
Jurnal Teknologi Maklumat & Multimedia 2(2005): 81-103

Standards and Tools in Production and
Maintenance of System Documentation

SHAHIDA SULAIMAN, NORBIK BASHAH IDRIS &
SHAMSUL SAHIB UDDIN

ABSTRACT

Implementation of a standard in a software development or maintenance
process will provide guidelines on how to conduct the activities in the phases
of software life cycle including the documentation to be produced. In
addition, the use of Computer-Aided Software Engineering tools or
workbenches can automate parts of documenting activities. Despite the
importance of standard and tools to be utilised, they are still not widely used.
Thus, software engineers still confront with the problems related to
documentation particularly system documentation. This paper presents the
result of a survey in Malaysia with the main goal to study software engineers'
current practice in production and maintenance of documentation based on
characteristic, behavior, belief and attitude. Finally, we highlight on what
kind of tools should be introduced, why it is introduced and when or how it
should be introduced to support the practice.

ABSTRAK

Pelaksanaan sesuatu piawai di dalam proses pembangunan atau pengubah-
suaian akan menghasilkan garis panduan bagaimana menjalankan aktiviti-
aktiviti di dalam fasa-fasa kitar hidup perisian termasuk dokumentasi yang
perlu dihasilkan. Di sam ping itu juga, penggunaanalat kejuruteraan perisian
berbantukan komputer atau 'workbenches' boleh mengautomasikan
sebahagian daripada aktiviti-aktiviti dokumentasi dengan lebih piawai.
Walaupun kepentingan piawai dan alat-alat tersebut boleh dimanfaatkan,
tetapi pembangun sistem masih tidak menggunakannya secara meluas.
Juruterajurutera perisian masih berhadapan dengan masalah-masalah
berkaitan dengan dokumentasi terutamanya dokumentasi sistem. Rencana ini
bertujuan untuk membentangkan hasil kaji selidik yang telah dijalankan di
Malaysia. Matlamat utama kajian adalah untuk mengkaji amalan semasa
juruterajurutera perisian di dalam penghasilan dan pengubahsuaian
dokumentasi berdasarkan sifat, tingkah laku, kepercayaan dan sikap. Basil
kajian juga dapat mengenat pasti apakah Jmts aoo yang ptrlu .~; keMpllta
diperkenalkan dan bila atau bagaimana ia harus diperkenalkan . untuk
menyokong amalan terse but.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Universiti Teknologi Malaysia Institutional Repository

https://core.ac.uk/display/11776917?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


INTRODUCTION

System documentation (SD) is an important source of software
understanding. Having system documentation, a system is easy to maintain.
According to Hoffer et al. (1999), SD is detailed information about a system's
design specification, its internal workings and functionality. In this study SD
includes analysis and design documents. SD should be produced and
continuously updated to evolve together with its software. However, most
available SD is almost always out-dated or even non-exist at all. On the other
hand, a thick set of documentation might be useless too, if such documents do
not serve the information required by software engineers particularly during
software maintenance. As a result, software maintainers still need to study the
source codes to accomplish their tasks.

In order to produce a tool that can serve software maintainers' needs in
documentation automation, we believe that the current practice of
documentation should be studied. Hence we conducted a survey towards 50
software engineers in Malaysia with the main goal to study their current
practice in production and maintenance of SD during software development
and maintenance based on four types of data elements: characteristic,
behavior, belief and attitude (Kendall and Kendall 1998). We also highlight
the questions that argue on what kind of tools should be introduced, why it is
introduced and when or how it should be introduced. We would like to
emphasise the word "should" instead of "can" because for an instance; what a
tool is claimed "can" do is sometimes not actually what a tool "should" do to
serve the users' needs. In the following sections we will discuss the
background, survey, analysis, findings and finally our conclusion.

BACKGROUND

Programmers spend 40 percent to 60 percent of their time reading the code
and attempting to comprehend its logic (Pigoski 1997). Without the assistance
of documentation, the percentage may be higher and directly lead to costly
software maintenance process. Furthermore, problems in software
maintenance are related to how much information is available from the
documents especially with respect to the architecture and design of a system.
A study stated that documentation being absent, out-of-date or at best
insufficient as the third major cause of maintenance problems (van Vliet
2000). While a survey found that the lack of documentation of applications
was in the second ranking of the three biggest problems related to software
maintenance process (Sousa and Moreira 1998). We highlight the problems
related to standard and tools in the following paragraphs.

