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Abstract

Past climates provide a means for evaluating the response of the climate system
to large perturbations. Our ultimate goal is to constrain climate models rigorously
by paleoclimate data. For illustration, we used a conceptual climate model (a clas-
sical energy balance model) and applied the so-called “adjoint method” to minimize
the misfit between our model and sea-surface temperature data for the Last Glacial
Maximum (LGM, between 19,000-23,000 years before present). The “adjoint model”
(derivative code) was generated by an “adjoint compiler”. We optimized parameters
controlling the thermal diffusion and the sensitivity of the outgoing longwave radi-
ation to changes in the zonal-mean surface temperature and the atmospheric CO2

concentration. As a result, we estimated that an equilibrium climate sensitivity be-
tween 2.2 ◦C and 2.5 ◦C was consistent with the reconstructed glacial cooling, and
we were able to infer structural deficits of the simple model where the fit to current
observations and paleo data was not successful.

1 Introduction

Milankovitch is mainly renowned for his computation of the incoming solar radiation
(insolation) at the top of the atmosphere over the past 600,000 years for different latitudes
and seasons (Milankovitch, 1920, 1930, 1941). Yet he also formulated one of the early
“climate models”: He used the energy balance as implied by the planetary albedo and
the outgoing longwave radiation according to the Stefan-Boltzmann law to infer the
solar temperatures on the Earth’s surface if it were covered uniformly by land and
the atmosphere and ocean were at rest (Milankovitch, 1920, pp. 200); he compared
these solar temperatures to then-current observations by Hann (1915). Furthermore,
he computed the fluctuations in the extent of the polar ice caps in response to the
fluctuations in insolation, even taking into account the feedback of the increasing albedo
and surface height of a growing ice cap on temperature (Milankovitch, 1941). Finally,

∗
MARUM - Center for Marine Environmental Sciences and Department of Geosciences, University

of Bremen, PO Box 33 04 40, D-28334 Bremen, Germany; E-mail: apaul@marum.de
†
Alfred Wegener Institute for Polar and Marine Research, Bussestrasse 24, D-27570 Bremerhaven,

Germany; E-mail: martin.losch@awi.de

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Publication Information Center

https://core.ac.uk/display/11773411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


he related the predictions of his climate model to geological data published by Penck
and Brückner (1909). Thus he could associate four minima of his famous radiation
curves, expressed in terms of equivalent latitudes, with the European ice ages as they
were known at the time (for more detailed accounts of Milankovitch’s achievements, see
Berger, 1988; Petrović, 2002; Loutre, 2003; Grubić, 2006).

Formulating a climate model, then solving it either analytically or numerically, cal-
ibrating it against current observations, applying it to past conditions and relating its
predictions to geological data – this is the traditional or “forward” method of paleocli-
mate modeling that Milankovitch pioneered in the first half of the last century. So-called
“state-of-the-art” climate models are much more complex than their early predecessors
and require long computing times, so that often only a few simulations are carried out.
If at all feasible, models are “tuned” by adjusting individual parameters (or a parame-
terization) and repeating simulations in an ad hoc iteration (cf. Fig. 1a).

Today’s comprehensive climate models and wealth of available observations, however,
warrant to overcome such a crude tuning procedure and use the data to systematically
fit models to data – that is, to (1) optimize model parameter values by “parameter esti-
mation” or “calibration”, (2) test the model for consistency with independent datasets,
if available and (3) use the calibrated model for predictions.

The proper calibration of a climate model, as opposed to simply tuning it, implies
the formulation of a statistical model that links evaluations of the climate model, the
model parameters and observations on climate (Rougier, 2008). The focus is either on
time evolution or the steady state of the climate system. While the “Bayesian” approach
deals with probability density functions, the “maximum likelihood” approach aims for
a point estimate of the model parameters.

