Parallel Filter Algorithms
for Data Assimilation in Oceanography

Parallele Filteralgorithmen
zur Datenassimilation in der Ozeanographie

Lars Nerger

Ber. Polarforsch. Meeresforsch. 487 (2004)
ISSN 1618 - 3193

Lars Nerger

Alfred-Wegener-Institut fiir Polar- und Meeresforschung
Postfach 120161, D-27515 Bremerhaven, Germany
Inerger@awi-bremerhaven.de

Die vorliegende Arbeit ist die inhaltlich unverénderte Fassung einer Dissertation,
zur Erlangung des Doktorgrades der Naturwissenschaften, die im Dezember 2003
dem Fachbereich Mathematik/Informatik der Universitdt Bremen vorgelegt wurde.
Sie ist in elektronischer Form erhéltlich unter http://elib.suub.uni-bremen.de/.

Contents

Kurzfassung

Abstract

Introduction

I Error Subspace Kalman Filters

1 Data Assimilation

1.1 Overview 0. L e
1.2 The Adjoint Method
1.3 Sequential Data Assimilation.

2 Filter Algorithms
2.1 Introduction
2.2 Statistical Estimation
2.3 The Extended Kalman Filter,

2.4 FError subspace Kalman Filters
2.41 SEEK — The Singular Evolutive Extended Kalman Filter . . .
2.4.2 EnKF - The Ensemble Kalman Filter
2.4.3 SEIK - The Singular Evolutive Interpolated Kalman Filter . .

2.5 Nonlinear Measurement Operators.
2.5.1 Situation of the Extended Kalman Filter
2.5.2 Direct Application of Nonlinear Measurement Operators
2.5.3 State Augmentation oL

2.6 Summary

Comparison and Implementation of Filter Algorithms

3.1 Introduction
3.2 Comparison of SEEK, EnKF, and SEIK

3.2.1
3.2.2
3.2.3
3.24
3.2.5

Representation of Initial Error Subspaces
Prediction of Error Subspaces
Treatment of Model Errors
The Analysis Phase
Resampling L o

vi

11

12
12
12
14
17
17
20

27
27
27
28
29

Contents

ii

3.3 Implementation
3.3.1 Main Structure of the Filter Algorithm
3.3.2 The Analysis Phase
3.3.3 The Resampling Phase
3.3.4 Optimizations for Efficiency

3.4 Computational Complexity of the Algorithms

3.5 SUMMArY e e e

4 Filtering Performance
4.1 Imtroduction
4.2 Experimental Configurations
4.3 Comparison of Filtering Performances
4.4 Statistical Examination of Filtering Performance
4.41 Definition of Analysis Quantities
44.2 The Influence of Ensemble Size
4.4.3 Sampling Differences between EnKF and SEIK
4.4.4 Experiments with Idealized Setup
4.5 SUIMIMATY .+ v o v v e e e e e e e e

5 Summary

II Parallel Filter Algorithms

6 Overview and Motivation

7 Parallelization of the Filter Algorithms
7.1 Introduction e
7.2 Parallelization over the Modes
7.2.1 Distributed Operations

722 SEEK
7.23 EnKFo
724 SEIK e

7.2.5 Communication and Memory Requirements
7.3 Filtering with Domain Decomposition
7.3.1 Distributed Operations
732 SEEK
733 EnKF
734 SEIK
7.3.5 Communication and Memory Requirements
7.4 Localized Filter Analyses
7.5 SUMMATY . - . . o o

8 A Framework for Parallel Filtering
8.1 Introduction e e e
8.2 (General Considerationso

36
36
38
43
46
46
50

51
51
52
54
60
61
62
64
65
66

68

71
73

76
76
77
78
80
82
83
87
88
89
90
92
93
96
97
102

Contents

iii

8.3 Framework for Joint Process Sets for Model and Filter
8.3.1 The Application Program Interface
8.3.2 Process Configurations for the Filtering Framework
8.3.3 The Functionality of the Framework Routines
8.4 Framework for Model and Filter on Disjoint Process Sets
8.4.1 The Application Program Interface
8.4.2 Process Configurations for the Filtering Framework
8.4.3 Execution Structure of the Framework
8.5 Transition between the State Vector and Model Fields.
8.6 Summary and Conclusions

