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List of abbreviations 
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H+H Hypoxia & hypercapnia (~60% O2 air saturation, ~0.1 kPa CO2) 

C_H+H Control for H+H incubation (~100% O2 air saturation, ~0.04 kPa CO2) 

HOx Hypoxia (~50% O2 air saturation, ~0.04 kPa CO2) 

C_HOx Control for HOx incubation (~100% O2 air saturation, ~0.04 kPa CO2) 

HCa Hypercapnia (~100% O2 air saturation, ~0.12 kPa CO2) 

C_HCa Control for HCa incubation (~100% O2 air saturation, ~0.04 kPa CO2) 

 

Tissues: 

M Mantle  F Funnel 

SH Systemic heart  BH Branchial hearts 

 

Physiological parameters: 

ATP Adenosine-5’-triphosphate  ADP Adenosine-5’-diphosphate 

AMP Adenosine-5’-monophosphate  Arg Arginine 

PCO2 CO2 partial pressure   Pi Inorganic phosphate 

PLA Phospho-L-arginine  PO2 O2 partial pressure   

∆G/∆ξ Gibbs free energy change of ATP hydrolysis 

 

Chemicals: 

EDTA Ethylenediaminetetraacetic acid NTA Nitrilotriacetic acid 

PCA Perchloric acid  TRA Triethanolamine 

 

Others: 

CE Capillary electrophoresis  ETS Electron transport system 

SD Standard deviation 
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Abstract 
 

Two major factors that will change due to climate change are ocean oxygen and CO2 

content. To assess possible consequences for cephalopods, which are considered 

especially vulnerable to these changes, the effects of hypoxia and hypercapnia on 

the common cuttlefish Sepia officinalis were studied in a laboratory experiment.  

Muscle and heart samples of cuttlefish incubated under simultaneous hypoxia and 

hypercapnia were compared to samples of earlier experiments where S. officinalis 

was exposed either to hypoxia or hypercapnia. The incubations lasted at least five 

weeks and for each treatment a corresponding control incubation with the same 

number of replicates was run in parallel. Concentrations of different metabolites of 

aerobic and anaerobic metabolism (arginine, phospho-L-arginine, octopine, ATP, 

ADP, AMP, inorganic phosphate) were measured in muscular mantle, funnel, 

systemic heart and branchial hearts. If possible, succinate concentration, intracellular 

pH, PCO2 and bicarbonate concentration were determined and free ADP and AMP 

concentrations and Gibbs free energy change of ATP hydrolysis were calculated. 

Blood pH, PCO2 and bicarbonate were measured during exposure to hypoxia and 

hypercapnia as well as in the respective control. 

In the funnel, hypoxia caused a decrease of octopine and inorganic phosphate, while 

phospho-L-arginine, ATP and ADP increased. Hypercapnia caused a decrease in 

arginine, phospho-L-arginine and ATP of funnel tissue. During simultaneous hypoxia 

and hypercapnia, intracellular PCO2, AMP and ADP were elevated in the mantle 

tissue. Intracellular pH was reduced, but free AMP, free ADP and Gibbs free energy 

were not affected. Blood PCO2 and bicarbonate increased during simultaneous 

hypoxia and hypercapnia, while blood pH was reduced. Parameters of systemic heart 

and branchial hearts were not affected by any of the incubations and the metabolite 

concentrations were generally lower in hearts than in mantle or funnel.  

Results indicate that S. officinalis is able to acclimate to long-term exposure to 

moderate levels of hypoxia and hypercapnia. Blood oxygen supply was secured. 

Survival could have been supported by a hypoxia-induced metabolic depression, but 

the exact triggering mechanism is still unknown. The differences between the tissues 

reflect the different activity patterns of the tissues. The absence of effects in systemic 

heart and branchial heart was maybe caused by low test power, but could also reflect 

the essential role of these tissues in the distribution of oxygen inside the body.
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Zusammenfassung 
 

Zwei wichtige Faktoren, die sich im Zuge des Klimawandels verändern werden, sind 

Sauerstoff- und CO2-Gehalt der Ozeane. Cephalopoden werden als besonders empfindlich 

gegenüber solchen Veränderungen erachtet. Um die möglichen Konsequenzen für diese 

Tiergruppe abzuschätzen, wurden die Effekte von Hypoxie und Hyperkapnie auf den 

gemeinen Tintenfisch Sepia officinalis untersucht. 

Muskel- und Herzproben von Tintenfischen, die simultan Hypoxie und Hyperkapnie 

ausgesetzt wurden, wurden mit Proben von Tieren verglichen, die in früheren Experimenten 

entweder Hypoxie oder Hyperkapnie ausgesetzt wurden. Jede Inkubation dauerte 

mindestens 5 Wochen und für jede Behandlung gab es eine parallele Kontrolle mit der 

gleichen Anzahl von Replikaten. Die Konzentrationen verschiedener aerober und anaerober 

Metabolite (Arginin, Phospho-L-Arginin, Octopin, ATP, ADP, AMP, anorganisches Phosphat) 

wurden in Mantel, Trichter, systemischen Herz und Kiemenherzen gemessen. Wenn möglich 

wurden die Succinatkonzentration, intrazellulärer pH, PCO2 und die Bikarbonatkonzentration. 

Zudem wurden wenn möglich die Konzentration von freiem ADP und freiem AMP sowie der 

Energiestatus (Gibbs free energy of ATP Hydrolysis) berechnet. Blut pH, PCO2 und 

Bikarbonatgehalt wurden in der unter Hypoxie und Hyperkapnie inkubierten Tieren und der 

entsprechenden Kontrolle gemessen. 

Hypoxie verursachte eine Reduktion der Konzentrationen von Octopin und anorganischem 

Phosphat im Trichter, während Phospho-L-Arginin, ATP und ADP erhöht waren. 

Hyperkapnie löste eine Verringerung der Konzentrationen von Arginin, Phospho-L-Arginin 

und ATP im Trichter aus. Unter simultaner Hypoxie und Hyperkapnie stiegen intrazellulärer 

PCO2, AMP und ADP im Mantelgewebe an. PCO2 und Bikarbonat im Blut stiegen an, 

während der Blut pH konstant blieb. Keine der Inkubationen hatte einen Einfluss auf die in 

den Herzen gemessenen Parameter, jedoch waren die Metabolitkonzentration in den Herzen 

niedriger als im Mantel oder im Trichter. 

Die Ergebnisse lassen vermuten, dass S. officinalis sich an eine langanhaltende Hypoxie 

und Hyperkapnie anpassen kann. Die Versorgung mit Blutsauerstoff war sichergestellt. Das 

Überleben wurde möglicherweise durch eine Reduktion der Stoffwechselaktivität unterstützt, 

jedoch ist der genaue Auslösemechanismus noch unbekannt. Die Unterschiede zwischen 

den Geweben spiegeln die verschiedenen Aktivitätsmuster der Gewebe wieder. Das Fehlen 

von Effekten auf das systemische Herz und die Kiemenherzen könnte aus einer geringen 

statistischen Teststärke resultieren oder die entscheidende Rolle der Herzen für die 

Sauerstoffverteilung im Körper wiederspiegeln. 
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1 Introduction 
 

1.1 A changing ocean 

Within the last decades, the world’s oceans have faced rising water temperatures as 

well as decreasing O2 and increasing CO2 content (Caldeira & Wickett 2003, Meehl 

et al. 2007, Diaz & Rosenberg 2008). Average sea surface temperature (SST) is 

expected to rise by 1.5-4.0°C until the year 2100 ( Meehl et al. 2007). Rising 

temperatures do and will cause changes in the latitudinal distribution and migration of 

marine species (Sims et al. 2001, Beaugrand et al. 2002, Perry et al. 2005, Zeidberg 

& Robison 2007). The distribution changes reflect the thermal window of the species, 

which defines the temperature limits for survival (critical temperature, Tcrit) and 

optimal performance (pejus temperature, Tp). Frederich & Pörtner (2000) showed that 

these limits are often set by a species’ ability to maintain a sufficient O2 supply. This 

can either be impaired by the increasing metabolic rates and oxygen demands 

caused by increasing temperature (Q10) or by reduced oxygen transport capacity of 

the circulatory system due to temperature changes (Pörtner 2001). This concept of 

“oxygen & capacity-limited thermal tolerance (OCLTT)” points out possible severe 

influence of climate change on marine species for increasing water temperatures can 

not only impair oxygen supply but additionally reduces ambient water oxygen content 

(Pörtner 2010). 

 

1.1.1 Oxygen  

The solubility of O2 in water is temperature dependent and rising SSTs will reduce 

the amount of oxygen in the upper water layers. At 15°C the oxygen concentration of 

saturated seawater at sea level (35 psu, 101.325 kPa) is 248 µmol*L-1. At 20°C the 

concentrations is only 225 µmol*L-1 (Boutilier et al. 1984). Decreasing ocean oxygen 

concentrations (hypoxia) have already been reported and they are usually confined 

to well-defined areas or timescales (Whitney et al. 2007, Diaz & Rosenberg 2008). 

The sizes of these areas can vary over several magnitudes and their occurrence can 

be infrequent, periodic or permanent (Diaz & Rosenberg 2008, Stramma et al. 2008). 

Generally, water bodies are termed hypoxic, if their oxygen content lies below 10 

µmol*L-1 (Gray et al 2002). Hypoxic events are most often found in neritic bottom 

waters or in oceanic waters between 200 m and 800 m depth (Fig. 1.1) (Helly & Levin 

2004, Diaz & Rosenberg 2008, Stramma et al. 2008). Their occurrence is typically 



2 

connected to a previous plankton bloom in the overlying surface waters (Diaz 2001). 

Increasing SSTs (see above) furthermore support the development of hypoxic zones, 

as they reinforce stratification and thus prohibit the convection of fresh (O2-rich) water 

to deeper layers. 

Hypoxic events have become more frequent and severe in the last decades and this 

trend is expected to continue (Diaz 2001). One, if not the main reason for this, is the 

increasing nutrient influx from land caused by human activities (Cloern 2001, 

Dethlefsen 1983, Diaz 2001). A clear correlation between the density of human 

centers along the coast and the accumulation of hypoxia zones can be seen (Fig. 

1.1). In the future, hypoxic events are expected to become more frequent, more 

severe and to last longer (Diaz & Rosenberg 2008). This development is expected to 

have strong effects on individual marine organisms as well as on complete 

ecosystems (Diaz 2001). 

 

 
Fig. 1.1: Global distribution of eutrophication associated hypoxic systems compared to the human 
influence on the terrestrial environment. White cycles represent hypoxic systems. The color of the land 
areas indicates the human influence on the respective area. The influence is shown as “human 
footprint” (given as %), which was defined by Sanderson et al. (2002). A clear correlation becomes 
evident between the strength of the human footprint and the occurrence of hypoxic systems. Figure 
adopted from Diaz & Rosenberg (2008). 
 

1.1.2 CO2 & pH 

Anthropogenic CO2 emissions have caused an increase in the partial pressure of 

carbon dioxide (PCO2) at the ocean surface from the preindustrial (year ~1750) value 

of 0.028 kPa to the present value of 0.04 kPa (Orr et al. 2005). By the year 2100 a 

PCO2 of 0.07-0.113 kPa will be reached depending on the applied scenario (Meehl et 

al. 2007). A situation of elevated PCO2 is generally termed hypercapnia. In earth 

history, organism usually had enough time to evolve adaptations to the changing 
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conditions, as similar changes in atmospheric PCO2 took at least several millennia 

(often millions of years), but the rapid CO2 rise observed at present will probably 

have severe consequences for various marine species (Pearson & Palmer 2000). 

The major factor of ocean chemistry, which is affected by the dissolution of 

atmospheric carbon dioxide, is the seawater pH. Sea surface pH has already 

decreased from a pH of 8.2 in 1750 (preindustrial) to the present value of ~8.05-8.00. 

In 2100, a sea surface pH of 7.8-7.75 is expected (Caldeira & Wickett 2003). The 

change in pH will be most pronounced and fastest in the surface layers, because of 

the direct interaction with the atmosphere (Caldeira & wicket 2003). Besides the 

accumulation of atmospheric carbon dioxide, an increase in water PCO2 can also be 

caused by the aforementioned process of eutrophication (see 1.1.1). The O2 

dependent degradation of organic matter in deeper water layers or on the seafloor 

sets free large amounts of CO2 and thus causes hypercapnia. This can result in CO2 

partial pressures exceeding 0.10 kPa in the respective area (Rosa & Seibel 2008, 

Melzner et al. 2012). 

Hypercapnia affects various biological processes ranging from molecular transport 

mechanisms over metabolic regulation to complex behavior patterns (Rees & Hand 

1990, Pörtner et al. 2004, Munday et al. 2009). In interaction with other factors like 

hypoxia or increasing temperatures, the effects might be even stronger. In this thesis 

the focus lies on the effects of hypoxia and hypercapnia on the physiology of the 

cephalopod Sepia officinalis. To understand and assess these effects, however, it will 

be necessary to first understand the biological processes that could be affected. 

 

1.2 Cephalopod physiology 

Cephalopods are often considered the most highly evolved group of invertebrates 

and they are the only group that shows activity and performance levels, which are 

similar to those of fish or even higher (O’Dor & Webber 1991, Wells 1994, Rosa & 

Seibel 2008). Even less active species still display comparably high metabolic rates. 

In the mostly bottom-dwelling cuttlefish Sepia officinalis, O2 consumption at rest lies 

between 0.077 and 0.094 µmol O2*g
-1*min-1 (body mass: 105 g, 17°C) (Johansen et 

al. 1982b, Wells & Wells 1991, Melzner et al. 2006b). However, the rising activity 

levels, as well as their highly developed nervous system (Packard 1972) also strongly 

increased the energy demands (Wells 1994). 
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Cephalopods have evolved several morphological adaptations to fulfill their high 

oxygen requirements. Gill surface area per gram increased, while thickness of the 

blood-water barrier decreased (Wells 1994). In cuttlefish and many coastal squid 

species, locomotion and ventilation are uncoupled by the use of lateral fins for 

movement. This means that contractions of the muscle mantle, which maintain 

locomotion by jet-propulsion in squids, can be greatly reduced (Wells 1994). This 

reduces energy costs and also increases O2 extraction from the ventilatory water 

current. In S. officinalis, oxygen extraction from ambient water at 17°C is ~ 70% 

(Melzner et al. 2006b), whereas in squids the extraction does rarely exceed 10% 

(Wells et al. 1988, Shadwick et al. 1990). Unlike other molluscs, cephalopods have a 

closed high-pressure vascular system to distribute the O2 taken up by the gills (Fig. 

1.2). In addition to the systemic heart (SH), which distributes the O2-rich blood in the 

body, it includes two branchial hearts (BH), which receive the O2-poor venous blood 

and create the pressure to pump it through the gills (Schipp 1987). Venous blood 

transport can be supported by ventilatory mantle contractions (Melzner et al. 2007a). 

 

Fig. 1.2: Vascular system of 
the common cuttlefish Sepia 
officinalis. View from the 
ventral side. Major blood 
vessels are shown. O2-rich 
blood is shown red; O2-poor 
blood is shown blue. Black 
and white arrows indicate 
the flow direction of O2-rich 
and O2-poor blood, respect-
tively. SH = systemic heart, 
BH = branchial heart, G = 
gill, AC = Aorta cephalica, 
VCC = Vena cava cephalica. 
Figure adopted from Schipp 
(1987) and changed. 

 

Generally, cephalopods need higher metabolic rates than fish of similar activity to 

reach the same performance level (reviewed by O’Dor & Webber 1991). This is 

mainly attributed to their mollusc heritage, which sets constraints to their circulatory 

system and thus oxygen supply (Wells 1994). 

 

1.2.1 Blood physiology 

The oxygen carrying capacity of cephalopod blood (1-2 mmol*L-1) is clearly below 

that of fish blood (4-5 mmol*L-1) (Pörtner 1994). The reason for this is the use of 
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freely dissolved hemocyanin as an O2-carrier in molluscs (Mangum 1990). In 

vertebrates, the blood pigment hemoglobin is highly concentrated inside the 

erythrocytes. Cephalopods lack such blood cells and the concentration of the free 

pigment in the plasma directly affects blood viscosity (Mangum 1990, Pörtner 1994). 

Therefore, the blood concentration of hemocyanin is limited to 150 mg protein per 

mL, which is still the highest known blood concentration of hemocyanin known so far 

(Pörtner 1994, Strobel et al. 2012). To counteract the problem of viscosity, 

cephalopods have evolved a hemocyanin protein with eight domains, each consisting 

of ten subunits. Each subunit is able to bind one O2-molecule (Miller 1994). Therefore 

80 O2-molecules can be carried by only one hemocyanin protein that affects 

viscosity. Additional O2 supply (up to 50% of total O2) by skin respiration has been 

reported for squids (Pörtner 1994, 2002). Data on cutaneous respiration are lacking 

for other cephalopods but were estimated to contribute up to 25% of total O2 in S. 

officinalis (Melzner et al. 2006b). 

Most of oxygen bound in the blood is extracted from the blood on its way through the 

body leaving only a small venous reserve (Johansen et al. 1982a, Wells 1994). The 

size of the reserve seems to depend on the activity level of the species. In S. 

officinalis venous blood is still 19% saturated with O2 at 20°C (Zielinski et al. 2001), 

whereas the venous hemocyanin of the highly active northern shortfin squid Illex 

illecebrosus is < 5% saturated at 15°C (Pörtner 1990). This is enabled by the strong 

Bohr-effect of the cephalopod hemocyanin (Bohr-coefficient < -1) (Pörtner 1994). The 

Bohr-effect describes the pH dependent oxygen affinity of the blood pigment. The 

affinity of the hemocyanin subunits is closely correlated to the surrounding pH. At a 

low pH, the concentration of protons (H+) is high and the protons bind to histidine 

groups of the hemocyanin. This causes a reduction of the hemocyanin O2-affinity. 

Protons are taken up during the release of oxygen by hemocyanin. Because the 

protons used here derive from the bicarbonate system in the blood, their uptake and 

release also affects the dissociation equilibrium of CO2/HCO3
-. A release of O2 

thereby decreases the H+-concentration and shifts the equilibrium from CO2 + H2O 

(H2CO3) towards HCO3
- + H+ (Pörtner 1994). As a consequence, more CO2 e.g. from 

the tissue can be taken up into the blood. A Bohr-coefficient < -1 means that per mol 

O2 released by hemocyanin, more than 1 mol H+ is taken up. Thus, already small 

drops of the blood pH (pHe) can strongly reduce oxygen affinity of the hemocyanin. 

Generally, the maximum oxygen carrying capacity of the hemocyanin decreases with 
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decreasing pHe according to the Root-effect (Bridges 1994). The increase of the 

bicarbonate concentration and CO2-flow into the blood due to the O2-dependent 

proton exchange at the blood pigment is termed the Haldane-effect and its strength is 

proportional to the Bohr-effect (Wyman 1964, Pörtner 1994). The cooperativity of the 

hemocyanin subunits ensures that the released oxygen is not taken up again. 

pHe in cephalopods is around 7.4 and the affinity curve of the hemocyanin has its 

highest slope in this range (Pörtner 1990, Zielinski et al. 2001). This means that the 

cooperativity is highest in this range and that already small changes in pHe will 

strongly affect the O2-binding at the pigment. To ensure the O2-transport to the 

tissue, the arterial pHe in cephalopods therefore increases from the gills to the tissue 

due to the H+-uptake during deoxygenation caused by the strong Bohr-effect (Pörtner 

1994). In squids, an additional release of HCO3
- from the tissue into the blood further 

supports blood buffering and increases pHe (Pörtner et al. 1991). This is a contrast to 

the classical functioning of the Bohr-effect, which shall support the unloading of the 

hemocyanin at the tissue. Therefore, there has to be a decrease in pHe at the tissue 

to support oxygen-release. However, at Bohr coefficients < -1 the amount of CO2 

produced from blood oxygen respiration (1 mol O2 � 1 mol CO2) is insufficient to 

cause such a drop in pHe. Additional CO2 may be provided by cutaneous O2 uptake 

(Pörtner 1994, 2002) or (in S. officinalis) by O2-linked CO2 binding in the hemocyanin, 

which carries CO2 from the gills to the tissue (Lykkeboe et al. 1980).  

 

1.2.2 Aerobic metabolism 

The crucial role of O2 for cephalopod performance is also reflected in the metabolic 

pathways. Aside cytosolic glycolysis, energy (ATP) is mainly produced by the 

electron transport system (ETS or respiratory chain) of the mitochondria (Fig. 1.3) 

(Hoeger et al. 1987, Pörtner 1987). The Krebs-cycle produces most of the reduction 

equivalents (NADH+H+ / FADH2) for the ETS and is fueled by two major sources. The 

first source is the carbohydrate glycogen that is also considered being the major 

energy storage compound (Hochachka et al. 1975). Glycogen entering the glycolysis 

is metabolized to pyruvate and enters the Krebs-cycle as acetyl-CoA (Fig. 1.3).  

The second energy source is the large pool of free amino acids, especially proline, in 

the cytosol (Hochachka 1994, Lee 1994). Proline is found in very high concentrations 

and has also been proposed as the major energy source (Mommsen et al. 1982, Lee 

1994). Other major amino acids are aspartate, arginine and glutamate and there is 
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interconversion between them (Hochachka et al. 1975, Mommsen et al. 1982, 

Hochachka & Fields 1982). Before proline enters the Krebs-cycle, it gets oxidized to 

glutamate (Fig. 1.3). This step consumes ½ mol O2 per mol proline, which reduces 

the energy yield (Sacktor 1970, Hochachka & Fields 1982). Therefore, glycogen is 

preferred energy substrate, especially under oxygen limited conditions like hypoxia or 

high ambient temperatures (Mommsen et al. 1982, Hochachka 1994, Oellermann et 

al. 2012). When temperature decreases, the energy output of both pathways is 

reduced and succinate may act as an additional substrate, which is less temperature 

sensitive but also less efficient (Oellermann et al. 2012). The coupled catabolism of 

glycogen and amino acids increase the ATP production per mol O2 by 50% and thus 

strongly raises energy efficiency (Lee 1994).  