Typically, the departure of the model from the data (the model-data misfit) is mea-
sured by an objective or cost function. In formulating this function, the uncertainties of
both the model and the data can be considered. The cost function is usually a quadratic
function of model-data differences weighted by their prior error estimates, but it can
also include constraints that represent other prior knowledge of the climate.

An explicit cost function may be combined with the forward method to quantify the
purpose of the numerical model (Wunsch, 1996). Then the parameter estimation may
be carried out simultaneously with a “state estimation” and yield an estimate of, for
example, the state of the ocean or atmosphere. One of the first examples of combined
parameter and state estimation in the context of sparse paleoclimate data is given by
Paul and Schäfer-Neth (2005).

It is desirable to automate the manual search for the optimum fit by using an al-
gorithmic process. Available methods include statistical methods (e.g., Monte Carlo
and Greene’s function methods, ensemble Kalman and particle filter methods – Fig. 1b)
as well as variational techniques and sequential filtering (e.g., the adjoint method or a
Kalman filter/smoother – Fig. 2). The variational methods and the Kalman filter and
smoother are especially suited to take into account the uncertainties associated with
both model and data (e.g., Kasibhatla et al., 2000).

In the following, we use the adjoint method (e.g., Le Dimet and Talagrand, 1986;
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Errico, 1997) to estimate the model parameters based on observations of the steady-state
seasonal cycle. For a more probabilistic (Bayesian) approach, we refer to Edwards et al.
(2007), Annan and Hargreaves (2007) and Holden et al. (2010).

The adjoint method requires an adjoint or dual model of a given forward model.
Often this adjoint model is obtained through the application of an “adjoint compiler”, a
software tool that takes the computer source code of the forward model as input, applies
the rules of automatic differentiation and yields the source code of the “adjoint model”
(derivative code) as output (Giering, 2000; Rayner et al., 2000; Griewank and Walther,
2008).

The minimum of the cost function is searched for by varying control variables such
as initial conditions, boundary conditions or internal parameters. The adjoint model
computes the gradient of the cost function with respect to these control variables and
provides the information required by a gradient descent algorithm. The gradients them-
selves contain valuable information on the sensitivity of the system to perturbations in
the control variables.

We present a simple “textbook example” to illustrate the calibration of a climate
model with the adjoint method (i.e., computing exact derivatives using automatic dif-
ferentiation) in a paleoclimate context. To this end, we implemented a classical one-
dimensional energy balance-climate model with seasonal insolation forcing. The corre-
sponding adjoint model was generated by the “Tangent linear and Adjoint Model Com-
piler” (TAMC, http://autodiff.com/tamc/). We defined a seasonal cost function that
allowed us to use paleo-sea surface temperature data to constrain the model1.

2 Material and Methods

2.1 Energy balance-climate model

Our energy balance model is a conceptual climate model based on the difference between
absorbed solar radiation Qabs and outgoing longwave radiation F

↑
∞ at the top of the

atmosphere (TOA) on the one hand, and the divergence of the horizontal heat transport
∆Fao on the other hand (see Hartmann, 1994, p. 237). In its one-dimensional version,
the only coordinate variables are latitude φ and time t. Climate is expressed in terms of
just one model variable, the zonally-averaged surface temperature Ts:

Cao

∂

∂t
Ts(x, t) = RTOA(x, t, Ts)−∆Fao(x, t, Ts) , (1)

where x = sinφ, Cao = cp ρw Ho is the effective heat capacity of the atmosphere-ocean
system (with cp and ρw being the specific heat and density of water and Ho the ocean
mixed-layer depth) and RTOA the net incoming radiation at the top of the atmosphere,
which is expressed as the difference between absorbed solar radiation Qabs(x, t, Ts) and

1
The code of the one-dimensional energy balance-climate model and its adjoint Ebm1D is available

upon request from apaul@marum.de
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outgoing longwave radiation F
↑
∞(x, Ts):

RTOA(x, t, Ts) = Qabs(x, t, Ts)− F
↑
∞(x, Ts) . (2)