9 Filtering Performance and Parallel Efficiency
9.1 Introduction L
9.2 The Finite Element Ocean Model FEOM
9.3 Experimental Configurations
9.4 Filtering Performance oo
9.4.1 Reduction of Estimation Exrors
9.4.2 FEstimation of 3-dimensional Fields
9.5 Parallel Efficiency of Filter Algorithms
9.5.1 Efficiency of the Framework
9.5.2 Speedup of the Filter Part for Mode-decomposition
9.5.3 Speedup of the Filter Part for Domain-decomposition
0.6 SUMIMALY v o e e

10 Summary and Conclusion

A Parallel Computing
Al Introduction
A.2 Fundamental Concepts
A.3 Performance of Parallel Algorithms
A4 The Message Passing Interface (MPI)

B Documentation of Framework Routines
References

Acknowledgments

109
109
112
114
117
117
119
121
125
127

130
130
130
132
135
135
137
139
139
144
148
152

154

158
158
158
159
161

163

168

175

Kurzfassung

In dieser Arbeit wird ein konsistenter systematischer Vergleich von Filteralgorith-
men vorgestellt, die auf dem Kalman-Filter basieren und fiir Datenassimilation
mit nichtlinearen Modellen hoher Dimension entwickelt wurden. Betrachtet wer-
den der Ensemble Kalman Filter (EnKF), der Singular Fvolutive Extended Kalman
(SEEK) Filter sowie der Singular Evolutive Interpolated Kalman (SEIK) Filter. In
den zwei Teilen dieser Arbeit werden die Filteralgorithmen mit Schwerpunkt auf ihre
mathematischen Eigenschaften als Fehler-Unterraum Kalman-Filter (Error Subspace
Kalman Filter, ESKF) verglichen. Auflerdem werden die Filter als parallele Algo-
rithmen untersucht. Diese Untersuchung beinhaltet die Entwicklung eines effizienten
Frameworks fiir paralleles Filtern.

Im ersten Teil werden die Filteralgorithmen im Umfeld der statistischen Schétz-
theorie motiviert. Die einheitliche Interpretation als ESKF-Algorithmen dient als
Grundlage fiir den konsistenten Vergleich der Filteralgorithmen. Die effiziente Im-
plementierung der Algorithmen wird diskutiert und ihre numerische Komplexitit
verglichen. Numerische Datenassimilations-Experimente mit einem Testmodell auf
Grundlage der Flachwassergleichungen zeigen wie die Auswahl des Assimilations-
schemas und spezielle Zustandsensembles fur die Filterinitialisierung zu signifikanten
Schwankungen der Datenassimilationsleistung fithren. Die Verbindung der Daten-
assimilationsleistung zu verschiedenen Giiten der vorhergesagten Fehler-Unterrraume
wird durch eine statistische Untersuchung der vorhergesagten Kovarianzmatrizen
des Modellzustands demonstriert. Der Filtervergleich zeigt Schwierigkeiten in den
Analyse-Gleichungen des EnKF-Algorithmus auf, die auf das verwendete Monte-
Carlo Verfahren zur Erzeugung der Ensemblezustande zuriickzufithren sind. Ferner
zeigt sich, dafl der SEIK-Filter ein numerisch sehr effizienter Algorithmus mit hohem
Potential fiir die Verwendung mit nichtlinearen Modellen ist.