A lot of CASE (Computer-Aided Software Engineering) tools can
support software engineers' activities throughout the whole Software
Development

82



Life Cycle (SOLC). Such fully integrated CASE tools will normally produce
a self-generated documentation that will be useful to maintainers.
Nonetheless most organisations do not use CASE tools to support all phases
of SOLC. "These reasons range from a lack of vision for applying CASE to
all aspects of the SOLC to the belief that CASE technology will fail to meet
an organisation's unique system development needs" (Hoffer et al. 1999).
Hence, software developers might just use a particular CASE tool to draw
diagrams that capture user requirements in the analysis and design phase of
SOLC but do not use code generators or Reverse Engineering (RE) utility
provided. Therefore, there is a lack of integration between the so and the
source codes. In addition, RE workbenches can re-document legacy systems
by parsing source codes of the subject system and visualise the artifacts in its
graph editor. Nevertheless, RE tools are still not widely used for some
fundamental difficulties: documents generated are too general or too detail,
lack of data needed by maintainers, and RE tools are inflexible (Canfora et al.
1991).

On the other hand, if CASE tools are not used at all, software
engineers may need to read through all the source codes again and transform
them into graphical notation. "This can be a tedious job, which requires
considerable concentration. It is all too easy for concentration to collapse, for
even a very short period and miss some vital piece of information" (Lincoln
1993). Besides, during initial development, documentation often comes off
badly because of deadlines and other time constraints (van Vliet 2000).
Programmers also dislike documenting system as this is seen as a rather
boring task compared to the excitements of creation in design and
implementation (Macro 1990).

Implementation of a standard such as those from DoD (us Department
of Defense) and IEEE (Institute of Electrical and Electronics Engineering) in
a software development or maintenance process is a good practice because
the standard will provide guidelines on how to conduct the activities in the
phases of software life cycle including the documentation to be produced.
Some of the standards provide the brief outlines on the contents of specified
documentation such as IEEE Std 1016-1998 that recommends practice for
Software Design Descriptions but some standards just describe the
documentation to be produced in general for instance DoD-Std- 2167 A.
However, most organisations in Malaysia do not apply any formal software
development methodology (Yahya et al. 2002). Indirectly it shows they
probably do not apply any documentation standards to be the guidelines in
producing or maintaining so. Therefore documents or so available are of
different formats.

Software needs to be maintained and evolves due to new
requirements, changes in environment or other factors. Software
maintainability is extremely crucial to ensure long lasting software evolution.
Documentation is indicated as one of the important factors in software
maintainability (Pigoski 1997).

83



Nevertheless, only the documentation for the first maintenance could be
reliable. The link between a program and its associated documentation are
sometimes lost during the maintenance process and this may be the
consequence of poor configuration management or due to adopting a "quick
fix" approach to maintenance (Sommerville 1997).

A number of surveys were conducted to study the problems in
software maintenance (Sousa and Moreira 1998; van Vliet 2000) and some
surveys such as by Sim et al. (1998) were conducted to study the features
required by software engineers in tools for software understanding. However,
there is no research has been done to study the role of standards and tools in
the current practice. Thus, our study will cover these issues.

THE SURVEY

The survey managed to derive the responses from 50 software engineers from
various industries and levels in Malaysia who are involved in software
development or maintenance project. Maximum of two software engineers
from the same company were allowed to answer the questionnaire. A pilot
study of the survey was conducted to 5 software engineers and the
questionnaire was refined. The survey was conducted bye-mailing some
software engineers who had liaison with the researchers. The questionnaire
file was attached to the e-mail and then forwarded to other software
engineers. In addition; some identified respondents were personally contacted
and distributed with the printed questionnaire by the researchers. This method
made the response rate higher and saved cost compared to the method of
contacting all organisations in a telephone directory.

The questionnaire was formulated based on the literature review and
discussions with some software engineers. It consisted of 35 questions (only 3
of them were open-ended questions) distributed into 3 sections: Section A:
Professional Background (AI - A14), Section B: System Documentation and
Standard (Bl - B16), and Section C: CASE tools (Cl - C5). Some of closed
questions provided "Others" as another option of answers in order to allow
respondent to provide the answer that never thought of. Some answers were
provided with "No Opinion" option to avoid the feeling of being forced to
agree with the answers provided. The questionnaire was quite comprehensive,
hence in following analysis and findings we only focus on the issues related
to the role of standards and tools in documentation production and
maintenance.