Rapid uptake of blood glucose has been proposed as another possible energy 

source, but low concentrations of the enzyme hexokinase, which is essential for fast 

glucose uptake, argue against this assumption (Hochachka et al. 1975). The cellular 

glycogen storages are supposed to derive from the conversion of the major amino 

acids to pyruvate followed by gluconeogenesis (Hochachka & Fields 1982). Fatty 

acids concentrations are very low and they are hardly used for energy production 

(Culkin & Morris 1970). A reason for this could be the higher O2 consumption during 

fatty acid metabolization. For cephalopods, oxygen is considered the limiting factor of 

performance (see above) and thus, it makes sense that they rely in energy sources 

that consume less O2 per produced ATP like carbohydrates or amino acids 

(Hochachka 1994, Oellermann et al. 2012).  

Different cephalopod tissues receive different amounts of oxygen. For example, the 

cephalopod mantle consists of three regions of muscles fibers for mantle contraction. 

The thin inner and the outer layers of the mantle (adjacent to the ambient or mantle 

cavity water) receive oxygen via cutaneous respiration and are strongly perfused by 

blood vessels. The muscle cells of these layers are densely filled with mitochondria, 

thus indicating large aerobic capacity (Bone et al. 1981). The muscle fibers of the 

central mantle are poorly perfused and display low mitochondria density. The fibers in 

the periphery are used for constant ventilator mantle contraction, which is maintained 

fully aerobic. The central fibers are used to create strong water jets during escaping 

or attack on prey. This burst activity is mainly fueled by anaerobic metabolism (see 

1.2.3). Another difference occurs between the systemic heart, which receives O2-rich 

blood from the gills, and the branchial hearts, which receive the O2-poor blood 
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returning from the body. The systemic heart has a more active energy metabolism, 

which is also reflected by higher enzyme activities (Driedzic et al. 1990, Oellermann 

et al. 2012). The branchial hearts consume less ATP and produce lower blood 

pressures, but have a higher hypoxia tolerance, while the systemic heart is 

considered obligatory aerobic (Wells & Wells 1983, Driedzic 1985). 

 

 
Fig. 1.3: Major metabolic pathways during aerobic and anaerobic metabolism in cephalopods 
(simplified, stoichiometry not correct). Red arrows represent reactions, which only take part during 
anaerobic metabolism. Red crosses indicate reactions, which do not take place during anaerobic 
metabolism. Metabolites in boxes accumulate during anaerobic metabolism. The blue box represents 
the Krebs-cycle. The vertical dashed line represents the border between mitochondrion (left) and 
cytosol (right). The transport of proline from the cytosol to the mitochondrion and the O2 consumption 
during proline conversion are not shown. Figure adopted from Pörtner & Zielinski (1998) and changed. 
 

Generally, aerobic metabolism is designed to create a constant supply of ATP for 

cellular functioning. This implies a steady-state situation with stable concentrations of 

ATP, ADP and AMP. The steady-state equilibrium may shift depending on the 

ambient conditions, but there is no accumulation of end products (Hochachka 1994). 

As a consequence, the energy status of the tissue (expressed as Gibbs free energy 

change of ATP hydrolysis, ∆G/∆ξ) is kept constantly high (Pörtner 1987). Gibbs free 

energy values under control conditions usually lie at -56 kJ*mol-1 in cephalopods 

(Pörtner et al. 1996, Melzner et al. 2006a). A value of -44.7 kJ*mol-1 is considered the 

critical value for cellular ATPase functioning and indicated the onset of muscle fiber 

contractile failure (Pörtner et al. 1996, Pörtner 2002). 
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1.2.3 Anaerobic metabolism 

Despite their sophisticated adaptations for the protection of aerobic metabolism, 

cephalopods regularly have to face situations when the O2 supply is insufficient (e.g. 

environmental hypoxia). Under these conditions cephalopods can resort to a well-

developed anaerobic metabolism to overcome such oxygen-limited situations (Storey 

& Storey 1979, Pörtner 1987, Grieshaber et al. 1994). Energy demands during fast 

jet-propelled swimming usually exceed the energy provision by aerobic metabolism, 

as this is limited by the O2-supply (Hoeger et al. 1987, Pörtner 1994, Finke et al. 

1996, see 1.2 & 1.2.1). A similar situation occurs during environmental hypoxia, when 

the energy demands are stable, but the O2 supply is reduced and less ATP can be 

produced.  

Anaerobic metabolic pathways help to resolve this impairment of energy demands, 

albeit creating an oxygen debt due to the accumulation of end products (Lewis et al. 

2007, Rosa & Seibel 2008). Anaerobic metabolism in cephalopods is based on the 

use of glycogen and phospho-L-arginine (PLA) and creates the anaerobic end 

product octopine + H+ (Fig. 1.3) (Grieshaber & Gäde 1976, Pörtner 1987). The proton 

actually derives from pyruvate formed during anaerobic glycolysis. The pyruvate is 

condensed with L-arginine from phosphagen mobilization yielding octopine, which 

means that per mol octopine (or pyruvate), 1 mol H+ is produced (Grieshaber & Gäde 

1976, Pörtner 1987). The production of protons supports the mobilization of the 

phosphagen and the transfer of the phosphate group yielding ATP. Although the 

phosphagen mobilization consumes protons (0.24 mol H+ per 1 mol PLA at pH 7.3, 

Pörtner 1987), the anaerobic metabolism causes a drop in intracellular pH (pHi), 

which is clearly correlated to the production of octopine + H+ (Pörtner et al. 1991, 

Pörtner et al. 1993). Other accumulating end products are α-glycerophosphate and 

NADH+H+ from the anaerobic glycolysis (Fig. 1.3). Due to the lack of oxygen, the 

mitochondrial ETS can no longer consume reduction equivalents and NADH+H+ is no 

longer shuttled into the mitochondria via α-glycerophosphate (Fig. 1.3) (Grieshaber & 

Gäde 1976, Pörtner 1987). Generally, anaerobic pathways provide less ATP than 

aerobic ATP production by the ETS. The aerobic metabolization of 1 mol glucose to 

CO2 + H2O provides ~36 mol ATP + ~18 additional ATP, if proline is metabolized in 

parallel (Hochachka et al. 1975, Storey & Storey 1983). The anaerobic degradation 

to intermediates like succinate does not create more than 4 mol ATP / mol glucose 

(Hochachka et al. 1975, Storey & Storey 2005). Therefore, glycolytic enzyme activity 
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is elevated during anaerobic metabolism to increase the ATP output (Finke et al. 

1996). Anaerobic metabolism is time-limited due to the depletion of energy storages 

(glycogen, PLA) and the accumulation of end products (Pörtner 1987). 

The net degradation of ATP during anaerobiosis results in a higher total ADP-

concentration, as well as a higher percentage of unbound ADP in the cytosol (Pörtner 

et al. 1993). AMP-concentrations increase too, with a higher fraction of AMP 

remaining unbound (Pörtner et al. 1993). The increase in free ADP and AMP affects 

enzymatic functions. It has been shown that free ADP enhances glycolytic enzyme 

activities (Storey & Storey 1978). The preferred way of PLA mobilization differs 

between cephalopod species. In the hypoxia-tolerant brief squid Lolliguncula brevis, 

total and free ADP stay almost constant during anaerobic metabolism and the use of 

PLA is mostly triggered by a drop in pHi (Pörtner et al. 1996, Pörtner 2002). In 

contrast, anaerobic metabolism causes only small intracellular acidosis in the longfin 

inshore squid Loligo pealei and PLA mobilization is mainly caused by a strong rise in 

free ADP while total ADP stays more or less constant (Pörtner et al. 1993, Pörtner 

2002). The accumulating inorganic phosphate (Pi) released during ATP-hydrolysis 

additionally enhances glycogen mobilization (Fig. 1.3) and thus provides fuel for the 

glycolysis (Pörtner & Zielinski 1998). The accumulation of NADH+H+ and octopine 

would usually inhibit glycolytic enzyme activities (Storey 1981, Pörtner et al. 1993), 

but the increase in free AMP overrides this inhibition and activates 

phosphofructokinase, which is a key enzyme of glycolysis (Storey & Storey 1983, 

Pörtner et al. 1993). The maintenance of proper glycolytic function during 

anaerobiosis by high free AMP levels is an exclusive feature of cephalopods (Storey 

& Storey 1983).  

As indicated by the accumulation of α-glycerophosphate (see above), hypoxia is not 

confined to the cytosol, but does also affect mitochondria (Pörtner 1987, Finke et al. 

1996). During hypoxia, the O2 supply is insufficient to ensure metabolization of 

Krebs-cycle and ETS intermediates. Thus, the intermediates accumulated and stop 

both pathways by product inhibition. The onset of anaerobic metabolism in the 

cytosol also seems to be triggered by mitochondrial hypoxia as shown in L. brevis 

(Pörtner 1995, Finke et al. 1996). One intermediate of mitochondrial anaerobic 

metabolism is succinate (Fig. 1.3) and acetate and propionate may accumulate 

during long-term anaerobic metabolism (Pörtner 1987, Grieshaber et al. 1994). All 

three metabolites derive from reactions of the Krebs-cycle, which utilize malate and 
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may also be fueled by proline degradation (Pörtner 1987, Storey & Storey 1978, 

Mommsen et al. 1982) However, the concentration of succinate during hypoxia has 

been found to be much lower than that of octopine indicating a minor role of 

mitochondrial anaerobic ATP production during hypoxia (Zielinski et al. 2000, Rosa & 

Seibel 2010). If the ETS-induced membrane potential is maintained, there is no drop 

in mitochondrial pH during anaerobiosis, as protons are consumed in the Krebs-cycle 

(Pörtner 1987). 

Despite the buffering of ATP levels by the use of PLA storages, anaerobic 

metabolism ultimately leads to a decrease and ATP and Gibbs free energy. There 

are several mechanisms to delay the drop of the Gibbs free energy, which were 

nicely summarized by Pörtner (2002). The accumulation of free ADP supports the 

buffering of ATP, as it activates glycolysis and thus ATP production. The production 

of octopine removes arginine, which would antagonize PLA mobilization and thus 

ATP buffering. The intracellular acidosis and the accumulation of Pi from ATP 

degradation both decrease muscle performance and thereby also reduce ATP 

consumption (Pörtner 2002). 

The fate of the anaerobic end products is still under discussion. Storey & Storey 

(1979) found a rapid uptake of octopine injected into the blood by aerobic tissues 

(brain, ventricle) and proposed a blood transport of octopine from sites of production 

(anaerobic tissues) to sites of O2-consuming degradation (aerobic tissues). This 

assumption is supported by the presence of different isoforms of the octopine 

creating/degrading enzyme octopine-dehydrogenase (ODH) in the different tissues of 

S. officinalis. Whereas an octopine forming isoform is dominant in anaerobic tissues, 

an octopine degrading isoform predominates in aerobic tissues (Storey 1977). 

However, findings of constantly low blood octopine levels in squids during rest, 

exercise and recovery (Pörtner et al. 1991) contradict this hypothesis. Pörtner et al. 

(1991) found octopine and metabolic protons almost completely retained in the cells 

of squid mantle tissue during exercise and postulated that anaerobic ends products 

are recycled within the tissue, when the O2 is again sufficient (Pörtner et al. 1993). As 

protons do not leave the cellular space, a drop in pHi should not affect pHe. Only if 

stressful conditions (e.g. exercise, hypoxia) are too severe or last too long, a drop in 

pHe can be observed indicating an H+ leakage from the tissue (Pörtner et al. 1991). 

 

 



12 

1.3 Physiological effects of hypoxia and hypercapni a 

Oxygen is an essential energy source for all animals. As mentioned above, the 

availability of O2 is considered one of the most important factors affecting an animal’s 

performance (Pörtner 2001, Pörtner et al. 2005). Hypoxia causes reduced growth 

and performance in various taxa (Jones 1971, Walsh et al. 1984, Driedzic 1985, 

Houlihan et al. 1987, Taylor & Miller 2001). Reduced oxygen availability can also 

have pronounced effects on a species’ vulnerability to other factors like changing 

temperatures or pathogens (Pörtner 2001, Cheng et al. 2002, Pörtner et al. 2005). 

Physiological response includes the use of amino acids with a low O/N-ratio, which 

means that less oxygen is needed for energy production by amino acids catabolism 

(Langenbuch & Pörtner 2002). This mechanism was identified in the peanut worm 

Sipunculus nudus and could also be present in other taxa relying on amino acids as 

energy source (e.g. cephalopods). 

During hypoxia, many cephalopods show a rise in venous pHe, which then can even 

exceed arterial pHe (Johansen et al. 1982a, Houlihan et al. 1982, Häfker & Seibel 

unpubl.). This is partially caused by the acting of the strong Bohr-effect, which results 

in an uptake of protons by the hemocyanin, when the pigment is not loaded 

completely with O2 (see 1.2.1). Additional blood alkalosis can be caused by an 

increase of blood bicarbonate concentrations during hypoxia (Johansen et al. 1982a). 

The HCO3
- is supposed to derive from anaerobic metabolism in the tissue, where the 

degradation of PLA causes a rise in bicarbonate levels (Burton 1978). The increase 

of HCO3
- concentrations has been reported for squids and cuttlefish during hypoxia 

(Johansen et al. 1982a, Zielinski et al. 2000). In squids, this alkalosis can contribute 

to a higher oxygen extraction rate from the water as standard extraction rates are 

naturally low (Wells 1994). A similar hypoxia-induced rise in arterial pHe was 

measured in Octopus vulgaris and was attributed to the acting of the Bohr-effect and 

an increased blood HCO3
- concentration (Houlihan et al. 1982). Whereas a high pHe 

supports the O2 loading of the hemocyanin at the gills, it impedes the unloading at 

the tissue (Johansen et al. 1982a). However, the oxygen affinity of hemocyanin is 

reduced during hypoxia and the complete saturation curve is shifted towards higher 

pH values (Zielinski et al. 2001, Melzner et al. 2007b). Thus, the rise in pHe could aid 

proper functioning of the Bohr-effect. CO2 supply by cutaneous O2 respiration (mainly 

squids) or transport by the blood pigment (S. officinalis) can support blood 
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acidification and oxygen unloading (Lykkeboe et al. 1980, Pörtner 1994, 2002), but 

total tissue O2 supply is clearly reduced during hypoxia (Houlihan et al. 1982). 

In the tissue, the most prominent change during hypoxia is the onset of anaerobic 

metabolism with the associated changes in metabolite concentrations and energy 

status (see 1.2.3). Anaerobic metabolism does not replace aerobic metabolism, but 

provides additional ATP, if the energy requirements can no longer be met by the 

aerobic ATP production alone. A decrease in total energy consumption and in some 

cases heart rate (metabolic depression) has also been reported for several 

cephalopod species during hypoxia (Houlihan et al. 1982, Johansen et al. 1982b, 

Rosa & Seibel 2008, 2010). This down regulation of ATP consuming processes 

enables animals to stay aerobic, if the ATP production by the ETS is reduced, thus 

delaying the onset of anaerobic metabolism. The metabolic depression also extends 

the time for anaerobic metabolism, because the energy storages are depleted slower 

at low metabolic rates. The oxygen concentration at which the first hypoxia response 

can be detected usually lies between 60 µmol*L-1 and 120 µmol*L-1, but can differ 

strongly among taxa and species (Gray et al. 2002). If hypoxia becomes too severe 

to allow adaption, anaerobic metabolism begins.  

Hypercapnia can have quite paradoxical effects on animal physiology. On the one 

hand, it can cause hyperventilation in several marine taxa including cephalopods like 

the cuttlefish S. officinalis (Pörtner et al. 2005, Gutowska et al. 2010). The 

accumulation of CO2 in the blood decreases the pHe and reduces hemocyanin O2 

binding due to the acting of the Bohr-effect (see 1.2.1). Animals try to reduce the 

blood CO2 content by hyperventilation, but this is rather inefficient because of the 

small gradient between blood PCO2 and ambient water PCO2 (Rahn 1966, Heisler 

1986). Additionally, respiration does only reduce blood CO2, which is the minor 

component of the bicarbonate system (< 1%), while HCO3
- (~90%) and CO3

2- (~10%) 

stay unaffected (Dickson 2010, Melzner et al. 2012). On the other hand, hypercapnia 

is also a very common trigger for metabolic depression, which means that while 

ventilation increases, O2 consumption decreases (Rees & Hand 1990, Pörtner et al. 

1998, Michaelidis et al. 2005a). The effects of hypercapnia on metabolic rate in 

cephalopods are diverging. Whereas moderate hypercapnia (0.1 kPa) together with 

hypoxia caused significantly reduced activity and metabolic rates in a squid (Rosa & 

Seibel 2008), exposure to severe hypercapnia (0.6 kPa) caused hyperventilation in 
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S. officinalis, but had no effect on metabolic rate, growth and calcification (Gutowska 

et al. 2008).  

The triggering mechanism of metabolic depression is not fully understood yet. In the 

bivalves Mytilus galloprovincialis and Crassostrea gigas, a metabolic reduction was 

clearly correlated to a decrease in pHe (Michaelidis et al. 2005a,b), but in Octopus 

vulgaris and the jumbo squid Dosidicus gigas a decrease in O2 consumption 

occurred during hypoxia, despite a parallel rise in pHe (Houlihan et al. 1982, Häfker & 

Seibel, unpubl.). Intracellular acidosis is also considered as a possible factor causing 

metabolic depression. As discussed before (see 1.2.3), H+ accumulation affects 

muscular activity and thus reduces energy consumption. Another assumed 

mechanism is a central nervous control regulated by the accumulation of adenosine 

(Reipschläger et al. 1997, Schwartz et al. 2003). The accumulation of adenosine is in 

turn supposed to be correlated to intracellular acidosis or the accumulation of HCO3
- 

(Pörtner et al. 2005). 

 

1.4 Study objectives 

There are several studies that investigated the effects of hypoxia or hypercapnia on 

marine animal physiology in general and cephalopod physiology in particular 

(Grieshaber et al. 1994, Hochachka et al. 1996, Wu 2002, Gutowska et al. 2008, 

2010), but studies assessing the effects of simultaneous exposure to both stressors 

are scarce (Pörtner et al. 2005, Rosa & Seibel 2008, Melzner et al. 2012). However, 

hypoxia and hypercapnia often co-occur in the ocean (see 1.1.1 & 1.1.2) and the 

combination of both factors could therefore represent a situation, which is closer to 

the natural environment (Pörtner et al. 2005, Melzner et al. 2012). In cephalopods, 

this interaction of factors might be of special relevance, as hypercapnia should 

counteract the rise in pHe during hypoxia and could thus support oxygen unloading at 

the tissue. The fact that hypercapnia is a common trigger for metabolic depression 

(see above) could cause reduced O2 consumption during simultaneous hypoxia and 

would thus support long-term survival under low oxygen conditions.  

Although the changes induced by hypercapnia, hypoxia or both, support resistance to 

stressful ambient conditions, they do also reduce performance, growth and 

reproductive output and increase the vulnerability to predators and changing 

temperatures (Pörtner 2001, Pörtner et al. 2005). Despite being advantageous for the 

individual, the said factors could thus have negative effects on stock sizes and 
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community composition on the long-term (Pörtner et al. 2005). However, studies 

often focused on the determination of critical oxygen and CO2 tensions during acute 

exposure while long-term effects on physiology and development are poorly 

investigated (Wells et al. 1988, Gutowska et al. 2008, 2010, Rosa & Seibel 2008, 

2010). Climate change and human activities are expected to have profound 

permanent effects on ocean O2 and CO2 content, as well as other factors (see 1.1), 

which might have severe consequences for marine life. Cephalopods may be 

especially affected by this trend to their high activity levels and the limited 

physiological capacities (see 1.2). 

This study assesses the effects of hypoxia and hypercapnia on the physiology of a 

well-investigated cephalopod model organism, the common cuttlefish Sepia 

officinalis. The species is considered a good acid-base regulator (Gutowska et al. 

2010), thus indicating a certain potential for resistance to both stressors. The species 

lives in the bottom waters of the continental margins (see 2.1). These areas are 

expected to be strongly affected by future changes in ocean O2 and CO2 content 

(Melzner et al. 2012). It is the aim to determine the separate effects of hypoxia and 

hypercapnia as well as to identify possible synergistic effects of both factors. These 

effects are studied in muscular tissues, which are naturally exposed to different 

oxygen concentrations within the body (mantle, systemic heart, branchial hearts). 

The effects on blood acid-base parameters, which are important for oxygen supply, 

are also investigated. The results of this study could help to formulate unifying 

principles of cephalopod physiology and to predict population development in a future 

ocean. Additionally, it could help to get a better insight into the physiology of S. 

officinalis, an important cephalopod model and target species for fisheries, which also 

has the potential for large-scale food production in aquaculture (see 2.1). 
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2 Materials & Methods 
 

2.1 Sepia officinalis (Linnaeus, 1758), Sepiidae, Cephalopoda 

The common cuttlefish, Sepia officinalis is widespread in neritic waters around 

Europe. Its distribution ranges from the North Sea over the western shelf areas of the 

British Isles, France and the Iberian Peninsula down to the coast of Mauretania and 

the Senegal (Fig. 2.1B). The species is also found in nearly all shelf areas of the 

Mediterranean (von Boletzky 1983, Jereb & Roper 2005). A number of other 

subspecies is described, but their status is still partially unclear (Jereb & Roper 

2005). Genetic analysis revealed several distinct populations. For example, the S. 

officinalis populations from the English Channel can be distinguished from the 

Mediterranean population (Pérez-Losada et al. 2002, Wang et al. 2003, Wolfram et 

al. 2006).  

 

   
Fig. 2.1: Habitus and distribution of the common cuttlefish Sepia officinalis. A: Cuttlefish during mating 
in the Oosterschelde, Netherlands. The zebra-like banding pattern indicates maturity. Black egg 
clutches are visible on the left side of the picture. © Joris van Alphen. B: Distribution map of S. 
officinalis. Red areas represent regions where the common cuttlefish can be encountered. Figure 
adopted from Jereb & Roper (2005) and changed considering the findings of von Boletzky (1983). 
 