The absorbed solar radiation is the product of one-fourth of the solar constant, S0/4,
a function that describes the distribution of insolation with latitude and time of year,
s(x, t) – cf. Berger (1978), and the absorptivity for solar radiation, ap(x, Ts):

Qabs(x, t, Ts) =
S0

4
s(x, t) ap(x, Ts) . (3)

The absorptivity is related to the planetary albedo αp(x, Ts) through the relationship
ap(x, Ts) = 1− αp(x, Ts). In our case, the absorptivity is given by:

ap(x, xi) =

�
a0 + a2P2(x) , Ts > −10◦C , |x| < |xice| ,
b0 , Ts < −10◦C , |x| > |xice| ,

(4)

where a0, a2 and b0 are constant coefficients, P2 refers to the Legendre polynomial of
second order in x,

P2(x) =
1

2

�
3x2 − 1

�
, (5)

and xice is the position of the point where the temperature equals −10◦C. This point is
called the iceline.

The outgoing longwave radiation is parameterized as a linear function of the surface
temperature and the logarithm of the ratio of the actual value of the atmospheric CO2

concentration [CO2] to a reference value [CO2]ref :

F
↑
∞(x, Ts) = A+B Ts −∆Q2×CO2 log ([CO2]/[CO2]ref) / log 2 , (6)

where A, B and ∆Q2×CO2 are constant coefficients; in particular, B describes the effi-
ciency of longwave radiative cooling and ∆Q2×CO2 is the radiative forcing equivalent to
a doubling of the atmospheric CO2 concentration (cf. Myhre et al., 1998). The outgoing
longwave radiation increases only linearly with temperature, rather than as the fourth
power of temperature as indicated by the Stefan-Boltzmann law. This is a simple way to
account for the effect of the water vapor feedback when the relative humidity is assumed
to be constant (Hartmann, 1994, p. 233) .

Meridional (north-south) heat transport is treated as a diffusive process, driven by
latitudinal temperature gradients, an approach considered to be valid at horizontal scales
of about 1500 km and larger and time scales of 6 months and longer (Lorenz, 1979):

∆Fao =
1

a

∂

∂x

��
1− x2 Fao

�
(7)

and

Fao = −CaoKao(x)

√
1− x2

a

∂Ts

∂x
, (8)
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where a is the mean radius of Earth and the thermal diffusion coefficient Kao is given
by:

Kao(x) = K0

�
1 +K2 x

2 +K4 x
4
�
. (9)

Here K0, K2 and K4 are constant coefficients.
The values of all model parameters are listed in Table 1. The model equations are

discretized using centered differences in space and forward differences in time. The
meridional grid is staggered. The thermal diffusion coefficient is defined at U grid points
that are half-way between the temperature or T grid points.

2.2 Data

The target for our present-day simulation (Experiment PD1) is the surface air temper-
ature from the NCEP/NCAR reanalysis data [Kalnay et al. (1996) – see Fig. 3].

As an example target for our paleo-simulations (Experiments LGM1 and LGM2), we
chose the sea-surface temperature anomaly between the Last Glacial Maximum (LGM –
19,000-23,000 years before present) and present day as reconstructed by the GLAMAP
2000 project (Sarnthein et al., 2003). In the context of a one-dimensional energy balance
model, we prefer it over the more recent MARGO reconstruction (Kucera et al., 2005;
MARGO Project Members, 2009), because the objective mapping by Schäfer-Neth and
Paul (2004) of the sparse proxy data at the ocean sediment core locations allows for
consistent zonal averaging. The annual mean and February and August monthly means
of the reconstructed SST anomaly are shown – along with the model results – in Figs 5
and 6.