THE ANALYSIS

The following discussion will be based on four categories of element or data:
characteristic, behavior, belief and attitude. The data was analysed using
Statistical Package Software System (SPSS) 9.0 for Windows. The questions

84



without any response were considered missing except for certain filtered
questions, which required respondents to skip irrelevant questions.

CHARACTERISTIC

For this element, the survey identified properties of software engineers and
so. The respondents were from diverse job positions i.e. from technical to
management (see element Crl in Table 1). The data shows 16 respondents
were programmers or senior programmers (32%) and 14 respondents (28%)
were system analysts. While in management level, the cumulative frequency
was 13 respondents (26%). The distribution between the technical and
management people surveyed was almost 2 to 1. The respondents were from
wide range of industry (element Cr2 in Table 1) with most of them were from
software industry (32%), followed by telecommunication (20%), government
service (16%) and software consultancy (12%). Other category contributed
20% of those surveyed. In term of experience (refer element Cr3 in Table 1),
most respondents had involved in software development or maintenance for 1
to 5 years.

Regarding the usefulness of existing so provided to software
maintainers (Table 2, element Cr5), 38 respondents (76%) cited that it was
always useful. On the other hand, 7 of them (14%) viewed so provided was
not always useful and they almost "strongly agreed" with the reasons out-of-
date with the mean 4.67, almost "agreed" with the reason unreliable (4.17)
and incomplete (3.83), "agreed" with the reason misleading (4.00), almost
"normal" opinion towards low quality (3.20) and "normal" opinion towards
unorganised (3.00). When asked whether parts of so produced by CASE tools
were always useful (see Table 2, element Cr6), 21 respondents (84%) with
CASE tools experience said it was always useful. While only 4 respondents
(16%) said that it was not always useful with the "strongly agree" reason
(5.00), lack the data needed.

BEHAVIOR

Behavior element investigates on "what organisational members do" during
software development or maintenance in relation with documentation. From
the response on the number of projects, on average, the respondents are
involved in 3 maintenance projects and 2 development projects yearly.
Meanwhile, on average, a set of so was produced or modified for both
maintenance project and development project per year. Thus, 2 maintenance
projects and 1 development project were usually not provided with so yearly.

From Table 3 (element Bv6, question B5, B6 and B7), less than half
of the respondents (46%) were provided with a standard or company's own
template to write so in which only 5 respondents (22.7%) were provided with
documentation standard while the other 16 (72.7%) were only provided with

85



86



company's own template. Most ofthem (17 respondents, 73.9%) claimed that
they "always" followed the standard or template provided, 5 respondents
(21.7%) cited "sometimes" and 1 respondent (4.3%) cited "never". Regarding
the use of CASE tools (element Bv12), 24 respondents (49%) did not use
CASE tools, while 20 respondents (40.8%) used CASE tools partially and
only 5 respondents (10.2%) used CASE tools for the whole SOLC. Referring
to experience in using RE tools (element Bv13), only 3 respondents (6.5%)
had ever used the tools compared to 43 respondents (93.5%) without such
experience at all.

Regarding the software packages used to produce or maintain so, the
responses are ranked by the mean values and the usages are compared, as in
Table 4. Based on the table, it reveals that the respondents who used CASE
tools for tb& whole SOLC used most of the software packages; both word
processor and spreadsheet (3.00) and graphical tools (2.33), compared to the
other two groups. For the other two groups ("None" and "No, only part of
SOLC"), both mostly used word processors (2.81 and 2.79 respectively). The
former group used spreadsheet application more (2.08) than the latter group
(1.50), but used less graphical tool (1.62) compared with the latter group
(2.09).

Table 5 reveals that respondents without documentation standard or
template, produced or maintained less number of so (0.88 for development
and 0.80 for maintenance projects) and they faced more maintenance projects
without so yearly (1.96). Meanwhile, the respondents who were provided

87



88



89



with documentation standard produced and modified more SD (1.40 for
development and 1.00 for maintenance projects) and faced less maintenance
projects without SD (1.60) as compared to the former group. In addition,
those with companies' own template, produced and maintained the most
number of SD yearly (2.38 for both development and maintenance projects)
and the least number of maintenance projects not provided with SD (1.08).
We do not discuss on the "other" group.