The cuttlefish lives on the continental shelf in depths reaching from the surface down 

to 150 (rarely 200) m (von Boletzky 1983, Jereb & Roper 2005). The species is also 

found in brackish waters and can tolerate salinities down to 27 psu (Mangold-Wirz 

1963). Sepia officinalis is a eurythermal species exposed to broad temperature 

ranges (von Boletzky 1983), which differ between populations. For example, 

cuttlefish from the English Channel experience temperatures of 9-17.5°C (Bocaud-
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Camou & Boismery 1991), whereas specimen from the Mediterranean are exposed 

to 10-30°C ambient temperatures (Artegiani et al. 1 997, Mark pers. comm.). 

The common cuttlefish has a demersal lifestyle and prefers sandy or muddy bottoms. 

It often burrows in the ground leaving only the eyes above the surface (Jereb & 

Roper 2005). S. officinalis performs hovering movements using the lateral fins for 

propulsion. The calcified internal shell, the cuttlebone, contains gas filled chambers 

and acts as a floatation device. Jet propulsion is only used as an escape response or 

during attacks on prey. The diet consists of various taxa of crustaceans, polychaetes, 

molluscs (also other cephalopods) and fishes (Castro & Guerra 1990). 

The embryonic development of the cuttlefish is temperature dependent and lasts 80-

90 days at 15°C (von Boletzky 1983). The developmen t time decreases with 

increasing temperature. At 15°C, maturity is reache d after 14 – 18 month at a size 

varying from 6 – 8 cm mantle length in males to 11 – 25 cm mantle length in females 

(von Boletzky 1983). Adults of temperate regions can grow to a size of 50 cm and a 

weight of 2 kg, whereas subtropic adults stay smaller (30 cm, 2 kg) (Jereb & Roper 

2005). Mature specimens display a zebra-like banding pattern, which is especially 

pronounced in males (Fig. 2.1A). S. officinalis can reach an age of up to two years 

but dies after the first reproduction (semelparity) (von Boletzky 1983). Spawning 

takes place in shallow coastal waters, where eggs are attached to seaweeds, rocks 

or other solid structures (Fig. 2.1A) (Jereb & Roper 2005). The common cuttlefish is 

an important species for commercial fisheries and is sold as high quality food (Jereb 

& Roper 2005). The species is also considered suitable for larger scale breeding in 

aquaculture, thus providing a potential fast-growing high quality food source (Sykes 

et al. 2006). Stock sizes are poorly known but populations are not considered 

threatened (Dunn 1999, Wang et al. 2003). 

In the present study, the data of juvenile cuttlefish from two populations was 

investigated (see 2.2). S. officinalis exposed to hypoxia (HOx) or the respective 

control conditions (C_HOx) originated from eggs collected near Caen (France) at the 

English Channel in June 2010 (Thonig 2011). S. officinalis exposed to hypercapnia 

(HCa) or the respective control conditions (C_HCa) originated from eggs collected in 

the Venice Lagoon (Mediterranean) in May/June 2009 (Strobel 2011). S. officinalis 

exposed to simultaneous hypoxia + hypercapnia (H+H) or the respective control 

conditions (C_H+H) originated from eggs collected in the Venice Lagoon 

(Mediterranean) in 2011 (present study). 
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2.2 Study design & experimental set-up 

The effects of hypoxia and hypercapnia on cuttlefish physiology were investigated in 

a manipulative laboratory experiment. In this experiment, specimens of S. officinalis 

were exposed to hypoxia and hypercapnia or kept under control conditions. 

Incubation was carried out during the time of this master thesis (10.02.2012-

10.09.2012). The samples of this experiment were compared to samples derived 

from cuttlefish exposed to either hypoxia (Thonig 2011) or hypercapnia (Strobel 

2011) or the respective control conditions in earlier experiments. All incubations were 

carried out in the section “Integrative Ecophysiology” at the Alfred-Wegener-Institute 

for Polar and Marine Research in Bremerhaven, Germany. 

 

2.2.1 Hypoxia & hypercapnia 

Cuttlefish were kept either under hypoxia and hypercapnia (H+H: O2 = 61 ± 6% air 

saturation, CO2 = 0.11 ± 0.02 kPa) or under control conditions (C_H+H: O2 = 96 ± 9% 

air saturation, CO2 = 0.04 ± 0.002 kPa) for ~5 weeks (21.03.2012 – 03.05.2012). 

Values are presented ± standard deviation (SD). Both treatments included n = 24 

individuals each. Cuttlefish body mass (at dissection date) was 16-24 g. 

The cuttlefish of the different incubations were kept in two separate seawater 

recirculation systems. The experimental set-ups for both incubations were identical 

(except for the gas bubbling, see below) and each system had a total volume of 

~1010 L. A system consisted of a reservoir tank (~660 L), a header tank above the 

incubation boxes and a collection tank below (Fig. 2.2). All three tanks were covered 

with lids to minimize gas exchange. The 8 incubation boxes (transparent PVC, 30 x 

20 x 14 cm, 84 L) were put into 2 overflow basins with 4 boxes per basin. Each 

incubation box contained 3 individuals of S. officinalis and was covered with a lid 

(Fig. 2.3). The basins and the header tank were arranged in a rack and the racks of 

both systems were covered with black plastic foil. The creation of a dark environment 

minimizes stress for the cuttlefish (Denton & Gilpin-Brown 1961, Mark, pers. comm.). 

The water was pumped (38 L*min-1 & 40 L*min-1 pumps, Eheim GmbH & Co. KG, 

Deizisau, Germany) from the collection tank into the reservoir tank and then into the 

header tank (Fig. 2.2). From the header tank the water flowed though PVC tubes into 

the incubation boxes. The overflow basins collected the water pushed out of the 

boxes. Finally, the water flowed from the basins back into the collection tank below. 

The header and the reservoir tank had spillovers to the reservoir and the collection 
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tank, respectively (Fig. 2.2). This maintained constant water levels in all tanks. The 

average water throughput in the incubation boxes was 1.07 L*min-1 (H+H) and 1.17 

L*min-1 (C_H+H). The average water parameters are shown in Tab. 2.1. 

 
 

Fig. 2.2: Experimental set-up for the C_H+H or 
H+H incubation. A: reservoir tank, B: header 
tank, C: incubation boxes in overflow basins, D:   

 collection tank, E: water pumps, F: gas influx. 
Blue arrows indicate the direction of the  

 water flow. Cuttlefish in the boxes are  
not shown. Incubation boxes are  

shown in detail in Fig 2.3. Fig- 
ure by Lars Harms (changed). 

 

 

 

 

 

 

 

 

 
 
 

 

The reservoir and header tanks were constantly bubbled with a defined gas mixture 

of compressed air, CO2 and N2 to achieve the wanted O2 and CO2 concentrations in 

the respective system (Fig. 2.2). The gas for the C_H+H incubation was mixed by a 

gas mixing system (HTK Hamburg GmbH, Hamburg, Germany); the gas for the H+H 

treatment was mixed by another system (Multi-Channel Flow Ratio/Pressure 

Controller Type 647B, MKS Instruments Deutschland GmbH, München, Germany), 

which received premixed gas from the aforementioned HTK system and pure 

nitrogen (N2). In the H+H treatment the interaction area between water and ambient 

air was reduced by the addition of buoyant plastic balls (Ø = 2 cm) to the overflow 

basins and the collection tank (Fig: 2.3). 
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Fig. 2.3: Four incuba-
tion boxes in an over-
flow basin. The boxes 
are covered with lids. 
The cuttlefish are 
visible on the bottom 
of the front boxes 
(brown). Each box 
was supplied by two 
water tubes from the 
header tank to increa-
se the water through-
put. The water surface 
of the overflow basin 
was covered with 
buoyant plastic balls 
(H+H incubation). 

 

To avoid an accumulation of ammonia (NH4
+) and nitrite (NO2

-) in the system, the 

water was changed twice a week. For this purpose, the reservoir tank was uncoupled 

from the running system and the water in the tank was exchanged. After ~24 h of gas 

equilibration, the reservoir tank was coupled back to the system and the water in the 

header and collection tank was replaced. The cuttlefish were fed living grass shrimp 

(Palaemonetes cf. varians) once a week. 

 

Tab. 2.1: Water parameters in the aquarium systems during the 5 weeks of incubation at H+H and 
C_H+H conditions (21.03.2012 – 03.05.2012). Mean values ± SD are shown. DIC: dissolved inorganic 
carbon. n: number of measurements for the respective parameter. The numbers of measurements 
were identical for both treatments. CO2 was measured as [ppm] and then converted to [kPa] assuming 
standard atmospheric pressure of 101.325 kPa. Water pH was measured on the free H+ ion scale 
according to Hirse et al. (unpubl.).  

Treatment n C_H+H H+H 

Temperature [°C] 12 15.9 ± 0.3 16.7 ± 0.2 

Salinity [psu] 11 33.3 ± 1.2 33.1 ± 1.1 

O2 [% air saturation] 11 96 ± 9 61 ± 6 

CO2 [kPa] 8 0.042 ± 0.002 0.109 ± 0.017 

water pH 11 8.15 ± 0.14 7.77 ± 0.07 

DIC [µmol*L-1]  7 2216 ± 41 2304 ± 70 

NH4
+ [mg*L-1] 12 0.13 ± 0.04 0.12 ± 0.06  

NO2
- [mg*L-1] 12 0.32 ± 0.18 0.36 ± 0.20 

 

The water pH was determined using a pH-meter (pH 3310, WTW GmbH, Weilheim, 

Germany) with a glass electrode (Inlab Routine Pt1000®, Mettler-Toledo GmbH, 

Gießen, Germany). To account for temperature dependent fluctuations, pH values 
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were corrected with the values of Tris buffered synthetic seawater standard. 

Standard was obtained from the Scripps Institution of Oceanography (San Diego, 

USA). The pH standard was measured directly after the incubation water. 

 

2.2.2 Hypoxia 

In an experiment of Thonig (2011), S. officinalis (n = 7) was exposed to an oxygen 

concentration of 51 ± 4% air saturation at an ambient temperature of 15.3 ± 0.2°C for 

an incubation period of 9 weeks (09.02.2011 – 12.04.2012). The CO2 concentration 

was not monitored or regulated. Assuming equilibrium of CO2 with the ambient air, 

the CO2 partial pressure of the water was probably close to 0.04 kPa. The treatment 

was defined as (HOx). In parallel, cuttlefish (n = 8) were kept in a control incubation 

at 100% O2 air saturation (no SD given) and the same temperature (C_HOx). 

Cuttlefish body mass (at dissection date) was 40-70 g. The cuttlefish were fed daily 

with living sand shrimp (Crangon crangon). After dissection, samples of funnel, 

systemic heart and branchial hearts were stored in Eppendorf tubes at -80°C for 

further analysis.  

 

2.2.3 Hypercapnia 

In an experiment of Strobel (2011), S. officinalis (n = 5) was exposed to a CO2 partial 

pressure of 0.12 ± 0.01 kPa at an ambient temperature of 16.1 ± 0.4°C for an 

incubation period of 21 weeks (19.05.2010 – 13.10.2010). The O2 concentration was 

100% air saturation. The treatment was defined as (HCa). In parallel, cuttlefish (n = 

5) were kept in a control incubation at 0.04 kPa CO2 (no SD given) and the same 

temperature (C_HCa). Cuttlefish body mass (at dissection date) was 40-160 g. The 

cuttlefish were fed living or frozen sand shrimp (C. crangon) twice a week. After 

dissection, samples of funnel were stored in Eppendorf tubes at -80°C for further 

analysis. Branchial heart samples were wrapped in labeled aluminum foil and stored 

in liquid nitrogen for further analysis (-196°C). S ystemic hearts were not sampled. 

 

2.3 Sample processing & analysis 

 

2.3.1 Sampling 

The dissection procedure described here refers to the animals incubated at H+H or 

C_H+H conditions. There was no noteworthy difference to the dissection procedure 



22 

of the animals incubated at hypoxia (Thonig 2011) or hypercapnia (Strobel 2011), 

except that funnel instead of mantle tissue of the hypoxia or hypercapnia treated 

animals and the respective controls was sampled (Mark, pers. comm.). Each animal 

was dissected separately. An individual was removed from the incubation basin and 

placed into an opaque bucket containing water from the respective incubation with 

3% ethanol. Anesthesia was not expected to affect the measured tissue parameters 

(Storey & Storey 1979), but caused a deoxygenation of the blood pigment 

hemocyanin due to the ceasing of ventilation (Mark pers. comm.). The dissection was 

started when the cuttlefish showed no more movement and reaction to stimuli (after 

~4 min). The animal was dabbed with paper to remove water. Weight, total length 

and mantle length were recorded. The animal was then placed on ice with the ventral 

side pointing upwards. The mantle and the funnel were cut open along the 

anteroposterior axis without damaging the organs in the mantle cavity. A blood 

sample was drawn from the Vena cava cephalica with a 1 mL plastic syringe. The 

processing of the blood sample is described in chapter 2.3.2. Afterwards, tissue 

samples of branchial hearts (BH), systemic heart (SH) and mantle (M) were taken (in 

that order). Each tissue sample was freeze-clamped, wrapped in labeled aluminum 

foil and stored in liquid nitrogen (-196°C). The we ights of the systemic heart and the 

branchial hearts were recorded before storage. Finally, a cut through the brain along 

the anteroposterior axis was performed to kill the animal. The complete dissection 

procedure took 5 – 7 minutes. All individuals were processed in a uniform manner. 

 

2.3.2 Blood acid-base parameters 

This section refers only to the animals incubated at H+H or C_H+H conditions (see 

2.2.1). Blood parameters were not analyzed in the hypoxia or hypercapnia treated 

cuttlefish and in the respective controls. The partial pressures of O2 (PO2) and CO2 

(PCO2) in the blood of the Vena cava cephalica were determined. The blood pH (pHe) 

in this vessel was measured and the blood bicarbonate (HCO3
-) concentration was 

calculated from the aforementioned values. The samples were analyzed using a 

blood gas analyzer (BGA) with gas electrodes for O2 and CO2 as well as a pH-

electrode (MT 33, Eschweiler GmbH & Co. KG, Kiel, Germany). Data was recorded 

with the software ChartTM (v. 5.4.1, ADInstruments GmbH, Spechbach, Germany). 

The BGA was adjusted to incubation temperature (see Tab. 2.1) with a thermostat 

and calibrated. Standardized gases (0% O2 / 0.2% CO2, 5% O2 / 0.5% CO2, pure N2) 
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were used for the calibration of the O2- and the CO2-electrode. The gases were 

purchased from AIR LIQUIDE Deutschland GmbH, Düsseldorf. The pH-electrode 

was calibrated with IUPAC pH standards (I = 0.1 M, pH = 6.865, 7.413 & 9.180 at 

25°C). The electrodes were flushed with milli-Q wat er between the pH standards. 

The signal intensities [mV] recorded during calibration were later used to convert the 

recorded data of the samples into PO2, PCO2 and pHe.  

A small volume of the freshly drawn blood sample was injected into the BGA, making 

sure that all electrodes were covered with sample. The rest of the sample was stored 

on ice. When the measured signals were stable, the BGA was flushed with seawater 

(2-3 times) and the next sample was injected. If possible, the blood of each individual 

was measured twice and the mean was used for further calculations. pHe was 

determined using the measured values of the pH standards. If the blood volume of a 

single animal was insufficient, blood samples of more than one individual were 

pooled. In the result section, pooled samples are marked with asterisks (*) in tables 

but are not explicitly mentioned in the text. 

 

Tab. 2.2: Concentrations of major ions in the blood of Sepia officinalis. Mean values of 7 juvenile 
cuttlefish. Ion concentrations are given as mmol*L-1. Data obtained from Wittmann (unpubl.). 

Ion species Na+ K+ Mg2+ Ca2+ Cl- SO4
2- 

Concentration 
[mmol*L-1] 445.24 11.98 47.52 9.42 506.10 1.63 

 

PO2 and PCO2 were calculated as [kPa] with the values recorded from the 

standardized gases, the temperature and the ambient air pressure during the 

measurement. To determine the concentration of HCO3
- blood ��′′′	� and the CO2 

solubility ���	� were calculated according to Heisler (1986). To this end, the blood 

molarity (
�) was calculated using the concentrations of the major ions (see Tab. 

2.2) as well as the hemocyanin concentration in cuttlefish blood. Blood protein 

concentration was assumed to be identical to blood hemocyanin concentration 

because of the problems of oxygen transport and increasing viscosity discussed in 

the introduction (see 1.2.1). Thus, a total blood protein concentration of 150 g*L-1 was 

assumed (Wichertjes et al. 1986, Zielinski et al. 2001, Strobel et al. 2012). The 

concentration of bicarbonate in the blood (HCO3
-) was then calculated as described 

in equation (1) as [mmol*L-1]: 
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��
�� = ����	 ∗ �10��������� ∗ ���	 + ���	�� − ����	 ∗ ���	�   [mmol*L-1]       (1) 

 

2.3.3 Intracellular acid-base parameters  

Intracellular pH (pHi) was determined using the homogenate method developed by 

Pörtner et al. (1990) in a slightly modified way. Modifications are marked in the text 

(*) and the procedure of Pörtner et al. is provided in brackets at the end of the 

respective sentence. The intracellular CO2 partial pressure (PCO2) and the 

intracellular bicarbonate concentration (HCO3
-) could then be calculated. The 

described measurements and calculations were performed in 15 (10 for PCO2 and 

HCO3
-) arbitrarily chosen mantle samples of cuttlefish from the H+H incubation and in 

10 arbitrarily chosen mantle samples from the C_H+H incubation. Acid-base 

parameters were also measured in branchial hearts from the HCa and the C_HCa 

incubation. The branchial heart samples were completely consumed by this 

measurement, because of the small amount of tissue available. pHi was measured 

twice in each mantle sample. Due to the shortage in sample mass, brachial hearts 

samples of different HCa animals were pooled and pHi was measured only once. 

From each pHi measurement two samples were taken for CO2 analysis. This resulted 

in two pHi values and four PCO2 values for each mantle sample and in one pHi value 

and two PCO2 values for each pooled branchial heart sample. To end up with one 

value for each parameter and animal (or animal-pool), the values derived from one 

sample were averaged and means were used for further statistics. 

To avoid changes in pHi during sample preparation and measurement, potassium 

fluoride (KF) and nitrilotriacetic acid (NTA) were added to remove Mg2+ and Ca2+ 

ions. These ions are essential for the activity of kinases and ATPases. As the cellular 

H+-concentration is mainly affected by adenylate dependent reactions including the 

activity of the muscular myosin ATPase (Pörtner et al. 1990), the inhibition of the 

involved enzymes by ion removal should conserve pHi. Medium parameters were 

adopted from the cephalopod Illex illecebrosus according to Pörtner et al. (1990).  

Before the sample analysis, a weak buffer medium with 160 mmol*L-1 KF and 2.9 

mmol*L-1 NTA was prepared. The two constituents were stored separately in doubled 

concentration (320 mmol*L-1 KF & 5.8 mmol*L-1 mmol*L-1 NTA) and mixed at a 1:1 

ratio before usage. The buffer capacity of the medium was low to prevent effects on 

the measured pHi values. The medium pH was adjusted to 0.5 units below the 
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maximum expected pHi using 0.05 mol*L-1 NaOH and 0.1 mol*L-1 HCl. Due to 

deterioration, the mixed medium was not used longer than a week. 

For the sample analysis, an empty vial (0.9 or 1.2 mL, depending on the amount of 

available tissue) was weighed (W1) (MC1 Analytic AC 210S, Sartorius AG, 

Göttingen, Germany). The vial was then filled with 200 µl of KF/NTA-medium and 

weighed again (W2). Tissue samples stored at -196°C  were ground to powder under 

liquid nitrogen (N2). Depending on the vial size, 100-200 mg (0.9 mL vial) or 200-250 

mg (1.2 mL vial) tissue powder were then transferred to the vial. Beforehand, the 

medium in the vial was frozen in liquid nitrogen to keep the tissue cold. The vial with 

the tissue was weighed again (W3). Afterwards, the vial was completely filled with 

medium and air bubbles were released by stirring with a preparation needle. The vial 

was closed making sure that no air was left inside and weighed for the last time (W4). 

The recorded weights were used later to calculate the tissue wet weight and the CO2 

concentration in the tissue (see below). The sample was vortexed briefly (Vortex-

Genie 2, Scientific Instruments, Bohemia, USA) and homogenized by ultrasound* for 

1 min at 0°C (80% intensity & 50% cycle, Branson So nifier 450, Hielscher Ultrasound 

GmbH, Teltow, Germany) (Pörtner et al.: No ultrasound homogenizing). After 

centrifuging* (1 min, 11000 g, 0°C) the pH in the s upernatant was measured with a 

pH optode (PreSens Needle-Type-Housing-pH-Microsensor, PreSens GmbH, 

Regensburg, Germany) at incubation temperature (see Tab. 2.1) (Pörtner et al.: 

Centrifuging for 15 sec). Before measurement, the optode was calibrated using a pH-

meter with a glass electrode and IUPAC pH standards (I = 0.1 M, pH 6.865 & 7.413 

at 25°C) with the ionic strength adjusted to I = 0. 16 mol*L-1 by adding potassium 

chloride (KCl). Data were recorded with the analysis software Chart (v. 5.3, 

ADInstruments GmbH, Spechbach, Germany) and HView (v. 5.25b, PreSens GmbH, 

Regensburg, Germany). During the sample preparation and the measurement, 

exposure to ambient air was minimized. This should prevent changes of the CO2 

concentration in the sample thereby also protecting sample pH. 

Directly after pHi measurement, 2 x 200 µL of the supernatant were drawn with a 

gastight Hamilton syringe* and were injected into two sealed gas chromatography 

(GC) vials for analysis of the CO2 content (Pörtner et al.: Injection of 50 µL into a 

Hamilton syringe containing 2 ml 0.01 mol*L-1 HCl. Syringe was shaken for at least 2 

min). The GC-vials were prepared before the start of sample analysis and were filled 

with 3 mL of air-equilibrated 0.1 mol*L-1 HCl each. The CO2 content of the vials was 
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then measured by gas chromatography (6890N Network GC System, Agilent 

Technologies GmbH, Böblingen, Germany). Together with the samples, the CO2 

content of the KF/NTA-medium was determined. For this, 2 x 200 µL of medium were 

injected directly into 2 GC-vials per day. The results of the gas chromatography 

(provided as area) had to be converted into CO2 concentrations in the supernatant 

[mmol*L-1]. For this, a calibration curve was created by measuring CO2 standards 

reaching from 0 mmol*L-1 CO2 to 11.36 mmol*L-1 CO2. The calibration curve was 

created daily and was measured together with the samples and the medium. The 

linear equation of the calibration curve was later used to convert the results of the GC 

[Area] to CO2 concentrations [mmol*L tissue water-1] according to equation (6). 