2.3 Cost function

The cost function (also called the objective or mismatch function) used for our present-
day experiments is defined by:

J =
�

�
T
Feb,mod
s − T

Feb, obs
s

�2

σ
2
Ts

+
�

�
T
Aug,mod
s − T

Aug, obs
s

�2

σ
2
Ts

. (10)

Here “obs” and “mod” refer to observed and modeled, and σTs = 1 ◦C in the denominator
refers to the error in surface temperature. The sums extend over all latitude zones of
the one-dimensional energy balance-climate model that contain data and are weighted
by the respective surface area.

Correspondingly, the cost function used for our LGM experiments is defined by:

J =
�

�
∆T

Feb,mod
s −∆T

Feb, rec
s

�2

σ
2
∆Ts

+
�

�
∆T

Aug,mod
s −∆T

Aug, rec
s

�2

σ
2
∆Ts

, (11)

where “rec” refers to reconstructed and σ∆Ts = 1 ◦C.
In computing the cost function, we use the angular definition of seasons proposed by

Joussaume and Braconnot (1997) (see Table 2).
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Day number
Date True longitude 1950 AD orbit 21 ka BP orbit
Vernal equinox, 21 March, 12:00 0◦ 80.0 80.0
1 February, 0:00 -48.78◦ 31.50 31.91
28 February, 24:00 -20.48◦ 59.50 59.68
1 August, 0:00 127.97◦ 212.50 212.27
31 August, 24:00 157.80◦ 243.50 243.52

Table 2: Angular definition of seasons. The vernal equinox is taken as a reference.
Correspondingly, perihelion occurs at day number 2.85 (1950 AD orbit) and 15.51 (21
ka BP orbit), respectively (Berger, 1978).

2.4 Optimization algorithm

For minimization of the cost function, we used a variable memory quasi-Newton al-
gorithm as implemented in M1QN3 by Gilbert and Lemaréchal (1989). This algo-
rithm computes a local approximation of the inverse Hessian matrix based on the
gradient of the cost function and generally converges faster than conventional con-
jugate gradient methods (see also http://www-rocq.inria.fr/~gilbert/modulopt/

optimization-routines/m1qn3/m1qn3.html).
As a stopping criterion, we required a relative precision on the norm of the gradient

of the cost function of 10−4.

2.5 Experimental setup

The meridional resolution was set to 10◦. All experiments were integrated for 100 years
using a time step of one day. The last 10 years of each experiment were used for
calculating the cost function and analyzing the model results.

Table 3 lists the seven base experiments that were carried out with the one-dimensional
energy balance-climate model. In the case of Experiment PD0, we used the first-guess
values for all model parameters without any optimization, while in Experiment PD1 (the
“control simulation” for the present-day climate), we used the parameters Ho for the
ocean mixed-layer depth, K0, K2 and K4 of the heat diffusion coefficient and A of the
outgoing longwave radiation as control variables that were adjusted using the adjoint
method.

In Experiment LGM1, the optimized parameter values of Experiment PD1 were held
fixed. The only control variable was the parameter ∆Q2×CO2 affecting the radiative
forcing associated with the change of the atmospheric CO2 concentration from 345 ppmv
to 200 ppmv. In Experiment LGM2, we added the parameters K0, K2 and K4 of the
heat diffusion coefficient to the control variables.

For Experiments LGM1 and LGM2, we followed the PMIP1 protocol (see http:

//pmip.lsce.ipsl.fr/newsletters/newsletter02.html) and used 200 ppmv as at-
mospheric CO2 concentration.
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In Experiments 2xCO2 1, 2xCO2 2 and 2xCO2 3, we studied the effect of doubling
the atmospheric CO2 concentration from 345 ppmv to 690 ppmv on the equilibrium
conditions in our one-dimensional energy balance-climate model. Again, we used the
optimized parameter values of Experiment PD1. The parameter ∆Q2×CO2 was set to
the first-guess value, the value obtained from Experiment LGM1 and the value obtained
from Experiment LGM2, respectively (Table 3).