The number of SD produced for new software development (see Table
6) is the highest (1.71) among software engineers who did not use CASE
tools at all followed by those partially used CASE tools (1.16) and fully used
CASE tools (1.00). On the other hand, the highest number of SD produced or
modified in software maintenance project contributed by software engineers
who partially used CASE tools (1.63) followed by those with no CASE tools
(1.29) and with CASE tools (0.50). Regarding the number of maintenance
project was not provided with SD, this phenomenon mostly occurred among
software engineers partially used CASE tools (2.61), while those fully used
CASE tools had the mean value 1.50 compared to only 0.95 of those without
CASE tools.

ATTITUDE

The element of attitude covers the issue of "what people in the organisation
say they want in a document generator or RE tools". This section will

90



investigate whether it is true that software engineers prefer graphical to
textual software representation in order to understand the software, and what
features are in favour that should be incorporated into a document generator
tool.

The analysis result is shown in Figure 1. The figure illustrates the
difference in the need of textual description versus graphical representation,
in which the mean of graphical representation of system is higher compared
to that of textual description. The mean of textual description of system
architecture or system and subsystem is 3.18 while 3.83 for the graphical
representation. The mean of textual description of modules or programs and
their relationships is 3.20 but 3.83 for the graphical representation.
Meanwhile, the mean of textual description of data flow is also lower (3.15) if
compared to that of data flow graph (3.72). The mean for textual description
of procedures or methods or functions is 3.27 whilst the mean for program
versus file cross-reference table is 3.14. The most needed features among all
are graphical system-subsystem flow and graphical representation of
components' relationships, which share the same mean value (3.83).

For other features like search utility, documentation layout generation,
applicatioiiIiiwide range of language, interactive browsers, and link between
source code and graphical representation; their means are 3.20, 2.93, 2.98,
2.93 and 3.29 respectively. All the features have the means within the range
of 2.00 (Less Required) to 4.00 (Required) which indicate that all features are
basically necessary to have but not the most demanded in the respondents'
point of view.

T-test was used to study the significance of difference in means. The
null hypothesis is "there is no significant difference between the means of
textual and graphical software visualisation". Table 7 reveals that all the three
pairs are able to reject the null hypothesis (less than 0.025).

BELIEF

The belief element ponders the issues related to what software engineers think
about the importance of SD, its standard or template, reasons to have
documentation standard or template, and reasons for not producing SD.
Element Bfl (see Table 8) reveals that the majority of respondents (33
respondents, 68.8%) strongly agreed that SD was important, while 14
respondents (29.2%) agreed, and only one respondent (2.1 %) was normal on
the issue. Regarding the importance of documentation standard or template,
element Bf3, majority of them stated "Yes" (98%) and strongly agreed with
the reasons to provide guidelines (4.64), communicate critical information
(4.56), communicate necessary information (4.53), standardise format of
documents (4.53) and organise documents (4.46). Surprisingly, there was a
respondent who was against the belief and stated "No".

91







Figure 2 illustrates the reasons for not producing SD. The top three
reasons were time constraints (4.30), commercial pressures (3.80) and SD not
requested by project leader or software manager (3.60). The other reasons
were because SD was not requested by customer and it was a tedious task,
which share the same mean value (3.40), costly to keep updated (3.30), a
boring task (3.20), done by other people and not interested, both with the
same mean (3.00). These mean values were based on Likert scale: I =
Strongly Disagree, 2 = Disagree, 3 = Normal, 4 = Agree and 5 = Strongly
Agree.