From the CO2 concentration in the supernatant, the initial concentration in the tissue 

[mmol*L tissue water-1] could be calculated using the weights recorded during sample 

preparation (see above). To do this, the tissue mass ( !�""#�) and the volume of 

medium ($%�&�#%) in the sample were calculated. 

 

 !�""#� = '3 −'2   [g]                                             (2) 

 

$%�&�#% = *'2 −'1+ + *'4 −'3+   [mL]                              (3) 

 

The values '1, '2,	'3 and '4 represent the respective weights recorded during 

sample preparation. For each sample a dilution factor - was calculated to account for 

the addition of KF/NTA-medium. 

 

- = �*%./0012	∗	3.5+	6	7829/18�
*%./0012	∗	3.5+                                          (4) 

 

The values of  !�""#� and $%�&�#% are derived from equations (2) and (3). The value 

of 0.8 [mL*g tissue-1] reflects the relative amount of water in the tissue. The dilution 

factor is dimensionless. The gas chromatography depicts an amount of CO2 as the 

area under a peak. To obtain the real CO2 amount in a sample (:;<==�;!�&+, the CO2 

present in the medium (:%�&�#%) had to be subtracted from the initially measured 

amount of CO2 (:">%�?�). :%�&�#% is the mean area of the pure KF/NTA-medium of 

the respective run. The dilution of the medium caused by the water enclosed in the 
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tissue was considered by inserting a factor derived from  !�""#� and $%�&�#% into the 

equation. 

 

:;<==�;!�& = :">%�?� − @ 7829/18
�*%./0012	∗	3.5+	6	7829/18� ∗ :%�&�#%A             (5) 

 

The area values (:B) are dimensionless. The concentration of CO2 in the tissue water 

(�CD��	) was then calculated using the values derived from equation (4) and (5), as 

well as the slope (E) and the y-intercept (F) from the linear equation of the calibration 

curve. 

 

�CD��	 = *E ∗ :;<==�;!�& + F+ ∗ -   [mmol*L tissue water-1]                   (6) 

 

To calculate the intracellular CO2 partial pressure (���	) it was necessary to 

determine the dissociation constant (��′′′�) and the CO2 solubility (���	�) in the 

sample. The equations for these calculations were derived from Heisler et al. (1986) 

assuming a protein concentration of 200 g*L-1 for the calculation of ��′′′� (Pörtner et 

al. 1990). Intracellular ion concentrations were adopted from Robertson (1965). For 

the calculation of ���	�, a molarity (
�) of 0.560 mol*L-1 was assumed (Pörtner et al. 

1990). PCO2 could then be determined using the calculated values of ��′′′� and ���	�, 
the CO2 concentration in the tissue water (eq. 6) and the measured pHi (eq. 7). The 

partial pressure given in [mmHg] was converted to [kPa] as described in equation (8). 

The conversion factor is valid for standard air pressure at sea level (101.325 kPa). 

 

�%%�G = �CD��	 ∗ �10��������� ∗ ���	 + ���	�
�H

   [mmHg]                   (7) 

 

���	 = �%%�G ∗ 0.1333223684211   [kPa]                               (8) 

 

The intracellular bicarbonate concentration (HCO3
-) was calculated from ���	�, �CD��	 

and �%%�G according to equation (9) as [mmol*L tissue water-1]. 

 

��
�� = �CD��	 − ����	� ∗ �%%�G�   [mmol*L tissue water-1]                (9) 

 



28 

2.3.4 Preparation of PCA-extracts 

The concentration of many cellular substances cannot directly be determined from 

tissue samples. Therefore, the wanted metabolites were extracted from the tissue 

using perchloric acid (PCA). From each available tissue sample an extract was 

prepared for subsequent analysis. Samples were pooled, if the tissue mass of a 

single sample was insufficient (see end of this section). A part of the tissue was 

ground to powder under liquid nitrogen and 250-300 mg of the powder were 

transferred to a 2.0 mL Eppendorf tube prefilled with 0.5 mL frozen 0.6 mol*L-1 PCA. 

The weights of the empty tube (W5) and the tube filled with 0.5 mL PCA (W6) were 

determined beforehand. After adding the tissue, the tube was weighed again (W7). 

The exact tissue mass was calculated (eq. 10) and PCA was added in the volume 

necessary to reach a tissue/PCA-ratio of 1:5 (eq. 11). The respective total volume of 

PCA was calculated according to equation (12). 

 

	 !�""#� = '7 −'6   [g]                                           (10) 

 

$L�M	>&&�& =  !�""#� ∗ 0.5 − *'6 −'5+   [mL]                          (10) 

 

$L�M	!<!>? = *'6 −'5+ + *'8 −'7+   [mL]                           (12) 

 

The cup was closed and weighed (W8). Then it was vortexed briefly (Vortex-Genie 2, 

Scientific Instruments, Bohemia, USA) and homogenized for 2 min at 0°C by 

ultrasound (80% intensity, 50% cycle). Afterwards the cup was centrifuged at 14000 

g and 0°C for 1 min. The complete supernatant was t ransferred to a new, pre-

weighed (W9) 2.0 mL Eppendorf tube. The volume of the supernatant was 

determined by weighing the tube again (W10). 5 mol*L-1 KOH was added in an 

amount matching 8% of the supernatant volume (eq. 13). 

 

$���	>&&�& = *'10 −'9+ ∗ 0.08   [mL]                               (13) 

 

Afterward, 5 mol*L-1 KOH was added in small steps till a pH of ~7.5 was obtained. 

The total amount of added KOH was recorded ($���	). The pH was checked with 

indicator paper (pH 6.4-8.0, Macherey-Nagel GmbH & Co. KG, Düren, Germany). 

The changing of the pH caused a precipitation of perchlorate. The tube was stored 
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on ice for ~2 min to allow precipitation. The tube was centrifuged at 14000 g and 0°C 

for 2 min. The supernatant was distributed to labeled 0.5 mL Eppendorf tubes, which 

were then stored at -80°C. 

The PCA-extracts are used for several kinds of analyses. However, the results of 

these analyses always show the concentration of the respective substance in the 

extract (�PB	). The initial concentration in the tissue (�CB) was calculated as described 

in equation (14).  

 

�CB = �PB ∗ �*%./0012	∗	3.5+	6	7QRS	.T.UV	6	7WXY	�%./0012    [µmol*g tissue-1]            (14) 

 

Z represents the respective substance analyzed. The value of 0.8 [mL*g tissue-1] 

reflects the relative amount of water in the tissue. The calculation of �PB	 depends on 

the analytical method and is described in the respective sections (see 2.3.5, 2.3.6 & 

2.3.7). �PB	 was always calculated as [mmol*L-1]. 

The tissue mass of systemic hearts and branchial hearts samples were too little to 

create a PCA-extract for each animal. Therefore, the systemic hearts or branchial 

hearts of different animals from one incubation were pooled to create an extract. The 

replicate numbers of systemic and branchial heart measurements are therefore 

smaller than those of mantle and funnel measurements (see results). Systemic and 

branchial heart samples or samples from different incubations were never mixed 

during pooling. In the results section, pooled samples are marked with asterisks (*) in 

tables but are not explicitly mentioned in the text. 

 

2.3.5 Intracellular metabolite measurement by capil lary electrophoresis 

Intracellular metabolite concentrations were measured in mantle or funnel samples of 

all six incubations (H+H, C_H+H, HOx, C_HOx, HCa, C_HCa) as well as in systemic 

and branchial hearts of animals from the H+H, C_H+H, HOx and C_HOx incubations. 

Systemic and branchial hearts from the HCa and the C_HCa incubations were not 

investigated, as no tissue was available (see 2.2.3 & 2.3.3). Each sample was 

measured twice. To end up with one value for each animal (or animal-pool), the two 

values derived from one sample were averaged and means were used for further 

statistics.  
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The analyzed metabolites were adenylates (ATP, ADP, AMP), phospho-L-arginine 

(PLA), arginine (Arg), and octopine. Three-point calibration curves of the desired 

substances were created using standards with known metabolite concentrations. No 

calibrations curves could be created for PLA as no standard was available. The 

rough concentrations for PLA were calculated using the calibrations of former 

measurements. To accommodate possible differences between former and present 

measurements, the results of the other metabolites were compared between old and 

new measurements. The averaged factor of change was then applied to correct the 

PLA concentrations. Afterwards, the prepared PCA-extracts of the samples were 

unfrozen and diluted 1:4 with milli-Q water. Before analysis by capillary 

electrophoresis (CE), the samples were filtered and uric acid (2 g*L-1 � 1:10 mixed 

with sample) was added as an internal standard. The separation was performed as 

described by Casey et al. (1999) using 40 mmol*L-1 borate-buffer with additional 10 

mmol*L-1 NaCl for a better resolution of the ATP and ADP peaks (P/ACETM System 

MDQ capillary electrophoresis, Beckmann Coulter GmbH, Krefeld, Germany).  

The results of the CE measurements were given as Area. The detection limits 

differed between the metabolites and corresponded to concentrations of ~1.6 µmol*g 

tissue-1 (arginine), ~0.21 µmol*g tissue-1 (octopine), ~0.25 µmol*g tissue-1 (PLA) and 

~0.04 µmol*g tissue-1 (ATP, ADP, AMP). The exact detection limits depended on the 

tissue/medium ratio in the PCA-extracts and varied between the different samples. 

The metabolite concentrations in the PCA-extracts were calculated using the linear 

equations from the calibration curve of the respective metabolite [mmol*L-1]. Finally, 

the metabolite concentration in the tissue [µmol*g tissue-1] was calculated with the 

weights recorded during the extract preparation (see 2.3.4). 

The concentrations of free ADP and free AMP were calculated as [µmol*g tissue-1] 

according to Pörtner et al. (1996) using the measured pHi values (see 2.3.3) and the 

measured concentrations of arginine, PLA, ATP (see above) and Pi (see 2.3.6). A 

free magnesium concentration of 1 mmol*L-1 was assumed (Robertson 1965). The 

Gibbs free energy change of ATP hydrolysis (∆G/∆ξ) was calculated as [kJ*mol-1] 

using the concentrations of free ADP and free AMP (Pörtner et al. 1996). Free ADP, 

AMP and Gibbs free energy could only be calculated in samples, for which pHi values 

and the tissue concentrations of ATP, arginine, PLA and inorganic phosphate were 

available (see above). Thus, the parameters could only be calculated for the 15 
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mantle samples from cuttlefish incubated under hypoxia + hypercapnia (H+H) and for 

the 10 mantle samples from cuttlefish incubated under control conditions (C_H+H). 

 

2.3.6 Enzymatic measurement of inorganic phosphate (Pi) 

Inorganic phosphate concentration was measured in mantle/funnel samples of all six 

incubations (H+H, C_H+H, HOx, C_HOx, HCa, C_HCa) as well as in systemic and 

branchial hearts of animals from the H+H, C_H+H, HOx and C_HOx incubations. 

Systemic and branchial hearts from the HCa and the C_HCa incubations were not 

investigated as no tissue was available (see 2.2.3 & 2.3.3). Each sample was 

measured twice (see below). To end up with one value for each animal (or animal-

pool), the two values derived from one sample were averaged and means were used 

for further statistics.  

The concentration of Pi in the PCA-extract was determined by measuring the Pi-

dependent NADH/NAD+ turnover via photometry. The core reaction of this method is 

the conversion of glyceraldehyd-3-phosphate (GAP) to 1,3-bisphophoglycerate (1,3-

bPG), which also involves Pi and NAD+/NADH. The reaction is catalyzed by the 

enzyme glyceraldehyd-3-phosphate dehydrogenase (GAPDH, EC 1.2.1.12).  

 

GAP + NAD+ + Pi 
						[ML\�						]̂ ^̂ ^̂ ^̂ _̂ 1,3-bPG + NADH + H+ 

 

Due to the different optical properties of NAD+ and NADH, the concentration change 

can be measured with a photometer at a wavelength of λ = 340 nm (LKB Biochrom 

4060, Pharmacia AG, Uppsala, Sweden). Glyceraldehyd-3-phosphate, together with 

dihydroxyacetone phosphate (DHAP), is provided by the degradation of fructose-1,6-

bisphosphate (Fru-1,6-bP) catalyzed by the enzyme aldolase (EC 4.1.2.13). 

 

Fru-1,6-bP 
						M?&<?>"�						]̂ ^̂ ^̂ ^̂ ^̂ _ DHAP + GAP 

 

To avoid an inhibition of the core reaction caused by the accumulation of products, 

supporting reactions are catalyzed by the enzymes phosphoglycerate kinase (PGK, 

EC 2.7.2.3) and hexokinase (EC 2.7.1.2). First, 1,3-bPG is removed by the acting of 

phosphoglycerate. The ATP produced by this reaction is then degraded by 

hexokinase. 
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1,3-bPG + ADP 
						L[�						]̂ ^̂ ^̂ _ 3-phosphoglycerate + ATP 

 

glucose + ATP 
						��B<`�a>"�						]̂ ^̂ ^̂ ^̂ ^̂ ^̂ _ glucose-6-phosphate + ADP 

 

To measure the Pi concentration, a reaction mixture was prepared in a 0.5 mL micro 

cuvette (b = 1 cm). Before the start of the measurement, the respective solutions 

were mixed as follows: 

 

- 400 µL buffer medium 
TRA  (200 mmol*L-1) 
EDTA  (0.5 mmol*L-1) 
Glucose  (2 mmol*L-1) 
MgCl2  (5 mmol*L-1) 
Fru-1,6-bP  (1.96 mmol*L-1) 

- 40 µL NAD+  (50 mmol*L-1) 

- 40 µL ADP  (10 mmol*L-1) 

- 8 µL enzyme mix  
Hexokinase  (106 U*mL-1)  
Aldolase  (31 U*mL-1) 
GAPDH  (68 U*mL-1) 
PGK  (68 U*mL-1) 

- 310 or 305 µL milli-Q water 

- 10 or 15 µL sample 

The total volume of the mixture was 808 µL. Fructose-1,6-bisphosphate was added 

to the buffer medium directly before the preparation of the reaction mixture. The 

enzyme mix was prepared right before the measurement, too. The recording of the 

extinction was started ~5 min before the addition of the sample. The samples were 

prepared from PCA-extracts (see 2.3.4). From each PCA-extract, two replicates with 

different sample volumes (10 or 15 µL) were measured. This made it possible to 

determine whether the sample volume affects the extinction. When the sample is 

added to the reaction mixture, the Pi in the sample triggers the conversion of NAD+ to 

NADH and the extinction increases. After the addition of the sample, the extinction 

was recorded till it became stable again. The whole measurement was performed at 

37°C to ensure proper enzyme functioning. Enzymes o f Saccharomyces cervisiae 

(baker yeast) and Oryctolagus cuniculus (rabbit) were used. With the initial extinction 

320 µL 
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(c3) and the extinction at the end of the reaction (cH) the extinction change (∆c) was 

determined according to equation (15). As Pi was the limiting constituent for the 

production of NADH (all other constituents were given in excess), ∆c directly 

depended on the Pi concentration in the sample (�L/).  
One molecule Pi yields the production of one molecule NADH. Therefore, �L/ could 

be calculated according to the Lambert-Beer Law (eq. 16). 

 

∆c = cH − c3                                                   (15) 

 

�L/ = ∆e	∗	7.T.UV
fghi	∗	&	∗	70U8jV2   [mmol*L-1]                                  (16) 

 

$!<!>? is the total volume of the reaction mixture (808 µL) and $">%�?� is the added 

sample volume (10 or 15 µL). b is the distance the light has to pass through the 

reaction mix (1 cm). k�l3 is the extinction coefficient of NADH at λ = 340 nm (6.3 L* 

mmol-1*cm-1). The detection limits was ∆c = 0.01, which corresponded to a 

concentration of ~0.68 µmol*g tissue-1. The Pi concentration in the tissue [µmol*g 

tissue-1] could then be calculated according to equation (14). In this case �L/ 
corresponded to �PB	 (see 2.3.4).  

 

2.3.7 Enzymatic measurement of succinate 

The succinate concentration was measured in the mantle tissue of cuttlefish from the 

H+H and the C_H+H incubations. However, only a few samples were measured, due 

to the very low concentration of succinate in the samples (see 3.3.8). Succinate was 

not investigated in any other tissue or treatment, as the available amount of tissue 

was insufficient. Each sample was measured twice (see below). To end up with one 

value for each animal the two values derived from one sample were averaged and 

means were used for further statistics. 

The substrate dependent turnover of NAD+/NADH was also used for the 

photometrical determination of the succinate concentration in the PCA-extract. The 

measurement was performed using a commercial succinate test kit (Succinic acid 

UV-method, Cat. No. 10 176 281 035, R-Biopharm AG, Darmstadt). First, the 

succinate in the sample as well as coenzyme A (CoA) are used to transform inosine-

5-triphosphate (ITP) to inosine-5-diphosphate (IDP). The reaction is catalyzed by the 
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enzyme succinyl-CoA synthethase (SCS, EC 6.2.1.4). The enzyme pyruvate kinase 

(PK, EC 2.7.1.40) then creates pyruvate from IDP and phosphoenolpyruvate (PEP). 

The pyruvate is involved in the NADH-converting core reaction, which is mediated by 

the enzyme L-lactate dehydrogenase (L-LDH, EC 1.1.1.27). 

 

succinate + ITP + CoA 
						m�m						]̂ ^̂ ^̂ _ IDP + succinyl-CoA + Pi 

 

IDP + PEP 
						L�						]̂ ^̂ _̂ ITP + pyruvate 

 

pyruvate + NADH + H+ 
						n�n\�						]̂ ^̂ ^̂ ^̂ _ L-lactate + NAD+ 

 

As all constituents (except succinate) were given in excess and one molecule of 

succinate yields the conversion of one molecule of NADH, the decrease in NADH 

concentration was directly dependent on the initial concentration of succinate. The 

change of the NADH concentration was measured at a wavelength of λ = 340 nm. 

The measurement was performed according to the instructions of the test kit. 

However, the total volume of the assay was quartered to reduce the consumption of 

sample material and chemicals. The data recording was started before the addition of 

the sample (120 or 140 µL). The addition of the sample caused a small drop in 

extinction due to the NADH-consuming activity of the L-LDH, which converts the 

pyruvate in the sample. When the extinction was stable again, the addition of SCS 

started the reactions. The extinction was then recorded till it became stable again. 

The whole measurement was performed at 37°C to ensu re proper enzyme 

functioning. With the extinction before the addition of SCS (c3) and the extinction at 

the end of the reaction (cH) the extinction (∆c) change was determined according to 

equation (17). The succinate concentration in the PCA-extract �"#;;�a>!� was then 

calculated according to the Lambert-Beer Law (eq. 18). 

 

 ∆c = c3 − cH                                                   (17) 

 

�"#;;�a>!� = ∆e	∗	7.T.UV
fghi	∗	&	∗	70U8jV2   [mmol*L-1]                            (18) 
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$!<!>? is the total volume of the reaction mixture (767.5 µL) and $">%�?� is the added 

sample volume (120 or 140 µL). b is the distance the light has to pass through the 

reaction mix (1 cm). k�l3 is the extinction coefficient of NADH at λ = 340 nm (6.3 L* 

mmol-1*cm-1). The detection limits was ∆c = 0.016, which corresponded to a 

concentration of ~0.18 µmol*g tissue-1. The succinate concentration in the tissue 

[µmol*g tissue-1] could then be calculated according to equation (13). In this case 

�"#;;�a>!� corresponded to �PB	 (see 2.3.4). 

 

2.4 Statistical analysis 

The obtained data was analyzed using SigmaPlot 12.0 software (Systat Software 

GmbH, Erkrath, Germany). The data sets for each incubation, tissue and parameter 

were tested separately for outliers using Nalimov’s outlier test.  

Each data set was compared to the respective control (i.e. PLA H+H M was 

compared to PLA C_H+H M, ATP HOx BH was compared to ATP C_HOx BH and so 

on). The pair of data sets was checked for normal distribution of data points using the 

Shapiro-Wilk test and for homogeneity of variances using the Equal Variance test 

offered by the software. If both prerequisites were given, the data sets were 

compared with a Student’s t-test (abbreviated as t-test in tables). Otherwise, a Mann-

Whitney test was applied for comparison.  

Graphics were created with Microsoft Excel (v. 14.0.6112.5000) and Microsoft Paint 

(v. 6.1). 
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3 Results 
 

3.1 Blood acid-base parameters 

There was a significant difference (p < 0.001) between the blood CO2 partial 

pressures of the H+H and the C_H+H incubations. Whereas mean blood PCO2 was 

0.28 ± 0.05 kPa in the animals incubated under C_H+H conditions (n = 16* � 

Asterisk (*) indicates pooled sample), exposure to Hypoxia & hypercapnia (n = 16*) 

caused a rise (> 30%) of mean blood PCO2 up to 0.37 (Fig. 3.1B). 

The blood bicarbonate concentration was significantly higher in the H+H incubation 

than in the C_H+H incubation (p < 0.001). Compared to the control (n = 16*, mean = 

3.20 ± 0.47 mmol*L-1), the HCO3
- concentration rose by ~20% (n = 16*, mean = 3.87 

± 0.56 mmol*L-1) in the H+H incubation (Fig. 3.1C). 

 

 
Fig. 3.1: Blood acid-base parameters. A: Blood pH (pHe), B: blood CO2 partial pressure (PCO2), C: 
blood bicarbonate concentration (HCO3

-). Mean values ± SD are shown for the cuttlefish incubated 
under Hypoxia & hypercapnia (H+H) and in the respective control (C_H+H). Asterisks (*) indicate 
significant differences. 
 

Blood pH (pHe) did not differ significantly between H+H (n = 16*, mean = 7.56 ± 0.04) 

and C_H+H (n = 16*, mean = 7.58 ± 0.06) incubation (p = 0.108). 