Die Anwendung der EnKF-, SEEK- und SEIK-Algorithmen auf Parallelcom-
putern wird im zweiten Teil der Arbeit betrachtet. Hierbei werden die Paral-
lelisierungsmoglichkeiten der unterschiedlichen Phasen der Filteralgorithmen un-
tersucht. Auflerdem wird ein Framework fiir paralleles Filtern entwickelt, dafl es
erlaubt Filteralgorithmen mit bestehenden numerischen Modellen in einer Weise
zu kombinieren, die nur minimale Anderungen im Quelltext des Modells erfordert.
Das Framework wird verwendet um die parallelisierten Filteralgorithmen mit dem
3-dimensionalen Finite-Elemente Modell FEOM zu kombinieren. Mit Hilfe von nu-
merischen Datenassimilationsexperimenten wird die parallele Effizienz des Filter-
Frameworks und der parallelen Filteralgorithmen studiert. Die Experimente zeigen
eine exzellente parallele Effizienz des Filter-Frameworks. Auflerdem zeigt sich, dafl
das Framework und die Filteralgorithmen sehr gut fiir die Anwendung auf realistis-
che grofiskalige Datenassimilationsprobleme geeignet sind.

Abstract

A consistent systematic comparison of filter algorithms based on the Kalman filter
and intended for data assimilation with high-dimensional nonlinear numerical mod-
els is presented. Considered are the Ensemble Kalman Filter (EnKF), the Singular
Evolutive Extended Kalman (SEEK) filter, and the Singular Evolutive Interpolated
(SEIK) filter. Within the two parts of this thesis, the filter algorithms are compared
with a focus on their mathematical properties as Error Subspace Kalman Filters
(ESKF). Further, the filters are studied as parallel algorithms. This study includes
the development of an efficient framework for parallel filtering.

In the first part, the filter algorithms are motivated in the context of statistical
estimation. The unified interpretation of the algorithms as Error Subspace Kalman
Filters provides the basis for the consistent comparison of the filter algorithms.
The efficient implementation of the algorithms is discussed and their computational
complexity is compared. Numerical data assimilation experiments with a test model
based on the shallow water equations show how choices of the assimilation scheme
and particular state ensembles for the initialization of the filters lead to significant
variations of the data assimilation performance. The relation of the data assimilation
performance to different qualities of the predicted error subspaces is demonstrated by
a statistical examination of the predicted state covariance matrices. The comparison
of the filters shows that problems of the analysis equations are apparent in the EnKF
algorithm due to the Monte Carlo sampling of ensembles. In addition, the SEIK
filter appears to be a numerically very efficient algorithm with high potential for use
with nonlinear models.

The application of the EnKF, SEEK, and SEIK algorithms on parallel computers
is studied in the second part. The parallelization possibilities of the different phases
of the filter algorithms are examined. In addition, a framework for parallel filtering is
developed which allows to combine filter algorithms with existing numerical models
requiring only minimal changes to the source code of the model. The framework
has been used to combine the parallel filter algorithms with the 3-dimensional finite
element ocean model FEOM. Numerical data assimilation experiments are utilized
to assess the parallel efficiency of the filtering framework and the parallel filters.
The experiments yield an excellent parallel efficiency for the filtering framework.
Furthermore, the framework and the filter algorithms are well suited for application
to realistic large-scale data assimilation problems.

vi

Introduction

Simulating the ocean general circulation provides the possibility to improve the
understanding of climate relevant phenomena in the ocean. Absolute currents can
be simulated which determine, for example, oceanic heat transports. Furthermore,
the stability and variability of oceanic flows can be examined.

The numerical models used for simulating the ocean are based on physical first
principles formulated by partial differential equations. Due to the discretization,
models of high dimension arise. In addition, several different fields have to be
modeled like, temperature, salinity, velocities, and the sea surface elevation. These
large-scale ocean models are computationally demanding and hence require the use
of parallel computers to cope with the huge memory and computing requirements.
Despite their complexity, the models comprise several errors. Due to the finite
resolution of the discretization, there are unresolved processes. These remain either
unmodeled or are considered in parameterized form. Some processes are not included
in the model physics or base on empirical formulas. The numerical solution itself
will also cause errors. Apart from this, the model inputs also contain errors. That is,
the model initialization is not exact and inputs during the simulation are uncertain,
like fresh water inflows from rivers or interactions with the atmosphere, e.g. by the
wind over the ocean.