Table 4 lists eight additional experiments that were designed to study the sensitivity
of the optimal solution for Experiment LGM2 to the initial values of the control variables.
In Experiments LGM2 1 and LGM2 2, the initial value of ∆Q2×CO2 was varied. In
Experiments LGM2 3 and LGM2 4, the initial value of K0 was varied. Experiments
LGM2 5 to LGM2 8 allowed for combinations of changes in ∆Q2×CO2 and K0.

Experiment
Parameter Units PD0 PD1 LGM1 LGM2 2xCO2 1 2xCO2 2 2xCO2 3
n – 5 1 4 – – –
[CO2] ppmv 345 345 200 200 690 690 690
Ho m 70 27.4 27.4 27.4 27.4 27.4 27.4
A W m−2 205.0 209.6 209.6 209.6 209.6 209.6 209.6
B W m−2 K−1 2.23 2.23 2.23 2.23 2.23 2.23 2.23
K0 105 m2 s−1 1.5 3.8 3.8 3.3 3.8 3.8 3.8
K2 -1.33 -0.64 -0.64 -0.53 -0.64 -0.64 -0.64
K4 0.67 -0.32 -0.32 -0.36 -0.32 -0.32 -0.32
∆Q2×CO2 W m−2 – – 4.97 4.39 4.0 4.97 4.39
J 28.42 13.27 1.34 0.76 – – –
Niterations – 190 3 39 – – –
Nsimulations – 236 4 47 – – –

Table 3: Experimental setup. The number control variables is denoted by n. The values
of the control variables after optimization are given in italics. The number of iterations is
given by Niterations, while the total number of simulations perfomed by the optimization
algorithm is referred to as Nsimulations.

3 Results

Table 5 summarizes the results of the four experiments in terms of the planetary albedo,
the global mean temperature and the latitude of the ice boundary. There is almost no
change in the annually and globally averaged planetary albedo αp

ann between the differ-
ent experiments. With all model parameters set to their first-guess values in Experiment
PD0, the global mean temperature Ts is above 16 ◦C during all seasons. Optimizing the
model parameters in Experiment PD1 led to the reduction of the cost function (Eq. 10)
by one-half and required 190 iterations (Table 3). The ocean mixed-layer depth Ho was

reduced to 27.4 m. At the same time, Ts

ann
decreased by 2.4 ◦C and the icelines φS,N

ice

ann
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moved equatorward by 2◦–3◦ in latitude. Applying the adjoint method to the LGM cli-
mate conditions in Experiment LGM1 led to a global mean glacial cooling of 2 ◦C and a
growth of the polar ice caps by about 2◦ in latitude. Adding the parameters in the heat
diffusion coefficient to the control variables in Experiment LGM2 hardly affected the
global mean temperature, but caused the icelines to shift further equatorward by nearly
1◦ in latitude. The radiative forcing parameter ∆Q2×CO2 (see Eq. 6) was increased by
24% in Experiment LGM1 and 10% in Experiment LGM2, compared to the first-guess
value of 4 W m−2 (Table 1). We speculate that this increase partly compensated for
other positive feedbacks that are missing from the model, such as the full water-vapor
feedback.

Fig. 3 shows that in Experiment PD0 the largest differences in the simulated and the
observed temperature occurred near the South Pole and in the high northern latitudes.
In the south the model temperatures were generally higher than the observations. In
the north, by contrast, the model climate was warmer than observed during winter and
colder during summer. Fig. 4 indicates for Experiment PD1 a generally closer fit to the
observations than for Experiment PD0, except near the poles.

With ∆Q2×CO2 as the only control variable in Experiment LGM1, the glacial cooling
as a function of latitude was nearly flat, with only a small polar amplification, as can be
seen from Fig. 5. Allowing for changes in the thermal diffusion coefficient in Experiment
LGM2, the polar amplification became more prominent (Figs 6 and 7).

Comparing Experiments PD1 (Fig. 4) and LGM2 (Fig. 6), the meridional heat trans-
port generally decreased during Northern Hemisphere winter (February) and increased
during Northern Hemisphere summer (August), except for the high latitudes (Fig. 8).
In the high latitudes, the meridional heat transport decreased in the south and increased
in the north during the entire year.