Blood oxygen partial pressures (PO2) did not differ significantly between the control 

and the H+H treatment. The mean values ± SD for H+H and C_H+H were 2.75 ± 

0.66 kPa and 2.48 ± 0.66 kPa, respectively. The values were mostly distributed 

between 2 and 3 kPa and never exceeded 4.1 kPa. 

 

3.2 Intracellular acid-base parameters 

The pHi was 7.51 ± 0.03 in mantle tissue of the control (C_H+H) incubation. The 

exposure to Hypoxia & hypercapnia caused a significant decrease in mantle pHi with 
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a mean of 7.46 ± 0.05 (Fig. 3.2A, Tab.3.1). There was no significant difference in the 

pHi values of branchial hearts from the hypercapnia incubation (mean = 6.75 ± 0.16) 

and the respective control incubation (mean = 6.60 ± 0.01) (Fig. 3.2A, Tab. 3.1). 

 

 
Fig. 3.2: Intracellular acid-base parameters. A: intracellular pH (pHi), B: intracellular CO2 partial 
pressure (PCO2). Mean values ± SD are shown for the cuttlefish incubated under Hypoxia & 
hypercapnia (H+H) or hypercapnia (HCa) and for the respective controls (C_H+H, C_HCa). M: mantle, 
BH: branchial hearts. Asterisks (*) indicate significant differences between treatment and control. 
Results for the intracellular bicarbonate concentration are not shown (see Tab. 3.1). 
 

Tab. 3.1: Comparison of intracellular acid-base parameters. Results for intracellular pH (pHi), 
intracellular CO2 partial pressure (PCO2) and intracellular bicarbonate concentration (HCO3

-) are 
shown. PCO2 values are in [kPa], HCO3

- values are in [mmol*L-1]. n is the number of replicates. H+H: 
Hypoxia & hypercapnia, C_H+H: Hypoxia & hypercapnia control, HCa: hypercapnia, C_HCa: 
hypercapnia control, M: mantle, F: funnel, M-W: Mann-Whitney test. Red p-values indicate a 
significant difference between treatment and respective control. Asterisks (*) indicate pooled samples. 

 incubation tissue n mean ± SD statistics p-value 

pH
i 

C_H+H 
M 

14 7.51 ± 0.03 
t-test < 0.001 

H+H 10 7.46 ± 0.05 

C_HCa 
F 

2* 6.60 ± 0.01 
M-W 0.333 

HCa 2* 6.75 ± 0.16 

P
C

O
2 

C_H+H 
M 

9 0.36 ± 0.03 
M-W < 0.001 

H+H 9 0.63 ± 0.10 

C_HCa 
F 

2* 3.07 ± 0.37 
M-W 0.333 

HCa 2* 6.47 ± 2.86 

H
C

O
3-  

C_H+H 
M 

10 2.81 ± 0.18 
M-W 0.838 

H+H 9 2.79 ± 0.45 

C_HCa 
F 

2* 6.60 ± 0.01 
M-W 0.333 

HCa 2* 6.75 ± 0.16 

 

PCO2 was a significantly elevated in H+H incubated mantle tissue (0.63 ± 0.10 kPa) 

and almost doubled compared to the control (C_H+H), which had a PCO2 of 0.36 ± 
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0.03 kPa (Fig.3.2B, Tab. 3.1). In the HCa incubation the PCO2 of branchial hearts 

(6.47 ± 2.86 kPa) was not significantly different from the C_HCa incubation (mean = 

3.07 ± 0.37 kPa) (Fig.3.2B, Tab.3.1). 

The intracellular HCO3
- concentration was 2.79 ± 0.45 mmol*L-1 under Hypoxia & 

hypercapnia conditions (H+H) and 2.81 ± 0.18 in the control (C_H+H) with no 

significant difference between the incubations (Tab. 3.1). In the HCa incubation, the 

HCO3
- concentration was 6.75 ± 0.16 mmol*L-1. In the control (C_HCa) the 

concentration was 6.60 ± 0.01 mmol*L-1. The difference was not significant. 

 

3.3 Intracellular metabolite concentrations 

 

3.3.1 Arginine  

Hypoxia & hypercapnia:  The exposure to Hypoxia & hypercapnia (H+H) caused no 

significant changes in the arginine concentrations of mantle (M), systemic heart (SH) 

and branchial heart (BH) tissue (Tab 3.2). In both treatment and control, the 

concentration was ~17 µmol*g tissue-1 for the mantle, ~4.3 µmol*g tissue-1 for the 

systemic heart and ~1.9 µmol*g tissue-1 µmol*g tissue-1 (Fig. 3.3). 

 

Fig. 3.3: Arginine tissue con-
centrations. Mean values ± SD 
are shown for the cuttlefish 
incubated under Hypoxia & 
hypercapnia (H+H), hypoxia 
(HOx) or hypercapnia (HCa) 
and for the respective controls 
(C_H+H, C_HOx, C_HCa). 
Concentrations are in [µmol*g 
tissue-1]. M: mantle, F: funnel, 
SH: systemic heart, BH: 
branchial hearts. Asterisks (*) 
indicate significant differences 
between treatment and con-
trol. 

 
 

Hypoxia:  The exposure to hypoxia (HOx) caused no significant changes in the 

arginine concentrations of funnel (F), systemic heart and branchial heart tissue (Tab 

3.2). In both treatment and control, the concentration was ~14 µmol*g tissue-1 for the 

funnel, ~3.2 µmol*g tissue-1 for the systemic heart and ~2 µmol*g tissue-1 µmol*g 

tissue-1 (Fig. 3.3).  
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Tab. 3.2: Comparison of arginine concentrations in different incubations and tissues. Values are in 
[µmol*g tissue-1]. n is the number of replicates. H+H: Hypoxia & hypercapnia, C_H+H: Hypoxia & 
hypercapnia control, HOx: hypoxia, C_HOx: hypoxia control, HCa: hypercapnia, C_HCa: hypercapnia 
control, M: mantle, F: funnel, SH: systemic heart, BH: branchial hearts, M-W: Mann-Whitney test. Red 
p-values indicate a significant difference between treatment and the respective control. Asterisks (*) 
indicate pooled samples. 

tissue incubation n mean ± SD statistics p-value 

M 
C_H+H 21 16.40 ± 3.70 

M-W 0.248 
H+H 22 18.46 ± 5.53 

F 
C_HOx 8 13.82 ± 2.54 

t-test 0.561 
HOx 7 14.70 ± 3.14 

F 
C_HCa 5 19.39 ± 6.56 

t-test 0.010 
HCa 5 8.30 ± 3.54 

SH 
C_H+H 5* 4.40 ± 0.38 

M-W 0.556 
H+H 4* 4.24 ± 0.21 

SH 
C_HOx 2* 3.27 ± 0.05 

M-W 1.0 
HOx 2* 3.24 ± 0.22 

BH 
C_H+H 4* 2.14 ± 0.96 

M-W 0.686 
H+H 4* 1.65 ± 0.03 

BH 
C_HOx 2* 2.28 ± 0.09 

M-W 0.333 
HOx 2* 1.60 ± 0.03 

 

Hypercapnia:  While arginine was 19.38 ± 6.56 µmol*g tissue-1 in the control 

(C_HCa), the concentration was significantly reduced and more than halved in the 

HCa incubation (mean = 8.34 ± 3.54 µmol*g tissue-1) (Fig. 3.3, Tab. 3.2). 

 

3.3.2 Octopine  

Hypoxia & Hypercapnia: No tissue (mantle, systemic heart, branchial heart) of the 

H+H incubated cuttlefish showed a significant difference in octopine concentrations 

compared to the C_H+H incubation (Tab.3.3). Average octopine concentration of 

H+H and C_H+H were ~0.6 µmol*g tissue-1 for the mantle, ~0.4 µmol*g tissue-1 for 

the systemic heart and ~0.25 µmol*g tissue-1 for the branchial hearts (Fig. 3.4). 

Hypoxia: The funnel octopine concentration was significantly lower in the HOx 

incubation (mean = 2.79 ± 0.87 µmol*g tissue-1) and ~60% of the C_HOx incubation 

(mean = 4.79 ± 0.69 µmol*g tissue-1) (Fig. 3.4Tab. 3.3). There was no significant 

difference between HOx and C_HOx incubations for systemic heart (~2.4 µmol*g 

tissue-1) and branchial hearts (~0.7 µmol*g tissue-1) (Fig. 3.4, Tab. 3.3). 
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Fig. 3.4: Octopine tissue con-
centrations. Mean values ± SD 
are shown for the cuttlefish 
incubated under Hypoxia & 
hypercapnia (H+H), hypoxia 
(HOx) or hypercapnia (HCa) 
and for the respective controls 
(C_H+H, C_HOx, C_HCa). 
Concentrations are in [µmol*g 
tissue-1]. M: mantle, F: funnel, 
SH: systemic heart, BH: 
branchial hearts. Asterisks (*) 
indicate significant differences 
between treatment and con-
trol. 

 

Hypercapnia: Funnel octopine concentration was 3.63 ± 0.81 µmol*g tissue-1 in the 

HCa treatment and 3.98 ± 3.47 µmol*g tissue-1 in the respective control incubation 

(C_HCa) with no significant difference between the incubations (Fig. 3.4, Tab. 3.3). 

 

Tab. 3.3: Comparison of octopine concentrations in different incubations and tissues. Values are in 
[µmol*g tissue-1]. n is the number of replicates. H+H: Hypoxia & hypercapnia, C_H+H: Hypoxia & 
hypercapnia control, HOx: hypoxia, C_HOx: hypoxia control, HCa: hypercapnia, C_HCa: hypercapnia 
control, M: mantle, F: funnel, SH: systemic heart, BH: branchial hearts, M-W: Mann-Whitney test. Red 
p-values indicate a significant difference between treatment and the respective control. Asterisks (*) 
indicate pooled samples. 

tissue incubation n mean ± SD statistics p-value 

M 
C_H+H 20 0.58 ± 0.30 

M-W 0.696 
H+H 22 0.64 ± 0.36 

F 
C_HOx 6 4.79 ± 0.69 

t-test < 0.001 
HOx 8 2.79 ± 0.87 

F 
C_HCa 5 3.98 ± 3.47 

M-W 0.841 
HCa 5 3.63 ± 0.81 

SH 
C_H+H 5* 0.38 ± 0.15 

t-test 0.548 
H+H 5* 0.43 ± 0.10 

SH 
C_HOx 2* 2.33 ± 0.26 

M-W 0.667 
HOx 2* 2.49 ± 0.07 

BH 
C_H+H 4* 0.28 ± 0.13 

M-W 0.200 
H+H 4* 0.21 ± 0.003 

BH 
C_HOx 2* 0.50 ± 0.10 

M-W 0.333 
HOx 2* 0.86 ± 0.14 

 

3.3.3 Phospho-L-arginine (PLA)  

Hypoxia & hypercapnia:  The concentration of PLA in mantle, systemic heart and 

branchial hearts did not differ significantly between the H+H and the C_H+H 

incubations (Tab. 3.4). In both incubations, the PLA concentration was ~15.8 µmol*g 
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tissue-1 for the mantle, 0.35 µmol*g tissue-1 for the systemic heart and ~0.28 µmol*g 

tissue-1 for the branchial hearts (Fig. 3.5). 

 

Fig. 3.5: PLA tissue con-
centrations. Mean values ± SD 
are shown for the cuttlefish 
incubated under Hypoxia & 
hypercapnia (H+H), hypoxia 
(HOx) or hypercapnia (HCa) 
and for the respective controls 
(C_H+H, C_HOx, C_HCa). 
Concentrations are in [µmol*g 
tissue-1]. M: mantle, F: funnel, 
SH: systemic heart, BH: 
branchial hearts. Asterisks (*) 
indicate significant differences 
between treatment and con-
trol. 

 

Hypoxia:  Hypoxia treated funnel tissue (mean = 1.93 ± 0.49 µmol*g tissue-1) had a 

significantly higher PLA concentration than funnel from the C_HOx incubation (mean 

= 1.13 ± 0.49 µmol*g tissue-1) (Fig. 3.5, Tab.3.4). The PLA concentrations in systemic 

(~0.35 µmol*g tissue-1) and branchial hearts (~0.34 µmol*g tissue-1) did not differ 

significantly between incubations (Fig. 3.5, Tab.3.4). 

 

Tab. 3.4: Comparison of PLA concentrations in different incubations and tissues. Values are in 
[µmol*g tissue-1]. n is the number of replicates. H+H: Hypoxia & hypercapnia, C_H+H: Hypoxia & 
hypercapnia control, HOx: hypoxia, C_HOx: hypoxia control, HCa: hypercapnia, C_HCa: hypercapnia 
control, M: mantle, F: funnel, SH: systemic heart, BH: branchial hearts, M-W: Mann-Whitney test. Red 
p-values indicate a significant difference between treatment and the respective control. Asterisks (*) 
indicate pooled samples. 

tissue incubation n mean ± SD statistics p-value 

M 
C_H+H 22 15.88 ± 4.12 

M-W 0.824 
H+H 22 15.82 ± 5.90 

F 
C_HOx 7 1.13 ± 0.49 

t-test 0.013 
HOx 6 1,93 ± 0.49 

F 
C_HCa 5 9.05 ± 4.45 

t-test 0.034 
HCa 4 2.88 ± 1.49 

SH 
C_H+H 5* 0.43 ± 0.21 

t-test 0.159 
H+H 4* 0.26 ± 0.001 

SH 
C_HOx 2* 0.31 ± 0.06 

M-W 0.667 
HOx 2* 0.45 ± 0.14 

BH 
C_H+H 4* 0.33 ± 0.15 

M-W 0.190 
H+H 5* 0.25 ± 0.01 

BH 
C_HOx 2* 0.29 ± 0.01 

M-W 0.333 
HOx 2* 0.39 ± 0.001 
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Hypercapnia:  The PLA concentrations of HCa treated cuttlefish funnel (mean = 2.88 

± 1.49 µmol*g tissue-1) and the control (C_HCa) group (mean = 9.05 ± 4.45 µmol*g 

tissue-1) differed significantly (∆PLA = +6.62 µmol*g tissue-1) (Fig. 3.5, Tab. 3.4). 

 

3.3.4 ATP 

Hypoxia & hypercapnia:  Incubation at Hypoxia & hypercapnia (H+H) did not 

significantly change the tissue (mantle, systemic heart, branchial heart) concentration 

of ATP compared to the C_H+H incubation (Tab. 3.5). Average concentrations of 

~3.6 µmol*g tissue-1 (mantle), ~0.5 µmol*g tissue-1 (systemic heart) and ~0.1 µmol*g 

tissue-1 (branchial heart) were found in H+H and C_H+H (Fig. 3.6).  

 

Fig. 3.6: ATP tissue con-
centrations. Mean values ± SD 
are shown for the cuttlefish 
incubated under Hypoxia & 
hypercapnia (H+H), hypoxia 
(HOx) or hypercapnia (HCa) 
and for the respective controls 
(C_H+H, C_HOx, C_HCa). 
Concentrations are in [µmol*g 
tissue-1]. M: mantle, F: funnel, 
SH: systemic heart, BH: 
branchial hearts. Asterisks (*) 
indicate significant differences 
between treatment and con-
trol. 

 

Hypoxia:  Funnel ATP was significantly higher (4-fold increase) in the HOx incubation 

(mean = 1.52 ± 0.26 µmol*g tissue-1) than in the C_HOx incubation (mean = 0.35 ± 

0.18 µmol*g tissue-1) (Fig. 3.6, Tab. 3.5). There was no significant difference in the 

ATP concentrations of HOx and C_HOx incubations for systemic heart (~0.3 µmol*g 

tissue-1) and branchial hearts (~0.2 µmol*g tissue-1) (Tab. 3.5). 

Hypercapnia:  Under HCa conditions, funnel ATP concentration (mean = 1.14 ± 0.30 

µmol*g tissue-1) was significantly reduced to 56% of the concentration under control 

(C_HCa) conditions (mean = 2.03 ± 0.23 µmol*g tissue-1) (Fig. 3.6, Tab. 3.5). 
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Tab. 3.5: Comparison of ATP concentrations in different incubations and tissues. Values are in 
[µmol*g tissue-1]. n is the number of replicates. H+H: Hypoxia & hypercapnia, C_H+H: Hypoxia & 
hypercapnia control, HOx: hypoxia, C_HOx: hypoxia control, HCa: hypercapnia, C_HCa: hypercapnia 
control, M: mantle, F: funnel, SH: systemic heart, BH: branchial hearts, M-W: Mann-Whitney test. Red 
p-values indicate a significant difference between treatment and the respective control. Asterisks (*) 
indicate pooled samples. 

tissue incubation n mean ± SD statistics p-value 

M 
C_H+H 22 3.68 ± 0.45 

M-W 0.855 
H+H 21 3.52 ± 0.90 

F 
C_HOx 7 0.35 ± 0.18 

t-test < 0.001 
HOx 6 1.52 ± 0.26 

F 
C_HCa 4 2.03 ± 0.23 

t-test 0.002 
HCa 5 1.14 ± 0.30 

SH 
C_H+H 5* 0.61 ± 0.26 

t-test 0.548 
H+H 5* 0.39 ± 0.13 

SH 
C_HOx 2* 0.10 ± 0.004 

M-W 0.333 
HOx 2* 0.56 ± 0.15 

BH 
C_H+H 4* 0.14 ± 0.12 

t-test 0.200 
H+H 5* 0.08 ± 0.04 

BH 
C_HOx 2* 0.06 ± 0.005 

M-W 0.333 
HOx 2* 0.40 ± 0.004 

 

3.3.5 ADP 

Hypoxia & hypercapnia:  Mantle ADP concentrations in the H+H incubation (mean = 

1.34 ± 0.29 µmol*g tissue-1) and the C_H+H incubation (mean = 0.95 ± 0.25 µmol*g 

tissue-1) differed significantly (Fig. 3.7, Tab. 3.6). There was no significant difference 

in ADP concentrations of H+H and C_H+H incubations for systemic heart (~0.7 

µmol*g tissue-1) and branchial hearts (~0.7 µmol*g tissue-1) (Fig. 3.7, Tab. 3.6). 

 

Fig. 3.7: ADP tissue con-
centrations. Mean values ± SD 
are shown for the cuttlefish 
incubated under Hypoxia & 
hypercapnia (H+H), hypoxia 
(HOx) or hypercapnia (HCa) 
and for the respective controls 
(C_H+H, C_HOx, C_HCa). 
Concentrations are in [µmol*g 
tissue-1]. M: mantle, F: funnel, 
SH: systemic heart, BH: 
branchial hearts. Asterisks (*) 
indicate significant differences 
between treatment and con-
trol. 
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Hypoxia:  In the hypoxia treatment (HOx; Fig. 3.7), the funnel ADP concentration was 

significantly higher (1.45 ± 0.12 µmol*g tissue-1) than in the control (C_HOx) 

incubation (0.88 ± 0.08 µmol*g tissue-1; ∆ADP = +0.57 µmol*g tissue-1; Tab. 3.6). 

Heart tissues were not significantly affected by hypoxia (Tab. 3.6). The average 

concentrations in both HOx and C_HOx were ~0.42 µmol*g tissue-1 for systemic 

heart and ~0.37 µmol*g tissue-1, respectively (Fig. 3.7). 

 

Tab. 3.6: Comparison of ADP concentrations in different incubations and tissues. Values are in 
[µmol*g tissue-1]. n is the number of replicates. H+H: Hypoxia & hypercapnia, C_H+H: Hypoxia & 
hypercapnia control, HOx: hypoxia, C_HOx: hypoxia control, HCa: hypercapnia, C_HCa: hypercapnia 
control, M: mantle, F: funnel, SH: systemic heart, BH: branchial hearts, M-W: Mann-Whitney test. Red 
p-values indicate a significant difference between treatment and the respective control. Asterisks (*) 
indicate pooled samples. 

tissue incubation n mean ± SD statistics p-value 

M 
C_H+H 22 0.95 ± 0.25 

t-test < 0.001 
H+H 21 1.34 ± 0.29 

F 
C_HOx 7 0.88 ± 0.08 

t-test < 0.001 
HOx 6 1.45 ± 0.12 

F 
C_HCa 5 0.42 ± 0.13 

t-test 0.419 
HCa 5 0.52 ± 0.22 

SH 
C_H+H 5* 0.77 ± 0.12 

t-test 0.939 
H+H 5* 0.76 ± 0.14 

SH 
C_HOx 2* 0.32 ± 0.03 

M-W 0.333 
HOx 2* 0.62 ± 0.06 

BH 
C_H+H 4* 0.74 ± 0.18 

t-test 0.429 
H+H 5* 0.67 ± 0.04 

BH 
C_HOx 2* 0.25 ± 0.04 

M-W 0.333 
HOx 2* 0.49 ± 0.01 

 

Hypercapnia:  The ADP concentrations in cuttlefish funnel under hypercapnia (HCa) 

and in the respective control (C_HCa) did not differ significantly (Tab. 3.6). The 

average concentration for both incubations was ~0.7 µmol*g tissue-1 (Fig. 3.7). 

 

3.3.6 AMP 

Hypoxia & hypercapnia:  Mantle AMP was significantly (~50%) higher in the H+H 

incubation (mean = 0.30 ± 0.12 µmol*g tissue-1) in comparison to the C_H+H 

incubation (mean = 0.20 ± 0.11 µmol*g tissue-1) (Fig. 3.8, Tab. 3.7). There was no 

significant difference between H+H and C_H+H incubations for systemic heart (~0.9 

µmol*g tissue-1) and branchial hearts (~1.0 µmol*g tissue-1) (Fig. 3.8, Tab. 3.7). 
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Fig. 3.8: AMP tissue con-
centrations. Mean values ± SD 
are shown for the cuttlefish 
incubated under Hypoxia & 
hypercapnia (H+H), hypoxia 
(HOx) or hypercapnia (HCa) 
and for the respective controls 
(C_H+H, C_HOx, C_HCa). 
Concentrations are in [µmol*g 
tissue-1]. M: mantle, F: funnel, 
SH: systemic heart, BH: 
branchial hearts. Asterisks (*) 
indicate significant differences 
between treatment and con-
trol. 