A different source of information about the ocean is provided by observational
data. Nowadays, there are many observations of the ocean provided by satellites
like TOPEX/POSEIDON, or the more recent satellite missions Envisat and Jason-1.
These satellites measure the sea surface height and temperature. Wind speeds and
directions at the sea surface are measured by other satellites like QuikSCAT. In ad-
dition to satellite data, in situ measured observations are available. These include,
e.g., temperatures and salinities at different depths, or current measurements from
ships, moored instruments or drifting buoys. Despite the amount of available mea-
surements, the observational data are sparse in space as well as in time. While there
are many measurements at the ocean surface a relative small amount of information
is provided about the interior of the ocean. Thus, the available observations do not
suffice to provide a complete picture of the ocean.

To obtain an enhanced knowledge about the ocean, the information provided by
numerical models and observational data should be used together. The combina-
tion of a numerical model with observations to determine the state of the modeled
system is denoted inverse modeling. In meteorology and oceanography, the quan-
titative framework to solve inverse problems is known as “data assimilation”. This
technique incorporates — assimilates — observational data into a numerical model to
improve the ocean state simulated by the model.

There are currently two main approaches to data assimilation which are either
based on optimal control theory or on estimation theory, see e.g. [77, 24]:

o Variational data assimilation — This technique uses a criterion measuring the
misfit between model and observations. This criterion, typically denoted the
cost function, has to be minimized by adjusting so called control variables of
the model. These are usually initial conditions or certain parameters of the
model such as the wind stress or heat flux. Variational data assimilation is
based on the theory of optimal control. The most common method is the so
called adjoint method, see [14, 78], which is widely used in oceanography, see
e.g. [93, 76]. A related variational method is the representer method [3, 10].

represents a filter method. The observations and the model prediction of the
state are combined using weights computed from the estimated uncertainties of
both the predicted model state and the observational data. The schemes used
for sequential data assimilation are mostly based on the Kalman filter [41, 42].
An alternative approach is represented by particle filters, see [2, 55, 85, 47].

The advantage of sequential data assimilation algorithms is their flexibility.
While the adjoint method requires to integrate the numerical model and its adjoint
multiple times over the time interval of interest, the sequential schemes assimilate
observational data at the time instance at which the data becomes available. Thus,
with sequential algorithms it is not required to restart the assimilation cycle when
new observations are provided. In addition, an adjoint of the numerical model is not
required by the sequential methods. Also the potential for parallelization is higher
for the algorithms based on the Kalman filter.

The first approaches to apply the Kalman filter in oceanography relate back to
the middle of the 1980’s. The Kalman filter is only suited for linear systems and the
application of the full Kalman filter is not feasible for realistic large-scale numerical
ocean models. During the last decade several algorithms have been developed on
the basis of the Kalman filter which reduce the computational requirements of the
Kalman filter to feasible limits and promise to handle nonlinearity in a better way.

One of the newly developed algorithms is the Ensemble Kalman Filter (EnKF),
introduced by Evensen [17]. This filter is based on a Monte Carlo approach and,
due to its apparent simplicity, already widely used in oceanography and meteorology
(see, e.g. [18] for a review of applications of the EnKF). In addition, some variants
of the EnKF have been proposed [34, 1, 5, 94]. Alternative algorithms are the SEEK
and SEIK filters, introduced by Pham [65, 68]. These filters represent the estimated
error statistics by a low-rank matrix. Some variants of these filters have been pro-
posed which permit to further reduce the computational requirements {32, 33]. The
SEEK filter has been applied in several studies, e.g. [90, 9, 63, 7, 6], and some ap-
plications of the SEIK algorithm have been reported [66, 33, 83]. Other approaches
to a simplified filter are the reduced-rank square root Kalman (RRSQRT) filter by
Verlaan and Heemink [88] and the concept of error subspace statistical estimation
introduced by Lermusiaux and Robinson [49, 50].