We compare the means based on the Likert scale, of the top five
reasons (see Figure 2) for not producing SD with the respondents' belief
towards the importance of SD as in Table 9. We do not discuss on the
"Normal" group, but only on the "Agree" and "Strongly Agree" groups. The
mean for "time constraints" reason is the highest for both groups compared to
other reasons in each group. But, comparing between the two groups
themselves, the mean of "Strongly Agree" group is 0.43 higher than that of
"Agree" group. The second highest reasons for "Agree" group are "not
requested by project leader or software manager" and "not requested by
customer" (sharing the mean 4.00 of scale "Agree"). On the other hand, the
"Strongly Agree" group cited the second top reason as commercial pressures
(3.86), followed by three other reasons: "tedious task" (3.47), "not requested
by project leader or

94



THE FINDINGS

Software engineers confront with more maintenance projects without SD
compared to development projects with the ratio of 2: 1. Despite their
perspectives on the importance of SD and standards to be followed (see Table
8), both software development and maintenance projects suffer from non-
existence of SD. On the other hand, software engineers tend to appreciate
existence of MY kinds of SD. This is because majority of them cited that SD
provided for existing software maintenance or parts of SD produced by CASE
tools were always considered useful to them regardless of their quality (see
Table 2).

Reasons for not producing or maintaining SD range from management
to technical issues. As stated by van Vliet (2000), the foremost reason for not
producing or maintaining SD is due to time constraints. This was inline with
our findings (Figure 2). We discuss only on the top five reasons and the mean
comparison according to the belief towards the importance of documentation.

95





Software is always developed or maintained within a specified schedule and
must be installed at customers' site as planned. This provides time constraints
and causes commercial pressures to software engineers. They tend to
emphasise more on producing the software and forget about the
documentation. The third and fourth ranked reasons were: not requested by
their superiors and customers respectively. Most customers are not aware of
the need to have documents as a complementary product to a software
system. Since customers do not request documentation, project leaders or
software managers do the same to their software engineers although they
believe in the importance of so to be produced or maintained together with
the software system. Sharing the fourth ranked reason previously mentioned
was the reason why software engineers did not produce or maintain so as it
was a tedious task.

Technically, documenting activities are tedious particularly when we
need to ensure the link between source codes and documents is always
updated. In addition, software engineers with stronger belief towards the
importance of so, tend to have more concrete reasons ("commercial
pressures" and "tedious tasks") besides the foremost reason "time constraints"
(Table 9). For this group of software engineers, they were almost "normal"
towards the reasons "not requested by project leader or software manager"
and "not requested by customer". Thus, it reveals that these software
engineers have better perspectives towards documentation, and do not simply
neglect production of documentation or give a weak reason such as
"Although I know I should do, I don't do because I'm not requested to do".

Single or integrated CASE tools that cover the whole SOLC (like
Oracle Designer and Developer, Rational Rose integrated with Visual Basic)
should be able to lighten software engineers' work hence eliminate the
problems related to so. Most development tool suite or package's latest
version like Visual Basic and Borland JBuilder provide the utility to
document components of a software system in the development environment
itself. As a result, the use of CASE tools (fully or partially) can make
software engineers assume the data they feed into a CASE tool during
software development can be referred as an alternative to documentation
especially if they employ rapid application development or extreme
programming in their software development or maintenance. This is
supported by the fact that most of them (21 of 25 software engineers with full
or partial CASE tools experience) found the parts of documents provided by
CASE tools were useful (Table 2).

On the. other hand, software engineers without CASE tools tended to
put best effort to produce documents in development projects (Table 6). The
same scenario occurred when producing so for software maintenance in
which software engineers who used CASE tools for the whole SOLC
produced or maintained less so as compared to the other two categories.
Consequently, software engineers who used CASE tools (fully or partially)
faced a higher number of software development or maintenance projects
without so compared



97



with those without CASE tools. In this case, the use of CASE tools does not
seem to be able to solve problems in SO as always expected. Besides the use
of CASE tools, software engineers used software packages like word
processor, spreadsheet application and graphical tool to produce or maintain
documents (Table 4). We expected those without CASE tools or partially
used CASE tools, used software packages the most. But our study shows that
the two groups used less software packages if compared to the group with
CASE tools for the whole SOLC. Based on previous discussion on the use of
CASE tools, software engineers without CASE tools or partially use it tend to
produce less so, hence they also use less software packages to document
software system.

Software engineers believed in the importance of so particularly to
provide guidelines and also the enforcement of standard or template while
writing so (Table 8). Despite the belief, more than half of software engineers
were not provided with standard or template by their companies (Table 3).
Only 5 software engineers were provided with documentation standard while
16 software engineers were provided with company's own documentation
template. When enforced to follow the standard or template in writing SD,
most software engineers tended to "always" follow them and only some
software engineers "sometimes" followed them (Table 3). In addition,
software engineers with documentation standard or template tended to
produce or maintain more so compared to those without it (Table 5).
Consequently, the former group of software engineers faced less maintenance
project without so compared to the latter.