 

Hypoxia:  Hypoxia (HOx) caused no significant changes in the AMP concentrations of 

funnel, systemic heart and branchial heart tissue (Tab 3.7). In both treatment and 

control, AMP was ~1.3 µmol*g tissue-1 for the funnel, ~1.4 µmol*g tissue-1 for the 

systemic heart and ~0.8 µmol*g tissue-1 for the branchial hearts (Fig. 3.8). 

 

Tab. 3.7: Comparison of AMP concentrations in different incubations and tissues. Values are in 
[µmol*g tissue-1]. n is the number of replicates. H+H: Hypoxia & hypercapnia, C_H+H: Hypoxia & 
hypercapnia control, HOx: hypoxia, C_HOx: hypoxia control, HCa: hypercapnia, C_HCa: hypercapnia 
control, M: mantle, F: funnel, SH: systemic heart, BH: branchial hearts, M-W: Mann-Whitney test. Red 
p-values indicate a significant difference between treatment and the respective control. Asterisks (*) 
indicate pooled samples. 

tissue incubation n mean ± SD statistics p-value 

M 
C_H+H 21 0.20 ± 0.11 

M-W 0.003 
H+H 21 0.30 ± 0.12 

F 
C_HOx 7 1.42 ± 0.33 

t-test 0.159 
HOx 7 1.16 ± 0.31 

F 
C_HCa 5 0.13 ± 0.03 

t-test 0.152 
HCa 4 0.18 ± 0.06 

SH 
C_H+H 5* 0.70 ± 0.17 

t-test 0.051 
H+H 5* 1.10 ± 0.35 

SH 
C_HOx 2* 1.63 ± 0.20 

M-W 0.333 
HOx 2* 0.88 ± 0.09 

BH 
C_H+H 5* 1.17 ± 0.62 

M-W 1.0 
H+H 5* 0.90 ± 0.11 

BH 
C_HOx 2* 0.97 ± 0.08 

M-W 0.333 
HOx 2* 0.57 ± 0.07 

 

Hypercapnia:  Funnel AMP concentrations were not significantly affected by 

hypercapnia (Tab. 3.7). In the HCa and the C_HCa incubations, the average AMP 

concentration was ~0.16 µmol*g tissue-1 (Fig. 3.8). 
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3.3.7 Free ADP, free AMP & Gibbs free energy 

The concentration of free ADP in the mantle tissue of cuttlefish incubated under H+H 

conditions (mean = 0.32 ± 0.14 µmol*g tissue-1) was not significantly different from 

the concentration under C_H+H conditions (mean = 0.29 ± 0.07 µmol*g tissue-1) 

(Tab.3.8). The relative amount of free ADP in comparison to the total ADP 

concentration (see 3.3.5) was 24% under Hypoxia & hypercapnia and 30% under 

control conditions. 

 

Tab. 3.8: Free ADP, free AMP and Gibbs free energy. Free ADP and free AMP values are in [µmol*g 
tissue-1]. Gibbs free energy (∆G/∆ξ) values are in [kJ*mol-1]. n is the number of replicates. H+H: 
Hypoxia & hypercapnia, C_H+H: Hypoxia & hypercapnia control, M: mantle, M-W: Mann-Whitney test. 
Red p-values indicate a significant difference between treatment and the respective control.  

 incubation tissue n mean ± SD statistics p-value 

fr
ee

 
A

D
P

 C_H+H 
M 

9 0.29 ± 0.07 
t-test 0.506 

H+H 14 0.32 ± 0.14 

fr
ee

 
A

M
P

 C_H+H 
M 

9 0.026 ± 0.010 
t-test 0.260 

H+H 14 0.037 ± 0.025 

∆
G

/∆
ξ C_H+H 

M 
8 -56.00 ± 0.34 

M-W 0.384 
H+H 15 -55.61 ± 1.08 

 

Free AMP concentration was 0.026 ± 0.010 µmol*g tissue-1 in mantle tissue from the 

H+H incubation and 0.037 ± 0.025 µmol*g tissue-1 in the C_H+H incubation, with no 

significant difference between the incubations (Tab.3.8). The percentage of free AMP 

compared to the total AMP concentration (see 3.3.6) was 12% in the treatment (H+H) 

and 13% in the control (C_H+H). 

Gibbs free energy change of ATP hydrolysis (∆G/∆ξ) was not significantly affected by 

exposure to Hypoxia & hypercapnia (Tab.3.8). The mean values were -55.61 ± 1.08 

kJ*mol1- in the H+H incubation and -56.00 ± 0.34 kJ*mol1- in the C_H+H incubation. 

 

3.3.8 Inorganic phosphate (P i) 

Hypoxia & hypercapnia:  The concentration of Pi in mantle (~19 µmol*g tissue-1), 

systemic heart (1.3 µmol*g tissue-1) and branchial hearts (~5 µmol*g tissue-1) did not 

differ significantly between the H+H and the C_H+H incubations (Fig. 3.9, Tab. 3.9). 
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Fig. 3.9: Inorganic phosphate 
(Pi) tissue concentrations. 
Mean values ± SD are shown 
for the cuttlefish incubated 
under Hypoxia & hypercapnia 
(H+H), hypoxia (HOx) or 
hypercapnia (HCa) and for the 
respective controls (C_H+H, 
C_HOx, C_HCa). Concentra-
tions are in [µmol*g tissue-1]. 
M: mantle, F: funnel, SH: 
systemic heart, BH: branchial 
hearts. Asterisks (*) indicate 
significant differences between 
treatment and control. 

 

Hypoxia:  The funnel Pi concentration in the HOx incubation (mean = 19.43 ± 5.11 

µmol*g tissue-1) was significantly lower (70% of control) than in the C_HOx incubation 

(mean = 13.55 ± 4.58 µmol*g tissue-1) (Fig. 3.9, Tab. 3.9). Pi concentrations of the 

HOx and C_HOx incubations did not differ significantly for systemic heart (~5 µmol*g 

tissue-1) and branchial hearts (~3.5 µmol*g tissue-1) (Fig. 3.9, Tab. 3.9). 

 

Tab. 3.9: Comparison of inorganic phosphate (Pi) concentrations in different incubations and tissues. 
Values are in [µmol*g tissue-1]. n is the number of replicates. H+H: Hypoxia & hypercapnia, C_H+H: 
Hypoxia & hypercapnia control, HOx: hypoxia, C_HOx: hypoxia control, HCa: hypercapnia, C_HCa: 
hypercapnia control, M: mantle, F: funnel, SH: systemic heart, BH: branchial hearts, M-W: Mann-
Whitney test. Red p-values indicate a significant difference between treatment and the respective 
control. Asterisks (*) indicate pooled samples. 

tissue incubation n mean ± SD statistics p-value 

M 
H+H 21 18.61 ± 5.03 

t-test 0.603 
C_H+H 22 19.48 ± 5.79 

F 
HOx 8 19.43 ± 5.11 

t-test 0.046 
C_HOx 6 13.55 ± 4.58 

F 
HCa 5 12.07 ± 8.48 

t-test 0.171 
C_HCa 3 3.92 ± 3.22 

SH 
H+H 4* 0.70 ± 0.05 

M-W 0.286 
C_H+H 5* 2.03 ± 1.99 

SH 
HOx 2* 7.44 ± 0.71 

M-W 0.333 
C_HOx 2* 2.39 ± 0.26 

BH 
H+H 5* 4.74 ± 1.58 

t-test 0.537 
C_H+H 4* 5.29 ± 0.68 

BH 
HOx 2* 4.25 ± 1.99 

M-W 0.667 
C_HOx 2* 2.93 ± 1.13 
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Hypercapnia:  The Pi concentration was 3.92 ± 3.23 µmol*g tissue-1 in the HCa 

treatment and not significantly different from the control (C_HCa) incubation (mean = 

12.07 ± 8.48 µmol*g tissue-1) (Fig. 3.9, Tab. 3.9). 

 

3.3.9 Succinate 

A rise in succinate is associated with anaerobic metabolism, which can also be 

indicated by octopine. Hence, a rise of succinate can be predicted by elevated 

octopine concentrations (see 1.2.3). Therefore, succinate was only measured in the 

samples with the highest octopine concentrations. However, the intracellular 

succinate concentration in the mantle tissue of cuttlefish from the H+H treatment and 

the control (C_H+H) was below the detection limit in most of the investigated 

samples. Therefore, other tissue samples were not measured to save sample 

material. 

Calibration could be performed down to a concentration of ~0.3 µmol*g tissue-1 (R2 = 

0.9993). Succinate could only be detected in one sample with a concentration of 0.19 

µmol*g tissue-1. Thus, succinate concentration of mantle tissues from the H+H and 

C_H+H incubations was probably below 0.2 µmol*g tissue-1 in all samples. 
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4 Discussion 
 

Exposure of Sepia officinalis to simultaneous hypoxia and hypercapnia caused an 

increase in blood PCO2 and bicarbonate (HCO3
-), while blood pH (pHe) was 

unaffected. A rise in mantle PCO2 caused a drop in pHi, but intracellular energy 

status and metabolite concentrations were mostly unaffected. Only mantle 

concentrations of total ADP and AMP increased during simultaneous hypoxia and 

hypercapnia. 

Funnel tissue of cuttlefish exposed to hypoxia displayed elevated intracellular 

concentrations of phospho-L-arginine (PLA), ADP and ATP, whereas concentrations 

of octopine and inorganic phosphate (Pi) decreased. Hypoxia did not alter arginine 

and AMP concentrations in the funnel. 

Hypercapnia caused a reduction of intracellular arginine, PLA and ATP levels in the 

funnel tissue of S. officinalis. All other intracellular metabolite concentrations 

remained unchanged regarding the funnel tissue. 

Generally, systemic and branchial heart parameters were not significantly changed in 

any of the three treatments compared to their respective controls. There was also a 

trend towards reduced metabolite concentrations in the hearts compared to mantle or 

funnel tissue. The general problem of low replicate numbers and low statistical test 

power for the heart tissues is discussed in section 4.6. 

 

4.1 Blood physiology  

The increase of blood PCO2 during hypoxia and hypercapnia (0.37 ± 0.06 kPa) 

compared to the control (0.28 ± 0.05 kPa) is in line with findings of earlier studies. 

Gutowska et al. (2010) observed that Sepia officinalis’ blood PCO2 increased from 

0.22 ± 0.03 kPa to 0.98 ± 0.03 kPa during exposure to severe hypercapnia (0.6 kPa 

CO2). The elevated blood PCO2 is caused by the accumulation of CO2 species in the 

blood. This is not only due to diffusion, but also reflects the cuttlefish’s effort to 

maintain an outward directed CO2 concentration gradient, which is needed to remove 

the metabolic CO2 from the body fluids (Fabry et al. 2008, Melzner et al. 2012). 

Removal of CO2 from the blood system may also be supported by hyperventilation 

(Gutowska et al. 2010, Schmidt et al. unpubl.), which is economical and does not 

severely affect metabolic rates and energy consumption (Melzner et al. 2006b, 

Gutowska et al. 2010). However, the CO2 reduction effect of hyperventilation is rather 
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low due to the small concentration gradient between seawater and the organisms’ 

body fluids (Scheid et al. 1989, Melzner et al. 2012). 

It is likely that the observed rise in blood HCO3
- concentration during hypoxia and 

hypercapnia (∆HCO3
- = +0.67 mmol*L-1) is an active response of the cuttlefish to 

secure the blood oxygen transport of the hemocyanin. Elevated blood bicarbonate 

levels were detected in S. officinalis during hypercapnia (Gutowska et al. 2010) and 

during exercise (Pörtner et al. 1991). In both situations, the accumulation of vascular 

CO2 from the environment or from increased cellular respiration rates could cause a 

decrease in pHe and could thus impede O2 binding by the pH-sensitive hemocyanin 

(Pörtner 1990, 1994). The accumulation of HCO3
- counteracts this trend and helps to 

keep pHe between pH values of 7.4 and 7.8. The cooperativity of S. officinalis 

hemocyanin is strongest in this range, which means that already small pH changes 

cause changes in O2 affinity (Johansen et al. 1982a, Zielinski et al. 2001). This 

secures proper hemocyanin loading at the gills and unloading at the tissue. There are 

several potential sources for the bicarbonate that accumulates in the blood. During 

exercise, a release of HCO3
- from the tissue could be observed in squids (Pörtner 

1994, Pörtner & O’Dor 1994). Active ion transport by regulatory epithelia was 

identified as a source for bicarbonate in bivalves during hypercapnia (Lindinger et al. 

1984). Hypercapnia induced dissolution of calcium carbonate (CaCO3) was also 

found to increase blood HCO3
- levels in bivalve species (Michaelidis et al. 2005a,b), 

but Gutowska et al. (2008) found elevated calcification rates in S. officinalis even 

during severe hypercapnia (0.6 kPa CO2). If the increase in blood bicarbonate (and 

CO2 in general; see above) presented in the present study was achieved by active 

ion transport, this ATP-intensive process would cause increased energy demands 

(Dubyak 2004, Melzner et al. 2012). This could reduce the survival time under 

unfavorable conditions, when the cuttlefish has to resort to storage- and time-limited 

anaerobic metabolism (see 1.2.3). 

pHe did not change during exposure to hypoxia and hypercapnia and this was 

partially due to the aforementioned accumulation of bicarbonate in the blood. 

However, the observed change in bicarbonate (∆HCO3
- = +0.67 mmol*L-1) was small 

compared to the increase found by Gutowska et al. (2010) during 0.6 kPa 

hypercapnia (∆HCO3
- = +6.99 mmol*L-1). This may be partially caused by the more 

severe hypercapnia, but despite this strong rise in bicarbonate, Gutowska et al. 

(2010) still found a significant reduction in pHe. The relatively small rise in blood 
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HCO3
- found in the present study seems sufficient to prevent a drop in pHe, but the 

rise might was also supported by other factors. Another process that counteracted 

decreasing pHe in the hypoxia and hypercapnia incubation was the uptake of H+ ions 

by the hemocyanin during deoxygenation according to the Bohr-effect (Pörtner 

1994). Sepia officinalis has a Bohr-coefficient between -1.15 and -1.5 ∆P50/∆pH (P50 

= PO2 need for 50% O2 saturation of the hemocyanin; Pörtner 1994), which means 

that per mol released O2 1.15 to 1.5 mol protons are taken up (Lykkeboe et al. 1980, 

Pörtner 1990). During hypoxia, the hemocyanin O2 saturation is reduced and H+ is 

taken up instead, causing an increase in pHe (Houlihan et al. 1982, Johansen et al. 

1982a). In the present study, blood deoxygenation and thus H+ uptake were probably 

artificially enhanced by anesthesia of the cuttlefish before dissection (see 2.3.1), but 

a similar effect should have occurred during the incubation under hypoxia and 

hypercapnia. 

Although blood PO2 could not be measured properly because of the aforementioned 

anesthesia, it might have been reduced under the given incubation conditions. A 

reduced blood PO2 would ease the oxygen uptake at the gills and help to maintain 

the typically high ventilatory O2 extraction rates (80% in S. officinalis; Melzner et al. 

2006b), which are possible due to the uncoupling of ventilation and locomotion in 

cuttlefish (Wells & O’Dor 1991). It would also support the unloading of the 

hemocyanin at the tissue (Pörtner 1990, Melzner et al. 2007b). As O2 affinity is rather 

dependent on pH than on PO2 (Pörtner 1990), hemocyanin oxygen uptake at the gills 

would still be secured. An effect of hypercapnia on blood oxygen partial pressure is 

unlikely, because Gutowska et al. (2010) found a high venous blood PO2 (~2 kPa) in 

cuttlefish exposed to 0.6 kPa CO2. 

Sepia officinalis is a good extracellular acid-base regulator, which can maintain 

proper functioning of its circulatory system down to a venous PO2 < 1 kPa (Melzner et 

al. 2007b). The species withstands long-term exposure to hypoxia (50% air 

saturation; Thonig 2011) and even during a hypercapnia induced blood acidosis, the 

cuttlefish could keep blood PO2 constant (Gutowska et al. 2010). Aside the 

aforementioned mechanism, S. officinalis can also strongly modify ventilation without 

severely increasing energy costs (Melzner et al. 2006b). As the effects of hypoxia 

and hypercapnia on pHe might counteract each other (Johansen et al. 1982a, Truchot 

1988), there might be only minor need for a compensatory increase of blood HCO3
-. 
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Thus, the blood system of the cuttlefish has the potential to cope with future 

moderate changes in ocean oxygen and CO2 partial pressures. 

 

4.2 Tissue physiology 

 

4.2.1 Effects of hypoxia (HOx) 

The parameter changes in cuttlefish funnel tissue exposed to hypoxia strongly 

contrast the findings of other studies. Increased concentrations of PLA and ATP were 

found, whereas octopine and Pi decreased compared to the control group. Also, ADP 

was elevated in the treatment, but the changes in the other adenylates indicate this 

rise occurred mainly at the expense of AMP. Although Gibbs free energy could not be 

determined (pHi values are missing for these incubations), an elevated 

[PLA]/([Arg]+[PLA]) ratio in the funnel implies that the energy state was higher in the 

treatment than in the control. Earlier studies on S. officinalis (Storey & Storey 1979), 

L. brevis (Zielinski et al. 2000) and the humboldt squid Dosidicus gigas (Rosa & 

Seibel 2008, Häfker & Seibel unpubl.) reported exactly opposite changes during 

hypoxia.  

However, in these studies the cephalopods were usually exposed to short periods of 

strong hypoxia, which guaranteed the use of anaerobic metabolism and the 

respective changes in anaerobic metabolites (Pörtner 1987, Grieshaber et al. 1994). 

Even the “moderate” hypoxia applied to S. officinalis by Storey & Storey (1979) 

reflected a PO2 of ~20% air saturation, which is still far below the long-term survival 

limit of ~50% air saturation in this species (Thonig 2011). Furthermore they used 

larger animals (75-135 g), which might be more vulnerable to hypoxia, due to their 

lower surface/volume ratio and the possible importance of cutaneous respiration (de 

Wachter et al. 1988, Johansen et al. 1982b, Pörtner 1994, Melzner et al. 2006b). The 

study of Zielinski et al. (2000) could help to resolve the conflict. Here, L. brevis was 

exposed to different oxygen tensions for two hours each to determine the critical PO2 

(characterized by the onset of anaerobic metabolism). A critical PO2 of ~8 kPa (~42% 

air saturation) was determined and a decrease in PLA, ATP and Gibbs free energy 

was observed at a PO2 below 6.6 kPa. However, an intracellular acidosis occurred 

already at an oxygen tension of 10.0 kPa (~52% air saturation).  

Translating to S. officinalis, these findings could indicate that the hypoxia treated 

cuttlefish were incubated slightly above their critical PO2 (~51% oxygen air saturation 
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=o  ~4 mg O2*L
-1, see 2.2.2). Johansen et al. (1982b) and de Wachter et al. (1988) 

found even lower critical oxygen tension (2.6 mg O2*L
-1 and 3.2 mg O2*L

-1, 

respectively) in similar sized cuttlefish at slightly higher temperatures (17°C and 

~19°C, respectively). However, those were short-ter m incubations (max 3 h) and the 

critical PO2s for long-term survival were probably higher. At ~51% oxygen air 

saturation, the cuttlefish in the present incubation might have displayed a drop in pHi, 

which could have caused a metabolic reduction (Pörtner 2002). A decrease of the 

metabolic activity (metabolic depression) could explain why the cuttlefish incubated 

under hypoxia apparently did even better than the respective control group. Although 

anesthesia does not directly affect parameters of several tissues (Storey & Storey 

1979), the handling before dissection is always associated with minor stress that can 

cause alterations in tissue metabolite concentrations. If the hypoxia treated cuttlefish 

were in a state of metabolic depression, such metabolite changes would have been 

less pronounced compared to the control. Hypoxia has been identified as a trigger for 

metabolic depression in several cephalopod species (Wells 1979, Houlihan et al. 

1982, Wells et al. 1992, Häfker & Seibel unpubl.), but unfortunately data on funnel 

pHi in this experiment are missing to verify this assumption. 

Neither systemic heart nor branchial hearts showed a change in any of the measured 

parameters. This could indicate that both tissues remained fully aerobic during 

hypoxia and cellular functioning was not visibly affected. For the branchial hearts that 

are more tolerant to hypoxia than the systemic heart as they receive O2-poor venous 

blood this could hold true (Driedzic 1985, Schipp 1987). However, the systemic heart 

is considered obligatory aerobic and depends on a continuous supply with O2-rich 

water from the gills (Driedzic 1985). Thus, as for the hypoxia and hypercapnia 

incubation, possible significant changes in metabolite concentrations might be 

invisible due to type 2 errors (see 4.6). 

 

4.2.2 Effects of hypercapnia (HCa) 

Sepia officinalis funnel tissue showed a decrease in the intracellular concentration of 

PLA during exposure to hypercapnia. Together with decreasing intracellular arginine 

levels and a reduction of the [PLA]/([Arg]+[PLA]) ratio, this could be a sign of 

anaerobic metabolism. Hypercapnia might have caused a reduction in pHe and thus 

impeded proper O2 transport to the tissue (Gutowska et al. 2010). The lack of oxygen 

in the tissue would then result in anaerobic metabolism. However, this is unlikely, 
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because a complete pHe compensation was found in the hypoxia & hypercapnia 

incubation (see 4.2.3) and even severe hypercapnia (0.6 kPa CO2) caused only 

minor reduction of pHe (Gutowska et al. 2010). Additionally, the thin funnel is in close 

contact with the ambient water and might take up O2 via cutaneous respiration 

(Pörtner 1994, Melzner et al. 2006b). Also, despite the reduced levels of PLA and 

arginine, the intracellular octopine concentration, which is a classical indicator for 

anaerobic metabolism, did not change compared to the control. A reason for this 

pattern might be that anaerobic metabolism took place and octopine was produced 

but immediately released into the bloodstream for oxidation in other tissues (Storey & 

Storey 1979). However, the results of the other incubations (see 4.2.1, 4.2.3) as well 

as earlier studies on squids (Pörtner et al. 1991, 1993) contradict this assumption. 

Increased blood octopine concentrations found by Storey & Storey (1979) may be 

caused by tissue infringements during dissection (Pörtner pers. comm.). 

Furthermore, the funnel is thin and has good access to ambient water, which means 

that it could rather act as a site of octopine oxidation than of octopine production. 

