β. While in term of 
torque coefficient as depicted in the Figure 3.6.  
The average thrust coefficient for no coning angle 
was obtained  CTave  = 0.01424, while introducing a 
coning angle as given by Eq. 1-19 produced CTave   
=   0.01422    . This problem was run at forward 
speed  50 m/sec. 
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Figure 3.5 
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Figure 3.6 
 

The fourth Test case  
 

If the first to the third test case was assumed that 
the aerodynamics characteristic of the airfoil 
section was given by Eq. 1.17.  In term of  lift 
coefficient, Eq. 1.17 represents the aerodynamics 
characteristic of  an ideal airfoil. The fourth test 
case was introduced showed the influence of airfoil 
data to the solution. Here the blade was considered 
to use airfoil section NACA 23015, which follow 
Ref. 9, the aerodynamics characteristic for this 
airfoil are given by : 

 
 ( ) ( )214.0 -   0.0188 - 1.5      c αα =       for    015    >α  

 ( ) ( )2  - 0.14  0.0188 - 1.5      c αα = for    00 15      10 ≤≤ α  

( )   0.11   0.10      c αα +=   for  00 10     10 - ≤≤ α  
                 1-20a 
 

and   
( ) ( )( )2

d 0.2 - αc  0.0055  0.007     α c +=  
for  00 10     10 - ≤≤ α  
                 

( ) ( )( )2
d 1.1 - αc  0.16 0.0125     α c +=  

                 1-20b 
 

The comparison result in term of thrust coefficient 
CT with respect to azimuth position for the case 
linear twist with the airfoil section characteristics 
Eq. 1-17 and Eq. 1-20 as depicted in the Figure 3.7, 
while in term of torque coefficient CQas shown in 
The Figure 3.8.  The coning angle β as given by 
Eq. 1-19 was imposed those analysis. Table 3 
showed the calculation result for the fourth test 
case for different value of  forward speed.  
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Figure 3.7 
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Figure 3.8 
 

U∞ 
(m/sec) 

Advance 
ratio 

µ 

Thrust 
Coef. 

CT 

Torque 
Coef. 

CQ 

Iteration 
number 

20 0.079 0.01304 0.01066 7 
40 0.158 0.01447 0.01155 6 
50 0.197 0.01501 0.01189 5 
 

IV. Conclusion and Future work 
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