With respect to Experiment PD1, Experiments 2xCO2 1, 2xCO2 2 and 2xCO2 3 led
to an increase of the global mean temperature by 2.0 ◦C, 2.5 ◦C and 2.2 ◦C, respectively
(Table 5). At the same time, the icelines in both hemisphere moved poleward by 1.95◦,
2.4◦ and 2.13◦ in latitude, respectively.

Regarding the sensitivity of the optimal solution for Experiment LGM2 to the initial
values of the control variables, the optimization converged for a wide range of initial
values of ∆Q2×CO2 to the same minimum of the cost function with similar values of the
optimized control variables (cf. Experiments LGM2 1 and LGM2 2, Table 4). It also
converged outside of this range, but not to the required relative precision on the norm
of the gradient of the cost function of 10−4. Similarly, the optimization converged for
a wide range of initial values of K0 to nearly the same minimum of the cost function
(cf. Experiments LGM2 3 and LGM2 4). Outside of this range, however, it did not
converge. Finally, the results of Experiments LGM2 5 to LGM2 8 indicate the common
ranges of these two control variables for which convergence was still possible.
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Experiment
Variable Units PD0 PD1 LGM1 LGM2 2xCO2 1 2xCO2 2 2xCO2 3
αp

ann 0.31 0.32 0.32 0.32 0.32 0.32 0.32
Ts

ann ◦C 16.21 13.81 11.81 11.88 15.84 16.33 16.04

Ts

Feb ◦C 16.29 14.03 12.00 12.07 16.06 16.55 16.26

Ts

Aug ◦C 16.10 13.51 11.55 11.62 15.55 16.03 15.74

φ
S
ice

ann

-68.69◦ -65.42◦ -63.31◦ -62.56◦ -67.37◦ -67.83◦ -67.56◦

φ
N
ice

ann

67.84◦ 65.49◦ 63.39◦ 62.64◦ 67.44◦ 67.90◦ 67.62◦

Table 5: Selected experimental results: Annual and global average of the planetary
albedo αp

ann, annual, February and August averages of the global mean temperature

Ts

ann
, Ts

Feb
and Ts

Aug
and annual-mean latitude of the ice boundary in the Southern

and Northern Hemispheres φS
ice

ann

and φ
N
ice

ann

.

4 Discussion

We illustrated how the so-called adjoint method could be used to adjust the parame-
ters of a simple climate model so that the model predictions were consistent with either
modern surface temperature observations (Fig. 4) or reconstructed LGM sea-surface
temperature anomalies (Fig. 5). The model-data fit improved further (Fig. 6) by ad-
ditionally adjusting the thermal diffusion coefficient (Fig. 7), although at the cost of
implausibly large positive temperature anomalies very near the poles.

The remaining model discrepancy points to a structural error of our simple climate
model. As opposed to a parametric error, this error cannot be removed by adjusting the
parameter values; it is rather an error in the functional form of the model equations or
their numerical implementation (that is, in their discretization in space and time).

Correspondingly, even after optimizing the parameter values, our energy balance-
climate model does not simulate a realistic present-day climate. For example, the sim-
ulated latitude of the ice boundary in the Northern Hemisphere in Experiments PD0
(≈67.8◦ N) and PD1 (≈66.5◦ N) is considerably lower than the approximate current
position of the ice edge (≈71.8◦ N, e.g., Jentsch, 1987). This is likely due to an overly
simplistic representation of the ice-albedo feedback. In this respect, the value of the
critical temperature for the formation of ice Tice = −10 ◦C is derived from the ob-
served annual-mean temperature at which surface ice cover persists throughout the year
(Hartmann, 1994, p. 238). A higher value (around 0 ◦C) may be more appropriate to
parameterize the seasonal formation of snow and ice but by itself lead to an even lower
latitude of the ice boundary.