Some CASE tools like Rational Rose provide the utility to reverse
engineer existing source codes into the design level. However, this tool will
work well if software engineers start with the analysis and design using the
tool and the coding is done using the integrated development tool. Otherwise,
the tool will visualise the class diagrams only without detail information on
the relationships of the components such as the function calls. Rational Rose
also provides a documentation environment called SOOA but this utility is
not linked with RE utility. Hence documentation still must be done manually
(with some automation of components' description) to capture the diagrams
done during analysis and design. Despite the existence of single RE tools or
workbenches, they are still not widely used in Malaysia. In fact the difference
between RE tools and CASE tools with RE facility is still unclear. For
instance there were two respondents specified Visual Modeler (wrongly
thought as single RE tool, in fact it is just like Rational Rose but specially
dedicated for Visual Basic) and Rational Rose respectively, as a single RE
tool experienced. Only three out of 46 respondents claimed to ever use a
single RE tool. One of them specified CASE Tool 2 (never identified in our
literature review) while another two software engineers did not specify the
tools' names. Hence the three respondents' experience towards RE tool is still
a question.

98



RE or document generator tools should have the features required by software
engineers otherwise the data served by the tools might not be useful. The
study discovered that graphical representation was preferred more than
textual representation, and the difference in the three types of features
identified in the study (system-subsystem architecture, data flow graph and
call graph - see Figure 1) was significant (Table 7) for each feature compared
to its textual counterpart.

WHAT, WHY, WHEN AND HOW TOOLS "SHOULD" SUPPORT THE PRACTICE

From the findings we summarise what, why, when and how tools "should"
support (not "can" support) the practice in production and maintenance of SD.

a) What tools should support?
Both documentation and enforcing a standard while wntmg it are
important. Thus, a tool that can, visualise the software artifacts
particularly with features specified by software engineers in this

study, and some features highlighted in our previous work (Sulaiman et al.
2002) into a standardised documentation template should be
introduced. The toot should focus on production of documents related
to the analysis and design of a system, which are crucial to software
maintainers.

b) Why tools should support?
From the reasons for not producing or maintaining SD, in our study, it
shows that tools should support documentation because software
engineers frequently face time constraints and commercial pressures
in their projects. The tools should also attempt to make
documenting activities interesting, easy and fun in order to eliminate
problems related to negative perspectives

towards documenting activity.
.

c) When tools should support?
From the findings in this study, at least one set of SD was not

produced during development stage yearly. Hence, it shows that tools to
automate documenting activities should be introduced since software
development, and should be continuously utilised in the following
maintenance . processes. Regardless of what tools software engineers
use to perform analysis, design and coding, the tools should be an
alternative to produce the most updated SD. In an SDLC of a software
development or maintenance process, the tools should be used after
each implementation phase when there is no more changes to be

made, in other word, when the version or revision of the software has been
released.

99



d) How tools should support?
If document generator tool is introduced early in the development
stage, the tool will be able to capture the knowledge from software
developers regarding the clustering of the components in the software.
Subsequently, the written source codes can be parsed during reverse
engineering process, and the captured software artifacts can be
visualised or viewed and also printed into a standardised document
template, configured and archived into softcopy for future use. If
the tool is used only when software is on a maintenance stage,
software engineers need to study the existing software components
to suggest how to cluster them before other steps can be taken. This
may eliminate the weaknesses in the current tools studied by Sulaiman
and Idris (2002).

Therefore there is a difference between "can" and "should" as discussed
earlier. A tool that is claimed "can" perform certain task might not satisfy
users' needs if they do not accomplish the tasks they "should" perform. Based
on the above arguments, we illustrate how CASE tools or workbenches, and
also documentation standards can play their roles within a software life cycle
as illustrated in Figure 3.

100



The dotted lines show the phases when the documentation
environment should intercept. At these levels, source codes are in the most
reliable and updated condition where there is no more changes and software
is released. In the documentation environment, the shaded rectangle
represents a document generator which is developed using an enhanced
approach of software visualisation (as discussed in a previous work by
Sulaiman and Idris 2002). Prior to generating a document, a user is required
to feed in the name of programs and clustering information of the programs
specified. The existing parser will parse the source codes and then the
software artifacts will be retained in a software repository. The document
generator will extract related information from the repository including the
clustering details that are tagged with the parsed software components and
generate the documents to be viewed and printed based on the document
template or queries specified by the user.