The computational requirements of data assimilation problems is generally much
higher than for numerical ocean models alone. Thus, the use of parallel computers
is strongly required when data assimilation is performed with realistic large-scale

numerical models. The algorithms based on the Kalman filters offer a high potential
for parallelization. The application of the filter algorithms on parallel computers has
been discussed for the Ensemble Kalman filter by Keppenne and Rienecker [44, 45]
and by Houtekamer and Mitchell [36]. Some approaches have also been investigated
in the context of the RRSQRT algorithm [73, 70].

Besides the use of parallel computers there is the requirement to combine data
assimilation algorithims with existing models to obtain a data assimilation system.
This should be possible with minimal changes to the model source code. Verlaan [87]
discussed an abstract coupling between a model and filter algorithm. In addition,
the programs SESAM [75] and PALM [60] provide interface structures based on
strongly different concepts.

In this work a consistent systematic comparison of filter algorithms based on
the Kalman filter is presented. Considered are the Ensemble Kalman filter and
the SEEK filter. The former algorithm represents the Monte Carlo approach to
filtering while the latter algorithm uses a low-rank approximation to represent the
error statistics of the model. Further, the SEIK filter, which unites aspects of both
approaches, is included in the study. Besides the comparison, parallel variants of
the algorithms are developed and discussed. In addition, an efficient framework
for parallel filtering is introduced. The framework defines an application program
interface to combine the filter algorithms with existing numerical models. To test
the efficiency of the framework, it is used to combine the filter algorithms with
the three-dimensional finite element ocean model FEOM which has been recently
developed at the Alfred Wegener Institute [12].

The new unified interpretation of the filter algorithms as Error Subspace Kalman
Filters (ESKF) provides the basis to compare the algorithms consistently. The in-
terpretation corresponds to the concept of error subspace statistical estimation [49].
The experimental study of the ESKF algorithms under identical conditions presents
the first quantitative comparison of these algorithms. It also shows the influence of
higher order sampling schemes. Heemink et al. [31] performed a numerical compari-
son of the RRSQRT and EnKF algorithms using a 2-dimensional advection-diffusion
equation. In addition, the EnKF algorithm was compared with the SEEK filter [7]
using a model of the North Atlantic. In this study, however, the experimental con-
figurations differed for the two algorithms rendering the results difficult to interpret.

The parallelization of the SEEK and SEIK filters has not yet been discussed.
Furthermore, a separated parallelization of the filter algorithms and parallel model
tasks is hardly considered [70, 60]. The filtering framework presented in this work
is, on the one hand, simpler than the existing PALM coupler interface [60], on the
other hand it is more efficient than SESAM [75]. The application of filter algo-
rithms to a three-dimensional finite element ocean model has not yet been reported.
The studies presented in this work, which use an idealized configuration of FEOM,
yield promising results proving feasibility of the algorithms also for realistic model
configurations.

Outline

This work is subdivided into two parts. The first considers filter algorithms based
on the Kalman filter as sequential algorithms with a focus on their mathematical
propertics. The second part discusses the filters as parallel algorithms.

In part I, the fundamentals of data assimilation are introduced in chapter 1. In
chapter 2, the filter algorithms based on the Kalman filter and intended for ap-
plication to large-scale nonlinear numerical models are motivated, presented, and
discussed as Error Subspace Kalman Filters (ESKF) in the context of statistical
estimation. Subsequently, in chapter 3, the ESKF algorithms are compared under
the aspect of their application to large-scale nonlinear models. The efficient im-
plementation and the numerical complexity of the algorithms are also discussed in
this chapter. To assess the capabilities of the ESKF algorithms experimentally, the
filters are applied in identical twin experiments to an oceanographic test model in
chapter 4. Part I is concluded by chapter 5 summarizing the findings of the study
of Error Subspace Kalman Filters.