The optimized value of the ocean mixed-layer depth of 27.4 m is smaller than the
value of 50 m–70 m that is often taken as the depth of the top layer of the ocean that
interacts with the the atmosphere on a timescale of a year (Hartmann, 1994, p. 84),
probably because we ignored the land cover with a much smaller thermal capacity. A
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slightly more realistic climate model would include a variable land fraction as a function
of latitude.

Other contributions to the structural error include the lack of: zonal (east-west) and
vertical resolution, a diurnal cycle, clouds, a realistic representation of the greenhouse ef-
fect, light scattering within the atmosphere and a separate treatment of the atmosphere,
ocean and land surface components of the climate system and their interactions.

Furthermore, our simulations of the LGM climate were possibly biased towards a low
value of the radiative forcing parameter ∆Q2×CO2 , because the GLAMAP 2000 project
(Sarnthein et al., 2003) may slightly underestimate the glacial cooling as compared to
more recent reconstructions (e.g., MARGO Project Members, 2009). Consequently, the
optimal values of ∆Q2×CO2 (5.0 W m−2 in Experiment LGM1 and 4.4 W m−2 in Exper-
iment LGM2, Table 3) correspond to an equilibrium climate sensitivity (an equilibrium
change in global mean temperature for a sustained doubling of the atmospheric CO2

concentration) between 2.2 ◦C and 2.5 ◦C (Table 5), which is towards the lower end of
the range between 1.2 ◦C and 4.3 ◦C estimated from an ensemble of simulations of the
LGM climate (Schneider von Deimling et al., 2006) and the range between 2.0 ◦C and
4.5 ◦C in the current IPCC assessment (Meehl et al., 2007).

The question of how to take into account the structural error (possibly by expert
judgment or multi-model ensembles, cf. Rougier, 2008) is crucial to the problem of model
calibration. In a maximum-likelihood approach as taken by the adjoint method, and as-
suming a Gaussian probability density distribution, the covariance matrix of the model
discrepancy and the covariance matrix of the observational error (σTs in Eqs. 10 and 11)
would both determine the cost and hence the results. However, the two covariance ma-
trices could be very different from each other. What is more, it may even be questioned
that the structural error can be properly described by a Gaussian probability density
distribution.

We note that our definitions of the present-day and LGM cost functions in Eqs. 10
and 11 do not contain a term related to the structural error – nor do they include a
so-called “background term”, which in our case would penalize deviations between the
optimal and the first-guess values of the control variables. Such a term is necessary
whenever the system of model equations is underdetermined (i.e. if the information con-
tained in the observations is insufficient to guarantee a unique optimal solution). In our
case, however, we used observations in every latitude zone of the model; thus the system
was likely to be “well-observed”. Indeed, by performing additional experiments using
different initial values for the optimization, we confirmed that our optimal solution for
the LGM was unique for a broad range of the control variablesK0 and ∆Q2×CO2 , because
the optimized values of the control variables were not significantly different from each
other (Table 4). Significant differences would have indicated a sensitive dependence on
the first-guess values of the control variables and thus a non-uniqueness of the optimized
solution.

Since a sensitive dependence on initial conditions is a characteristic of a nonlinear
system, failure of convergence or convergence to a different local minimum of the cost
function is to be expected outside of a given range of the optimal values of the control
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variables. This ambiguity may be removed by including a background term into the cost
function, i.e., by adding prior knowledge on the likely values of the control variables (see,
e.g. Losch and Wunsch, 2003).

We point out that in our application of the adjoint method, the control variables
only consisted of internal parameters in the underlying equations of the energy balance-
climate model. An application that also includes initial conditions or boundary con-
ditions is referred to as “data assimilation” rather than “parameter estimation” (e.g.,
Giering, 2000).