However, information on different octopine-dehydrogenase isoforms is missing for 

funnel tissue (Storey 1977). It might be possible that an increase in octopine 

concentration occurred during hypercapnia but could not be identified due to the 

strong variation of the results from the control group (mean = 3.98 ± 3.47 µmol*g 

tissue-1). Nevertheless, it is questionable if hypercapnia actually did cause anaerobic 

metabolism in the funnel tissue. Gutowska et al. (2010) found a stable [PLA]/[Pi] ratio 

in S. officinalis exposed to severe hypercapnia (0.6 kPa CO2), which indicated that no 

anaerobic metabolism took place here. 

Another, although less likely, option is that the arginine produced from PLA 

mobilization was not channeled into anaerobic octopine production, but into amino 

acid catabolism instead (Hochachka & Fields 1982, Mommsen et al. 1982). The 

degradation of amino acids yields HCO3
- and ammonium (NH4

+), which can be 

excreted (Atkinson & Camien 1982, Pörtner et al. 1998). This process could help to 

buffer the intracellular acidosis that probably developed due to CO2 accumulation 

under hypercapnia (Gutowska et al. 2010, Melzner et al. 2012, see 4.2.3). However, 

the peanut worm Sipunculus nudus showed decreased rates of NH4
+ excretion 

together with metabolic depression during exposure to hypercapnia (Langenbuch & 

Pörtner 2002). For example, in the squid I. illecebrosus O2 consumption and NH4
+ 

excretion were linearly correlated, which indicates that the intracellular acidosis from 
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respiratory CO2 production is (partially) buffered by the excretion of protons via 

ammonium (Hoeger et al. 1987). Although cephalopods are considered poor 

intracellular acid-base regulators (Pörtner & O’Dor 1994), S. officinalis displayed only 

a minor (but still significant) drop in pHi during severe hypercapnia (Gutowska et al. 

2010). Data on intracellular bicarbonate concentrations during exposure to 

hypercapnia would help to clarify the picture, but could not be measured due to a 

lack of sample material. 

The reduced ATP concentration and a lowered [PLA]/([Arg]+[PLA]) ratio indicate that 

no metabolic depression occurred during exposure to hypercapnia (Gibbs free 

energy could not be determined due to lacking pHi values). Hypercapnia is a 

common trigger for metabolic depression in several species of different animal 

groups including bivalves and gastropods (Rees & Hand 1990, Guppy & Withers 

1999, Michaelidis et al. 2005b, Pörtner et al. 2005). But a hypercapnia-induced 

reduction of metabolic rate was neither found in S. officinalis (Gutowska et al. 2010) 

nor in other cephalopods (Rosa & Seibel 2008, Häfker & Seibel unpubl.). Instead, 

Gutowska et al. (2010) found elevated ventilation rates in S. officinalis during 

hypercapnia, which probably involve increased muscular activity of the funnel tissue. 

As hypercapnia did cause intracellular acidosis, but no metabolic reduction in 

cuttlefish (Gutowska et al. 2010), this contradicts the assumption that a drop in pHi 

could be the trigger for metabolic depression in cuttlefish (see 4.2.1). However, 

intracellular acidosis may be only one of several factors involved in the triggering of 

metabolic depression (Reipschläger et al. 1997). 

As for the other incubations, no changes appeared in systemic heart or branchial 

heart during hypercapnia. The effects of elevated ambient CO2 und cephalopod 

hearts have not been studied yet and thus data is lacking for comparison. The fact 

that there were no differences in the heart metabolite concentrations between the 

hypercapnia incubation and the respective control group could have two meanings. 

Either both systemic and branchial hearts stayed fully aerobic during hypercapnia 

and maintained proper energy levels or differences could not be detected and type 2 

errors were made (see 4.6). 

 

4.2.3 Effects of simultaneous hypoxia & hypercapnia  (H+H) 

When applied separately, both hypoxia and hypercapnia caused clear changes in 

funnel tissue physiology. However, mantle tissue simultaneously exposed to both 
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stressors showed only minor changes of the intracellular parameters. This may be 

partially attributed to the different properties of the two tissues (see. 4.2.4), but the 

little changes observed under simultaneous hypoxia and hypercapnia may also 

reflect an interaction of both factors. Although a statistical comparison of the 

treatments was not possible because of the differences between the control groups, 

these interactions have to be examined in detail. 

An elevated intracellular CO2 partial pressure in the mantle indicates that the ambient 

hypercapnia did not only affect the blood system, but also proceeded to the cellular 

level. The small drop in mantle pHi and a constant intracellular HCO3
- concentration 

during hypoxia + hypercapnia indicate effective intracellular buffering. This minor 

change in pHi contradicts the picture of cephalopods as poor intracellular acid-base 

regulators that mainly regulate their extracellular milieu (Pörtner & O’Dor 1994). A pHi 

regulation by the degradation of amino acids and the production and excretion of 

NH4
+ is unlikely, because this would include the accumulation of HCO3

- (Atkinson & 

Camien 1982, Pörtner et al. 1998). A similar pattern of increasing intracellular PCO2, 

decreasing pHi and constant bicarbonate was observed in the high performance 

squid I. illecebrosus (Pörtner et al. 1991). Fabry et al. (2008) argued that the ability to 

accumulate intracellular HCO3
- is an indicator for resistance to hypercapnia and 

accordingly several cephalopod species have low tolerance to elevated CO2 

compared to fishes with similar lifestyles (Pörtner et al. 2005). Nevertheless, S. 

officinalis showed only minor changes in mantle metabolite concentrations during 

exposure to hypoxia and hypercapnia. Compared to the results of the funnel tissue 

under hypoxia or hypercapnia, this observation could be correlated to the situation in 

the incubation boxes. The cuttlefish were lying on the bottom of the boxes most of the 

time, which means that the major region mantle was inactive while funnel is involved 

in ventilation and is permanently active (Bone et al. 1981). Thus there might was 

hardly any anaerobic metabolism in the mantle, that could cause metabolite 

accumulation and a reduction of pHi. However, the funnel is thinner and the tissue 

has better access to oxygen from the ambient water by diffusion. 

Mantle and hearts showed no changes in PLA, arginine, octopine and Pi. All these 

metabolites characteristically decrease (PLA) or increase (arginine, octopine) 

concentrations during anaerobic metabolism (Pörtner 1987). The fact that no (or 

hardly any) succinate could be detected furthermore supports the prediction that both 

cytosol and mitochondria of the investigated tissues stayed full aerobic during 
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hypoxia and hypercapnia (Pörtner 1987, Grieshaber et al. 1994, Finke et al. 1996). 

The prediction is further supported by the finding of constant [PLA]/([Arg]+[PLA]) 

ratios in all three tissues. The ratio is a measure for the energy status of a tissue and 

a shift would be an indicator for the depletion of energy storages during anaerobic 

metabolism (Pörtner et al. 1996). The presented findings are totally plausible as 

anaerobic metabolism is primarily designed to provide additional energy during short 

periods of insufficient O2 supply (Pörtner 1987). Anaerobic metabolism hidden by the 

transfer of octopine from the mantle to the blood (Storey 1977, Storey & Storey 1979) 

is unlikely, as the sum of PLA, arginine and octopine did not differ between control 

and treatment and this process would still involve a decrease in PLA levels (Pörtner 

1987). 

The energy status of mantle systemic heart and branchial hearts was probably not 

affected by hypoxia and hypercapnia, because of constantly high levels of ATP and 

Gibbs free energy (in the mantle). This means that the intracellular acidosis did not 

severely affect energy metabolism, although it was neither buffered by a rise in 

HCO3
- nor by an accumulation of inorganic phosphate (Pörtner 1987, 2002). This 

indicates either an effective non-bicarbonate non-phosphate buffering by protein H+ 

uptake compound or a removal of protons from the intracellular space. Constant 

levels of free ADP and free AMP imply that enzyme activity was not greatly altered 

compared to the control incubation. The combination of a constant free ADP 

concentration and a drop in pHi could mean that S. officinalis relies mostly on 

intracellular acidosis for the mobilization of PLA (Pörtner 2002). A similar pattern is 

found in the brief squid Lolliguncula brevis, which lives near the coast and regularly 

encounters hypoxic waters (Pörtner et al. 1996). In contrast, the longfin inshore squid 

Loligo pealei relies mainly on free ADP for PLA mobilization and is vulnerable to 

hypoxia (Pörtner et al. 1993). For the hearts, the results might be misleading, as 

small replicate numbers and low statistical test power increase the probability of type 

2 (false negative) errors (see 4.6). 

Although the energy status of the tissue was stable and thus, proper functioning of 

aerobic metabolism can be considered secured, there was still a significant increase 

in the mantle concentrations of total ADP and total AMP. This could mean that there 

was a slight shift in the adenylate ratio and that a small (insignificant) decrease of the 

large ATP pool caused significant augmentations to the relatively small pools of ADP 

and AMP. This shift might be a consequence of a reduced O2 supply to the mantle 
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tissue or by effects of the reduced pHi on enzyme function (Pörtner 2002). As there 

were no indicators for a disruption of blood oxygen transport (see 4.1), a drop in 

intracellular pH is the most likely explanation. Intracellular acidosis has been shown 

to reduce performance and thereby delay the depletion of energy reserves in the 

squid L. brevis as well as in the hypoxia-tolerant peanut worm S. nudus and could 

also help cuttlefish to survive long-term exposure to unfavorable conditions (Pörtner 

et al. 1996, 1998, Pörtner 2002). 

A metabolic depression may be possible as intracellular acidosis is known to reduce 

muscular and metabolic performance (Pörtner 2002). Also, concurrence of anoxia 

and hypercapnia caused adenosine accumulation and metabolic depression in S. 

nudus (Reipschläger et al. 1997). Adenosine is a neuronal inhibitor, which is 

discussed as a mediator of a metabolic reduction induced by central nervous control 

(Reipschläger et al. 1997). Adenosine might also act directly on cellular functions, as 

cold induced ATP breakdown caused adenosine accumulation and reduction of 

mitochondrial energy production in the demersal fish Zoarces viviparous (Eckerle et 

al. 2008). Hypercapnia alone does not cause metabolic depression in S. officinalis 

(Gutowska et al. 2010), but the accumulation of intracellular CO2 and the associated 

acidosis could support the reduction of performance during a hypoxia-induced 

metabolic depression (see 4.2.1) and help to conserve energy storages. Thus, a 

metabolic depression might have occurred, but data on O2 consumption is lacking to 

secure this assumption. Anyway, the measured parameters imply that S. officinalis is 

able to withstand long-term exposure to the applied levels of hypoxia and 

hypercapnia. However, a reduction of animal performance is possible. 

 

4.2.4 Comparison of tissues 

Although a proper statistical assessment of the differences between the tissues was 

not possible due to strongly varying replicate numbers and heterogeneous variances, 

there are some general parameter patterns in the different tissues that can be 

discussed. 

The concentration of the energy storage compounds PLA and ATP is generally lower 

in the funnel tissue than in the mantle tissue. This could reflect the different modes of 

activity. The funnel musculature is involved in ventilation, which depends on 

continuous aerobic energy production with a relatively small variation in energy 

demand (Melzner et al. 2006b). In contrast, the major fraction of the mantle, the 
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poorly vascularized central mantle displays mostly spontaneous but vigorous activity 

fueled by anaerobic metabolism (Bone et al. 1981). Thus, the mantle needs energy 

storages to provide fast energy during burst activity, while funnel tissue gets along 

with a smaller energy pool that is continuously refilled. Aerobic energy production 

may be supported by the thin structure of the funnel and ventilation, which flushes 

the funnel with ambient water and thus could enhance cutaneous respiration. 

However, the capacity of the funnel tissue for anaerobic energy production is lower 

than in the mantle. 

The pattern observed in mantle and funnel becomes even more evident in the 

cuttlefish hearts. Both systemic heart and branchial hearts showed very low levels of 

PLA and ATP in all incubations. Together with the low concentrations of arginine and 

octopine compared to mantle or funnel, this indicates a very low anaerobic capacity 

for both heart types. As hearts have to work permanently to circulate the blood 

through the body, it makes sense that the tissues stay fully aerobic and permanently 

recycle the relatively small pool of ATP, using the continuous O2 supply from the 

blood stream (Driedzic 1985). This is also indicated by the high mitochondria content 

of the hearts (Dykens & Mangum 1979, Oellermann et al. 2012). Similarly, the 

mitochondria content of central mantle (6.4% of muscle fiber profile), which performs 

short-term burst activity, is lower than the content in the mantle periphery (47% of 

muscle fiber profile), which performs continuous ventilatory mantle contractions 

(Bone et al. 1981). As the funnel is also involved in continuous ventilation, a high 

mitochondria content of the tissue is likely.  

The actual ATP pool of heart tissues might be bigger than indicated by the 

concentrations measured as anesthesia stops heart contractions and thus, the O2 

supply to the hearts (see 2.3.1) and could have led to a fast conversion of ATP to 

ADP and AMP, which displayed higher levels. However, the cessation of heart 

contractions also means that energy demands and ATP turnover are reduced. 

Therefore, the found ATP concentrations could reflect the situation in vivo. Low 

arginine levels further support the finding that energy production in cephalopod 

hearts is rather fueled by carbohydrate degradation than by amino acid degradation 

(Mommsen et al. 1982, Driedzic et al. 1990). This coincides with the finding of 

Oellermann et al. (2012) that specimen of S. officinalis, which are living at higher 

temperatures and are more likely to experience hypoxia, prefer carbohydrates 

(pyruvate) over amino acids (proline) as energy substrate. Carbohydrates provide 
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more ATP per mol O2 (see 1.2.2) and thus should be favored under oxygen limited 

conditions (Hochachka 1994, Oellermann et al. 2012). 

A difference between the heart types could have been expected as the systemic 

heart receives O2-rich blood from the gills, whereas branchial hearts are supplied 

with O2-poor venous blood (Schipp 1987). Driedzic (1985) found cuttlefish branchial 

hearts to be more anoxia resistant than systemic hearts, which he considered 

obligatory aerobic. Also the systemic heart has higher ATP demands as it has to 

create higher pressures to circulate the blood through the body (Wells & Wells 1983, 

Driedzic 1985). Due to these findings it could be expected that the systemic heart 

shows more pronounced changes than the branchial hearts during hypoxia and/or 

hypercapnia. Driedzic et al. (1990) found similar ATPase activities in both heart types 

and assumed additional (yet unidentified) energy consuming processes in branchial 

hearts, but again it is most likely that differences between the tissues could not be 

identified due to the small replicate number resulting in a low test power. Different 

intracellular patterns may exist between the heart types, although detection was not 

possible. 

 

4.3 The natural environment 

According to the findings of the laboratory experiments, the investigated life stage of 

S. officinalis should be able to cope with the changes of environmental O2 and CO2 

partial pressures expected from climate change (Caldeira & Wickett 2003, Meehl et 

al. 2007). However, in the natural environment there are additional factors that might 

change and can affect cuttlefish physiology. 

The ambient PCO2 applied in the experiments (0.1 kPa) reflects the expected change 

from the dissolution of atmospheric CO2 in the ocean until the end of the century 

(Meehl et al. 2007). However, this scenario does not consider other factors that 

influence the CO2 content of seawater. The degradation of organic matter in hypoxic 

waters sets free large amounts of CO2. Melzner et al. (2012) calculated that if all 

oxygen is consumed (anoxia), neritic waters subjected to hypoxia can experience a 

PCO2 between 1.7-3.4 kPa already today. Even if O2 is not consumed completely, the 

combination of hypoxia and the additive effects of respiratory and atmospheric CO2 

accumulation would probably be more stressful than the conditions applied in the 

experiments. Sepia officinalis is able to withstand 0.6 kPa CO2 for 48 hours, but 

studies investigating the effects of severe hypercapnia on long-term survival and 
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performance of the cuttlefish are scarce (Hu et al. 2011, Strobel et al. 2012). Studies 

on the effects of simultaneous long-term exposure to hypoxia and severe 

hypercapnia are missing.  

Metabolic depression does extend the time of anaerobic metabolism due to the 

slower depletion of energy storages, but long-term survival would only be supported, 

if sufficient energy production can be sustained by aerobic metabolism. A decrease 

of O2 and/or an increase of CO2 beyond their respective critical thresholds can only 

be compensated by anaerobic metabolism for limited periods of time and would lead 

to death on the long term (Pörtner et al. 2005).  

According to the concept of oxygen & capacity-limited thermal tolerance (OCLTT), 

the supply with oxygen, which can be affected by both hypoxia and hypercapnia, 

often sets the thermal limits for aerobic performance and distribution of a species 

(Frederich & Pörtner 2000, Pörtner 2010). Sepia officinalis has a broad aerobic 

temperature range reaching from 7°C to 26.8°C (Melz ner et al. 2006a). If it acted 

exclusively, the temperature increase expected from global warming would probably 

not strongly affect cuttlefish performance and survival in most populations (Boucaud-

Camou & Boismery 1991, Artegiani et al 1997, Melzner et al. 2006b), but only shift 

them northwards. Nevertheless, in interaction with hypoxia and hypercapnia, 

increasing temperatures might have more severe consequences for S. officinalis. 

Melzner et al. (2006a) found that between 11°C and 23°C the oxygen consumption 

(MO2) of cuttlefish increased exponentially according to a Q10 value of 2.5 (a 

temperature increase by 10°C causes an increase of MO2 by the factor 2.5). The 

increased energy demands were compensated by increased ventilation over the 

whole range of 7-26.8°C (Melzner et al. 2006a), but  the O2 transport to the tissue 

depends on a proper functioning of the blood system. Generally, the O2 affinity of the 

hemocyanin decreases with increasing temperature (Zielinski et al. 2001, Melzner 

2007b). This supports the unloading at the tissue, but it can be disadvantageous, if 

other factors are involved. Hypoxia and hypercapnia have the potential to distort 

oxygen transport by the hemocyanin (see 4.1). Although hypoxia can increase pHe 

and thus hemocyanin O2 affinity, it can also cause a reduced blood PO2. Together 

with the pH lowering effect of hypercapnia and elevated temperature (Reeves 1972) 

that reduce O2 affinity, the complete loading of the hemocyanin at the gills could be 

threatened.  
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At the tissue level, a reduced respiratory CO2 production due to metabolic depression 

could impair proper oxygen unloading and a general reduction of blood PO2 would 

deteriorate the O2 transport into the tissue. In cephalopods this factor might be critical 

as they lack myoglobin (Hochachka 1994). However, O2 demands are also reduced 

during metabolic depression and a hypoxia-induced reduction of blood PO2 (at 

constant pHe) would also reduce the O2 affinity of the hemocyanin and thus support 

unloading (Pörtner 1994, Zielinski et al. 2001). O2 unloading is typically high in S. 

officinalis (≥ 80% O2 used by tissue; Johansen et al. 1982a) but a disturbed release 

at the tissue would reduce the arteriovenous PO2 gradient. This could in turn hinder 

the O2 uptake at the gills that depends on a low venous PO2 to function efficiently. 

Increased ventilation rates due to elevated temperatures and hypercapnia might 

counteract this problem as the supply with fresh (high PO2) ambient water is 

increased and the PO2 gradient between ambient water and blood is kept high. 

Although O2 extraction rates can be lowered by hyperventilation (Melzner et al. 

2006a,b, Gutowska et al. 2010) the total O2 transport to the blood should be 

increased due to the bigger water volume that passes the gills. Nevertheless, during 

hypoxia the PO2 of the ambient water is reduced and the smaller gradient could 

reduce oxygen uptake. 

Hypoxia and hypercapnia will most likely narrow the thermal window of S. officinalis. 

Additionally, the scope for aerobically fuelled activities (behavior as well as internal 

processes) within the window will be reduced due to the redistribution of energy 

resources, which is necessary to cope with the changes (e.g. homeostasis, 

ventilation). Metabolic depression may allow long-term survival, but it reduces the 

scope for growth and reproductive capacity (Pörtner et al. 2005). Reduced activity 

also increases the vulnerability to predators and exacerbates hunting for food. Thus, 

even if cuttlefish individuals are able to survive long-term exposure to hypoxia, 

hypercapnia and elevated temperatures, negative effects of the population level can 

be expected (Pörtner et al. 2005, Pörtner 2010, Melzner et al. 2012). 

 

4.4 Relevance 

The common cuttlefish S. officinalis is a well investigated and easily cultivable 

cephalopod model species. Although there can be considerable physiological 

differences between cephalopod taxa (Pörtner et al. 1991, Rosa & Seibel 2008, 

Seibel 2007), there are also unifying principles (e.g. Bohr-effects < -1 or the major 
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metabolic pathways) that show similar reactions to environmental changes (Storey & 

Storey 1979, Zielinski et al. 2001, Rosa & Seibel 2008). Investigations on S. 

officinalis could thus also provide a chance for a better understanding of other 

cephalopods, which are more difficult to obtain or to breed in captivity. 

Furthermore, S. officinalis is a good choice for experiments on the effects of climate 

change and anthropogenic influence. The species inhabits coastal waters (von 

Boletzky 1983), which are especially exposed to changing O2 and CO2 partial 

pressures, as well as rising temperatures and human activities (Diaz 2001, Diaz & 

Rosenberg 2008, Melzner et al. 2012). In this context, it is reasonable to point out the 

use of juvenile cuttlefish in the presented experiments. The juveniles grow in the 

coastal waters under fluctuating environmental conditions and, although they have to 

invest a large fraction of their energy into growth, they show higher tolerance to 

hypoxia than do adults (de Wachter et al. 1988). However, although mature cuttlefish 

spend most of their time in deeper waters with more stable ambient conditions (Jereb 

& Roper 2005), they also face changes in oxygen and CO2 during the migrations to 

their coastal spawning grounds (Wang et al. 2003). 

In general, it is reasonable to assess the ability of cephalopods to withstand long-

term exposure to a combination of factors associated with climate change, as this is a 

more natural scenario than the exposure to changes of a single factor (e.g. only 

PCO2). Although fish are a dominant group of higher marine animals (also with regard 

to fishery), the exploitation of fish stocks could lead to an expansion of competing 

cephalopods (Keyl et al. 2008, Vetter et al. 2008). Whereas fish landings are 

decreasing, cephalopod fishery is expanding (Caddy & Rodhouse 1998). Most 

cephalopods cannot be raised and cultivated in capture, but S. officinalis can be held 

in high densities and is (as most cephalopods) fast growing (von Boletzky 1983, 

Wells 1994). Thus it has the potential to provide significant amounts of high quality 

food produced in aquaculture (Sykes et al. 2006). 