CONCLUSION

The study implies that both standards and tools play very significant roles in
order to improve the current practice in production and maintenance of
documentation particularly system documentation. Despite software
engineers' belief on the importance of SD, they still do not produce SD during
software development or maintain SD during software maintenance for the
top two reasons: time constraints and commercial pressures. Besides, the use
of software packages, CASE tools or workbenches like RE, does not provide
total solution to the problems related to SD. However the use of both
standards and tools in an organisation tends to increase the number of SD
produced or maintained. Although an organisation does not employ any
documentation standard, software managers should at least provide a
documentation template and then they can slowly enforce a suitable standard
in their documentationrelated activities.

On the contrary, a tool may be useless if it cannot satisfy users' needs.
Thus we emphasise on what, why, when and how tools should support the
practice based on our study, to provide a guidance to CASE tools developers.
In a nutshell, we believe the documentation practice can be improved by
using a document generator tool integrated with a RE technology in a
standardised documentation environment to assist software engineers in
documenting critical information during development and the following
maintenance processes, that is after an implementation phase in which source
codes are at the most updated level. Nevertheless, the functionalities of such
tools are still not widely understood and utilised by software engineers in
Malaysia. Hence we should increase the awareness of the need for the
effective tools to improve their current practice in production and
maintenance
of documentation in general, and SD in particular.

101



REFERENCES

Canfora, G., Cimitile, A. and Carlini, U. 1991. A logic-based approach to reverse
engineering tools production. IEEE Transactions on Software Engineering

Hoffer, J. A., George, J. F. and Valacich, J. S. 1999. Modem systems analysis and
design. 2nd Ed. Reading, USA: Addison Wesley.

Kendall, K. E. and Kendall, J. E. 1998. System analysis and design. 4th Ed. London:
Prentice Hall.

Lincoln, A. D. 1993. Computer-aided documentation for software maintenance. lEE
Colloquium on Issues in Computer Support for Documentation and Manuals
169(7): 1-3.

Macro, A. 1990. Software engineering concepts and management. Hertfordshire,
UK:
Prentice Hall.

Pigoski, T. M. 1997. Practical software maintenance: best practices for managing
your software investment. Indianapolis, USA: John Wiley.

Sim, S. E., Clarke, C. L. A. and Holt, R. C. 1998. Archetypal source code searches: a
survey of software developers and maintainers. Proceedings of the Sixth
International Workshop on Program Comprehension, 24-26 June. Ischia,
Italy, 180-187.

Sommerville, I. 1997. Software engineering. England: Addison Wesley.
Sousa, M. 1. C. and Moreira, H. M. 1998. A survey on the software maintenance

process. Proceedings of the International Conference on Software
Maintenance, 16-20 November. Washington, USA, 265-274.

Sulaiman, S. and Idris, N. B. 2002. An enhanced approach of software visualization
in reverse engineering environment. Proceedings of the National Conference
on Computer Graphic and Multimedia (CoGRAMM'02), 7-9 October. Melaka,

Malaysia, 459-464.
Sulaiman, S., Idris, N. B. and Sahibuddin, S. 2002. A comparative study of reverse

engineering tools for software maintenance. Proceedings of the 2nd World
Engineering Congress, 23-25 July. Sarawak, Malaysia, 478-483.

van Vliet, H. 2000. Software engineering principles and practice. 2nd Ed. New York,
USA: John Wiley.

Yahya, Y., Mohd. Yusof, M., Yusof, M. and Omar, N. 2002. The use of information
system development methodology in Malaysia. International Journal of
Information Technology 2: 15-34.

Shahida Sulaiman
Pusat Pengajian Sains Komputer
Universiti Sains Malaysia
11800 USM Pulau Pinang Malaysia
e-mail: shahida@cs.usm.my

102



Norbik Bashah Idris, Shamsul Sahibuddin
Centre for Advanced Software Engineering (CASE)
Universiti Teknologi Malaysia City Campus
Jalan Semarak
54100 Kuala Lumpur
Malaysia e-mail:norbik@case.utm.my.shamsul@case.utm.my

103