For many purposes, estimates of the errors of the optimal control variables are highly
desirable. The adjoint method allows to estimate these errors, because for a Gaussian
error distribution and in a linear approximation, the error covariance matrix of the
control variables is the inverse Hessian matrix of the cost function J at its minimum
(Thacker, 1989; Giering, 2000). Indeed, the adjoint compiler TAMC provides a means
for computing the uncertainties of a reasonably low number of control variables.

In comparison to the adjoint method, the Bayesian approach is designed from the
outset to produce an entire multi-variate distribution of parameter values. It may help
to select a suitable model by revealing two common symptoms of the structural error
(Larson et al., 2008): underfitting (that is, when the structure of a model is not rich
enough to capture the full variability in a dataset) and overfitting (when too many
parameters are used to fit a limited dataset).

For example, it may happen that in the case of our energy balance-climate model
no single set of parameter values (which are distinct within error bars) yields a good
fit for all cases (pre-industrial and LGM), even though optimal parameter values can
be obtained for each case separately. This may indicate underfitting in the sense that
thermal diffusion is too simple to capture the full glacial-interglacial climate variability.

Regarding previous examples of state estimation in paleoclimatology, we point to the
work of LeGrand and Wunsch (1995) and Winguth et al. (2000), who attempted to infer
the ocean circulation during the LGM from reconstructed paleonutrient distributions.

5 Conclusions

Systematically fitting a “textbook example”-type climate model to paleoclimate data
gave useful results: In a one-dimensional energy balance model, the glacial cooling re-
constructed by the GLAMAP 2000 project (Sarnthein et al., 2003) was consistent with
an equilibrium climate sensitivity for a doubling of the atmospheric CO2 concentration
between 2.2 ◦C and 2.5 ◦C. Besides calibrating our simple model to current observations
and paleo data, we were able to infer contributions to its structural error where the fit
was not successful.

While the adjoint method proved to be very efficient in optimizing the model param-
eter values, a Bayesian approach may in addition provide a natural framework to assess
their uncertainty and help to avoid underfitting or overfitting the data.

These findings open up a wide field of applications to more complex climate models
with many more parameters that can serve as control variables. Estimating model
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parameters and states and identifying model problems for further model improvement
are general goals of paleoclimate research.

We note that in spite of the simplicity of our model, we employed automatic differ-
entiation (through the adjoint compiler TAMC). With complex models one will hardly
succeed without such tools, and their development will be as important for this field as
the evolution of numerical models.
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Paul, A. and C. Schäfer-Neth (2005). How to combine sparse proxy data
and coupled climate models. Quaternary Science Reviews 23, 1095–1107,
doi:10.1016/j.quascirev.2004.05.010.

16



Penck, A. and E. Brückner (1901-1909). Die Alpen im Eiszeitalter. Leipzig: C. H.
Tauchnitz.
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Figure 1: Schematic diagrams for (a) the traditional forward method, (b) statistical
inverse methods.
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Figure 2: Schematic diagrams for (a) the assimilation of paleoclimate data by the adjoint
method, (b) the approach of the minimum of the cost function in Experiment LGM1.
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Figure 3: First guess of present-day climate in Experiment PD0. Left: Simulated and
observed surface air temperature for February and August. Right: Differences between
model and data for February and August.
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Figure 4: Fit to present-day climate in Experiment PD1 (control variables: diffusion
and outgoing longwave radiation parameters). Left: Simulated and observed surface air
temperature for February and August. Right: Differences between model and data for
February and August.
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Figure 5: Fit to LGM anomaly in Experiment LGM1 (control variable: CO2 sensitivity).
Simulated and reconstructed SST anomaly for (left) February and (right) August.
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Figure 6: Fit to LGM anomaly in Experiment LGM2 (control variables: diffusion pa-
rameters and CO2 sensitivity). Simulated and reconstructed SST anomaly for (left)
February and (right) August.
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Figure 7: Diffusivity in Experiments PD1/LGM1 and LGM2.
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Figure 8: Meridional heat transport in Experiments PD1 and LGM2 for (left) February
and (right) August.
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