 

4.5 Synthesis 

The obtained results indicate that juveniles of the common cuttlefish Sepia officinalis 

are able to withstand long-term simultaneous exposure to moderate levels of hypoxia 

(~60% air saturation) and hypercapnia (0.1 kPa CO2) at an ambient temperature of 

~16°C. Hypoxia alone caused an improvement of the f unnel tissue energy status that 

could indicate a hypoxia-induced metabolic depression. Exposure to hypercapnia 
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resulted in a decrease of the intracellular energy status of the funnel, which was 

probably accompanied by a reduction of pHi. There were no signs of hypercapnia-

induced metabolic depression in the funnel.  

Hardly any changes occurred in cuttlefish during simultaneous exposure to hypoxia 

and hypercapnia. Blood PCO2 was elevated, but pHe was maintained stable due to a 

compensatory increase of the blood bicarbonate concentration and perhaps by a 

slight hypoxia-induced decrease of hemocyanin O2 saturation and an accompanied 

H+ uptake. Thus, O2 transport to the tissue was secured although possibly slightly 

reduced. In the mantle tissue there might have been a reduction of the metabolic 

rate. However, this is not for certain, as the exact mechanisms of metabolic 

depression in cephalopods are still unknown. 

No effects of hypoxia and/or hypercapnia could be detected in the systemic heart or 

the branchial hearts. This could indicate that these tissues have a strong resistance 

to the applied stressors, but it is most probable that present changes were concealed 

by type 2 errors (see 4.6). Generally, most metabolite concentrations were lower in 

the hearts than in the mantle or the funnel. Funnel concentrations were mostly below 

those of mantle tissue. This was interpreted as a reflection of the activity modes of 

the different tissues. Hearts (and partially also funnel) perform continuous work with 

constant aerobic power output. These tissues permanently recycle a small pool of 

energy compound to fulfill their low energy demands. The major fraction of the mantle 

displays short but vigorous activity supported by anaerobic metabolism, which relies 

mostly on cellular storages of energy metabolites (PLA, ATP) and accumulates end 

products (e.g. arginine, octopine, Pi). 

 

4.6 Evaluation of Methods 

Although anesthesia with ethanol does not affect tissue parameters (Storey & Storey 

1979), it reduces blood oxygen content due to the cessation heart contractions and 

blood circulation. However, during blood sample transfer to the blood gas analyzer 

(BGA), the blood takes up oxygen again due to the high O2 affinity of the 

hemocyanin. Measured blood PO2 values of 2-3 kPa are close to the venous PO2 in 

vivo (~1.7 kPa; Zielinski et al. 2001) and thus supporting the correctness of the other 

measured parameters (PCO2, [HCO3
-], pHi). 

A general problem is the fact that the different incubations were not run 

simultaneously and were not completely identical with respect to the factors which 
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were not manipulated. Cuttlefish used in the hypoxia and hypercapnia experiment 

were smaller than those used in the experiments on hypoxia or hypercapnia and the 

sampled tissues were not identical for all experiments (mantle vs. funnel). The 

different properties of the tissues are discussed above (see 4.2.4), but also the 

different size (age) classes could have affected the measured parameters. Strobel et 

al. (2012) showed that the ratio of the different hemocyanin isoforms expressed by S. 

officinalis depends on temperature, ambient PCO2 and also developmental stage. 

Physiological differences due to different ages or weights might have occurred and 

could involve energy resource allocation between the tissues (Rosa et al. 2004, 

Oellermann et al. 2012).  

Another factor that was different between the experiments is the feeding rhythm. 

Cuttlefish were fed daily in the hypoxia experiment (Thonig 2011) and twice a week in 

the hypercapnia experiment (Strobel 2011), but only once a week in the hypoxia & 

hypercapnia experiment. However, in S. officinalis first physiological changes could 

be detected after seven days of starvation (Castro et al. 1992, Grigoriou & 

Richardson 2009). As the longest feeding interval was seven days (H+H experiment), 

effects caused by different feeding rhythms are unlikely. Nevertheless, the mentioned 

factors might be the reason for the deviations between the different control groups, 

which prohibited statistical comparisons between the different experiments.  

The low replicate number especially for the heart tissues caused strongly fluctuating 

variances and low test powers. It was partially caused by the pooling of samples that 

was necessary due to the small mass of the heart tissues. The strong difference in 

replicate numbers and variances prohibited a comparison of the tissues within single 

incubations or between incubations. Because of the small tissue mass it was not 

possible to measure the acid-base parameters and succinate concentrations of all 

tissues. The missing information is needed to assess the separate effects of hypoxia 

and hypercapnia in bigger detail. 

 

4.7 Outlook 

The presented study proved that S. officinalis is able to withstand long-term moderate 

hypoxia and hypercapnia, but the mechanisms that enable the cuttlefish to survive 

under these conditions could not be identified in detail. A repetition of the presented 

experiments with incubation under hypoxia, hypercapnia or hypoxia and hypercapnia 

running in parallel with sampling of identical tissues should provide more comparable 
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results. In this context, an increase of the replicate number is appropriate to produce 

enough sample material for measuring all parameters (acid-base and metabolites) in 

all investigated tissues. Insights into blood physiology and metabolic depression 

could be augmented by measuring in vivo blood acid-base parameters and oxygen 

consumption rates of cannulated cuttlefish during exposure to hypoxia, hypercapnia 

or both.  

More sample material could also be attained by using animals of larger size. 

Although mainly juveniles are exposed to the presented stressors, adult cuttlefish do 

also face hypoxia environmental changes during when migration to their spawning 

grounds (Wang et al. 2003, Jereb & Roper 2005). Ontogenetic changes in energy 

resource allocation as well as vulnerability to hypoxia and hypercapnia could be 

identified by incubating S. officinalis of different age (and size) classes under defined 

O2 and CO2 levels. 

Considering the findings of Melzner et al. (2012), an intensification of the incubation 

conditions (especially with respect to hypercapnia) might be reasonable. A more 

authentic incubation scenario could be created by combining hypoxia and 

hypercapnia with increased temperature, the third major factor of oceanic climate 

change. Treating S. officinalis with stable levels of hypoxia and hypercapnia at 

different temperatures or varying the O2 and CO2 partial pressures for defined 

temperature levels would help to define the thermal window of the cuttlefish 

according to the “OCLTT” concept (Pörtner 2010). This would help to predict future 

changes in the distribution of S. officinalis. Investigating the combined effects of the 

aforementioned factors on cuttlefish embryos and hatchlings is also advisable, as 

eggs are deposited in the area that will probably be mostly affect by changes in 

temperature PO2 and PCO2 (Jereb & Roper 2005, Diaz & Rosenberg 2008). 

Generally, long-term incubation experiments should be preferred over acute 

exposure in climate change research. Realistic critical limits of environmental factors 

only become evident, if an organism has enough time to either die or reach a new 

steady state (Pörtner et al. 2005). In the natural environment, most effects of climate 

change will be either long-lasting or persistent and future research should account for 

this. 
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Affixes 
 

A: Blood acid-base parameters of S. officinalis exposed hypoxia & hypercapnia 
(H+H) and the respective control conditions (C_H+H). Mean values of 
individuals (or individual pools) are shown. No° in dicates the animal number 
(more than one number indicate pooled samples). PO2 and PCO2 are in [kPa], 
HCO3

- is in [µmol*g tissue-1]. PO2: blood O2 partial pressure, PCO2: blood CO2 
partial pressure, pHe: blood pH, HCO3

-: blood bicarbonate concentration. 
Asterisks (*) indicate outliers that were excluded from statistics. 

Incubation No° PO 2 PCO2 pHe HCO3
- 

C
_H

+
H

 

1 1.37 0.22 7.59 2.50 
2,3 2.64 0.20 7.56 2.04* 
4 2.31 0.25 7.58 2.84 

5,6 2.25 0.22 7.59 2.49 
7 2.32 0.24 7.62 2.94 

8-10 3.93 0.28 7.54 2.77 
11,12 2.84 0.26 7.57 2.73 

13 1.95 0.35 7.59 3.95 
14 2.00 0.26 7.61 3.12 
15 2.56 0.30 7.55 3.03 
16 3.40 0.32 7.57 3.48 
17 2.17 0.30 7.61 3.63 
18 2.03 0.41* 7.51* 3.75 

19,20 4.25 0.33 7.54 3.25 
21 1.82 0.32 7.59 3.67 
22 3.30 0.37 7.54 3.71 
23 2.79 0.31 7.57 3.35 

H
+

H
 

1,2 2.73 0.26 7.59 3.00 
3 2.78 0.28 7.59 3.16 
4 1.11* 0.31 7.61 3.76 

5,6 1.80 0.30 7.62 3.65 
7 4.01 0.35 7.49 3.10 
8 3.59 0.33 7.55 3.39 
9 2.66 0.32 7.58 3.49 

10,11 1.58 0.43 7.54 4.25 
12,13 3.10 0.41 7.53 3.96 
14,15 3.12 0.41 7.51 3.75 

16 2.43 0.41 7.57 4.51 
17 2.57 0.40 7.55 4.11 

18,19 3.33 0.44 7.50 3.95 
20 2.26 0.43 7.56 4.62 
21 2.16 0.40 7.58 4.50 
22 3.10 0.46 7.55 4.77 

 

 

 



VI 

 

B: Intracellular acid-base parameters, free ADP & AMP and Gibbs free energy of S. officinalis 
exposed hypoxia & hypercapnia (H+H) and the respective control conditions (C_H+H) or to 
hypercapnia (HCa) and the respective control conditions (C_HCa). Mean values of individuals are 
shown. No° indicates the animal number (more than o ne number indicate pooled samples). PCO2 
is in [kPa], HCO3

-, free ADP and free AMP concentrations are in [µmol*g tissue-1], Gibbs free 
energy is in [kJ*mol-1]. M: mantle, F: funnel, BH: branchial heart, pHi: intracellular pH PCO2: 
intracellular CO2 partial pressure, HCO3

-: intracellular bicarbonate concentration, ∆G/∆ξ: Gibbs 
free energy change of ATP hydrolysis. Asterisks (*) indicate outliers that were excluded from 
statistics. 
Incubation 
& Tissue No° pH i PCO2 HCO3

- 
free 
ADP 

free 
AMP ∆G/∆ξ 

C
_H

+
H

 

M
 

1 7.55 0.34 3.09 0.33 0.035 -55.85 
3 7.50 0.34 2.68* 0.52* 0.101* -54.18* 
5 7.53 0.34 2.87 0.32 0.031 -55.94 
7 7.54 0.34 2.90 0.29 0.027 -56.15 

14 7.46 0.37 2.63 0.25 0.019 -56.27 
15 7.57 0.31 2.83 0.14 0.007 -57.75* 
17 7.49 0.38 2.93 0.34 0.039 -55.43 
18 7.48 0.38 2.89 0.36 0.035 -55.72 
20 7.55 0.28* 2.47 0.32 0.030 -56.13 
23 7.50 0.41 3.26* 0.22 0.016 -56.51 

H
+

H
 

M
 

1 7.46 - - 0.20 0.012 -56.74 
3 7.55 0.60 3.34 0.27 0.024 -56.24 
4 7.36 0.70 2.43 0.41 0.054 -54.47 
6 7.47 - - 0.19 0.014 -56.29 
8 7.46 - - 0.30 0.041 -54.77 
9 7.45 0.70 3.04 0.38 0.071 -54.04 

10 7.40 0.54 2.12 0.65* 0.117* -53.88 
12 7.23* 1.19* 3.14 0.12 0.004 -57.16 
13 7.47 - - 0.61 0.076 -55.09 
15 7.53 0.59 3.10 0.37 0.039 -55.78 
16 7.48 0.55 2.52 0.39 0.038 -55.70 
17 7.49 - - 0.29 0.027 -55.94 
18 7.37 0.76 2.69 0.11 0.004 -57.43 
19 7.48 0.71 3.29 0.34 0.033 -55.76 
21 7.48 0.47 2.23 0.54 0.077 -54.82 

C
_H

C
a 

B
H

 1,2 6.61 2.81 1.87 - - - 

3,4 6.60 3.33 2.16 - - - 

H
C

a 

B
H

 1,2 6.64 8.50 6.21 - - - 

3,5 6.86 4.45 5.31 - - - 

 
 
 
 
 
 
 



VII 

 

C: Intracellular metabolite concentrations of S. officinalis exposed to control conditions in the hypoxia 
& hypercapnia experiment (C_H+H). Mean values of individuals are shown. No° indicates the animal 
number (more than one number indicate pooled samples). Concentrations are in [µmol*g tissue-1]. M: 
mantle, SH: systemic heart, BH: branchial hearts, Arg: arginine, Octo: octopine, PLA: phospho-L-
arginine, Pi: inorganic phosphate. Asterisks (*) indicate outliers that were excluded from statistics. 

Tissue No° Arg Octo PLA ATP ADP AMP P i 

M
 

1 14.07 0.22 17.35 3.76 0.51 0.11 14.14 
2 12.29 0.21 17.87 3.46 0.81 0.14 15.34 
3 21.91 0.93 13.25 3.25 1.14 0.34 25.29 
4 15.78 0.50 19.70 3.86 0.75 0.12 18.45 
5 9.12 0.28 11.60 3.87 0.77 0.13 11.77 
6 27.50* 0.95 7.58 2.97 1.56* 0.69* 35.78* 
7 15.16 0.33 21.17 3.87 1.13 0.14 17.41 
8 14.80 0.65 17.84 3.47 1.03 0.21 19.86 
9 22.85 0.78 5.44* 2.12* 1.44 0.62* 33.16* 
10 18.55 1.08 9.74 2.83 1.47 0.36 20.10 
11 17.98 0.51 10.39 2.75 0.94 0.47 23.25 
12 14.55 0.31 18.41 4.02 0.67 0.11 17.09 
13 15.78 1.11 16.97 4.21 0.98 0.19 16.89 
14 13.38 0.98 19.05 4.04 0.74 0.16 16.40 
15 7.61* 0.37 20.92 3.49 0.61 0.11 8.20 
16 19.22 0.28 14.33 3.83 1.05 0.26 19.32 
17 13.46 0.83 13.70 3.64 0.78 0.16 18.83 
18 16.78 0.75 19.18 4.38 0.89 0.10 21.31 
19 19.35 0.27 15.27 3.78 1.26 0.23 22.45 
20 14.67 0.46 20.39 4.17 0.93 0.16 17.06 
21 20.34 0.60 16.89 4.20 0.90 0.21 21.80 
22 22.45 1.41* 8.84 3.36 1.13 0.46 32.04 
23 11.84 0.40 18.91 3.67 0.96 0.11 13.90 

S
H

 

1-4 4.40 0.58 0.66 0.97 0.63 0.55 0.66 
5-9 4.02 0.29 0.29 0.36 0.69 0.85 0.78 

10-14 4.80 0.49 0.28 0.44 0.80 0.71 0.68 
15-18 4.03 0.22 0.26 0.49 0.77 0.87 0.68 
19-23 4.76 0.34 0.67 0.80 0.96 0.51 2.73* 

B
H

 

1-4 1.67 0.22 0.25 0.10 0.79 0.55 3.73 
5-9 6.41* 0.83* 0.97* 0.67* 2.68* 1.79 4.16 

10-14 3.58 0.47 0.56 0.31 0.94 1.88 6.77 
15-18 1.62 0.23 0.25 0.12 0.52 0.71 3.03 
19-23 1.69 0.22 0.26 0.04 0.69 0.92 5.98 

 

 

 

 

 

 



VIII 

 

D: Intracellular metabolite concentrations of S. officinalis exposed hypoxia & hypercapnia (H+H). Mean 
values of individuals are shown. No° indicates the animal number (more than one number indicate 
pooled samples). Concentrations are in [µmol*g tissue-1]. M: mantle, SH: systemic heart, BH: branchial 
hearts, Arg: arginine, Octo: octopine, PLA: phospho-L-arginine, Pi: inorganic phosphate. Asterisks (*) 
indicate outliers that were excluded from statistics. 

Tissue No° Arg Octo PLA ATP ADP AMP P i 

M
 

1 11.62 0.56 20.16 3.83 0.90 0.17 16.55 
2 20.08 0.64 7.69 2.22 1.89 0.63 23.76 
3 12.50 0.67 18.22 3.56 1.12 0.15 15.38 
4 19.82 2.23* 12.72 3.70 1.31 0.30 24.43 
5 10.57 0.95 6.32 1.73 0.99 0.38 11.17 
6 13.13 0.61 18.92 2.99 1.55 0.32 16.63 
7 21.14 0.66 8.88 2.89 1.63 0.44 25.33 
8 16.84 0.94 12.83 2.53 1.77 0.32 26.14 
9 13.85 0.23 7.74 2.43 1.03 0.28 13.42 
10 24.82 2.33* 12.71 4.23 1.34 0.27 27.14 
11 28.59 0.50 9.56 3.70 1.49 0.47 27.47 
12 11.04 0.29 20.33 4.00 0.90 0.14 10.60 
13 24.50 1.04 21.38 5.80* 1.10 0.17 22.63 
14 21.30 1.71 13.47 4.11 1.18 0.45 21.58 
15 18.11 0.83 21.63 4.18 1.55 0.27 18.87 
16 22.64 0.42 25.62 4.74 1.68 0.29 15.79 
17 15.42 0.28 19.40 3.83 1.23 0.21 15.57 
18 10.62 0.22 23.54 3.33 1.32 0.26 8.59 
19 17.51 0.50 20.31 4.30 1.61 0.28 17.82 
20 22.67 0.84 20.36 4.95 1.28 0.25 20.49 
21 22.73 0.27 17.82 4.47 1.16 0.27 21.27 
22 26.58 0.70 8.33 2.29 2.66* 0.82* 28.00 

S
H

 

1-4 3.95 0.41 0.26* 0.36 0.72 1.15 0.67 
5-8 4.28 0.53 0.26 0.36 0.79 1.08 5.12 

9-13 2.95* 0.33 0.26 0.47 0.79 0.70 2.95 
14-17 4.46 0.35 0.26 0.54 0.95 0.93 0.70 
18-22 4.27 0.54 0.26 0.21 0.57 1.66 0.69 

B
H

 

1-4 1.63 0.22 0.25 0.14 0.62 0.95 4.52 
5-8 1.65 0.21 0.25 0.04 0.73 0.78 7.80* 

9-13 1.70 0.22 0.26 0.04 0.68 0.82 6.00 
14-17 1.63 0.21 0.25 0.08 0.65 1.04 5.69 
18-22 1.51* 0.20* 0.24 0.10 0.65 0.93 4.95 

 

 

 

 

 

 

 



IX 

 
E: Intracellular metabolite concentrations of S. officinalis exposed hypoxia (HOx) and the respective 
control conditions (C_HOx) or to hypercapnia (HCa) and the respective control conditions (C_HCa). 
Mean values of individuals are shown. No° indicates  the animal number (more than one number 
indicate pooled samples). Concentrations are in [µmol*g tissue-1]. F: funnel, SH: systemic heart, BH: 
branchial hearts, Arg: arginine, Octo: octopine, PLA: phospho-L-arginine, Pi: inorganic phosphate. 
Asterisks (*) indicate outliers that were excluded from statistics. 
Incubation 
& Tissue No° Arg Octo PLA ATP ADP AMP P i 

C
_H

O
x 

F
 

1 15.48 4.95 1.48 0.47 0.89 1.32 24.21 
2 10.72 4.91 0.90 0.28 0.83 1.06 13.45 
3 14.55 5.00 0.42 0.09 0.56* 2.01 24.18 
4 9.78 5.03 4.29* 1.13* 0.84 0.36* 10.96 
5 13.52 5.31 0.71 0.17 0.74 1.70 21.31 
6 13.42 5.65 1.37 0.59 0.94 1.17 16.59 
7 17.24 3.80 1.86 0.46 1.00 1.31 21.82 
8 15.87 3.70 1.14 0.35 0.91 1.37 22.93 

S
H

 1.2.4.8 3.24 2.52 0.27 0.09 0.30 1.77 7.94 
3.5.6.7 3.31 2.15 0.35 0.10 0.34 1.49 6.94 

B
H

 1.2.4.8 2.34 0.43 0.30 0.06 0.22 0.91 2.84 
3.5.6.7 2.22 0.57 0.29 0.06 0.27 1.03 5.65 

H
O

x 

F
 

1 12.10 2.52 3.58* 1.71 1.37 0.82 9.40 
2 9.92 3.95 1.26 1.30 1.29 0.98 12.46 
3 16.39 5.39* 1.59 1.12 1.50 1.67 11.72 
4 17.51 2.23 1.79 1.55 1.94* 1.49 27.31* 
5 17.86 3.69 2.63 2.25* 1.62 1.10 22.38 
6 12.47 2.62 2.15 1.72 1.38 0.94 11.32 
7 16.64 1.71 2.17 1.74 1.54 1.16 13.99 

S
H

 1.4.5 3.40 2.45 0.35 0.45 0.58 0.95 2.57 
3.6.7 3.08 2.54 0.55 0.66 0.66 0.82 2.20 

B
H

 1.4.5 1.58 0.76 0.39 0.40 0.49 0.52 3.73 
3.6.7 1.62 0.96 0.39 0.40 0.50 0.62 2.13 

C
_H

C
a 

F
 

1 5.11 0.72 2.69 0.18* 0.25 0.16 3.31 
2 11.76 3.17 11.47 2.07 0.52 0.15 14.98 
3 14.18 7.85 7.67 2.17 0.49 0.11 20.23 
4 6.68 0.76 14.63 1.69 0.32 0.10 2.75 
5 17.69 7.39 8.80 2.19 0.53 0.16 19.08 

H
C

a 

F
 

1 12.39 3.90 1.51 1.18 0.85 0.85* - 
2 5.46 2.44 2.42 1.03 0.31 0.11 0.63 
3 10.52 4.31 3.07 1.24 0.62 0.27 7.08 
4 3.87 3.18 1.22 0.72 0.36 0.18 4.04 
5 9.29 4.32 4.79 1.54 0.45 0.19 - 

 