Part 1I is commenced in chapter 6 with an overview and motivation of the appli-
cation of ESKF algorithms as parallel algorithms. The parallelization possibilities
of the ESKF algorithms are examined in chapter 7. Here different approaches are
discussed and resulting parallel algorithms are presented. Chapter 8 introduces a
framework for parallel filtering. This framework defines an application program
interface which permits to combine the parallel filter algorithms with existing nu-
merical models requiring minimal changes to the model source code. In Chapter 9
the parallel efficiency of the filtering framework and the parallel filter algorithms is
studied. For this, the framework is used to combine the filter algorithms with the
finite element model FEOM. Twin experiments are performed to assess the parallel
efficiency of both the framework and the algorithms. Further, the data assimilation
capabilities of the ESKF algorithms when applied to a three-dimensional model are
examined. The results of this part are summarized and conclusions are drawn in
Chapter 10 which completes part II.

Part 1

Error Subspace Kalman Filters

Chapter 1

Data Assimilation

1.1 Overview

Data assimilation is the framework to combine the information provided by measure-
ments with a numerical model describing the physical processes of the considered
geophysical system. There are three different application types of data assimilation.
First, the future state of the physical system can be computed based on observations
available until the present time. This application type is denoted as forecasting. Sec-
ond, the current state can be estimated on the basis of all abservations available until
now. This situation is referred to as filtering or now-casting. The third application
type is smoothing or re-analysis. Here the state trajectory in the past is estimated
based on all observations available until the present time.

The technique of data assimilation originated in meteorology from the need to
provide accurate weather forecasts. From the first steps of objective analysis of
observational data about 50 years ago, the techniques evolved toward the current
assimilation methods. A review on this history is given by Ghil and Malanotte-
Rizzoli [25]. The method of optimal interpolation (see e.g. [51]), which was the
most widely used method for operational numerical weather prediction in 1991 when
this article was published, is today replaced by 4D-Var, see e.g. [69). This is the
space and time dependent variational data assimilation using the adjoint method.
In addition, approaches to the application of sequential algorithms based on the
Kalman filter exist [20, 21].

The situation for data assimilation in physical oceanography is different from
that in meteorology. The spatial scales in the ocean are smaller than in the at-
mosphere. In contrast to this, the time scales are larger. In addition, the amount
of observational data of the ocean is significantly smaller than the quantity of at-
mospheric measurements. Due to this, oceanographic data assimilation is a rather
young discipline motivated by the improvement in the understanding of the dynam-
ics of ocean circulation. However, the availability of remotely sensed observations
from satellites increased the amount of data significantly motivating further the ap-
plication of data assimilation in oceanography (see e.g. [16] for a review on several
data assimilation methods used with ocean models). Today, there are first attempts
for operational oceanography or ocean forecasting which involve advanced data assi-
milation algorithms, e.g. by the projects DIADEM [13] and MERCATOR [54].

Data assimilation algorithms are currently characterized by two main approaches.
The first is variational data assimilation which is based on optimal control theory.

7

1.2 The Adjoint Method 8

One representative of this approach is the widely used adjoint method. Because of
its current importance, this technique will be reviewed in the following section. The
second approach is provided by sequential data assimilation algorithms. These filter
methods are based on estimation theory and are typically derived from the Kalman
filter [41, 42]. These algorithms are the subject of this work. Section 1.3 provides an
overview on the sequential data assimilation algorithms based on the Kalman filter.
The mathematical foundations of these algorithms are introduced in Chapter 2.

1.2 The Adjoint Method

The adjoint method is a variational technique aiming at the minimization of an
empiric criterion measuring the misfit between a model and the observations. It is
typically employed as a smoothing method or to provide a state estimate used to
compute a forecast. The adjoint method is derived here according to the derivation
by Le Dimet and Talagrand {14]. The notations follow the unified notation proposed
by Ide et al. [37].

The principle of the adjoint method is as follows:
We consider a physical system which is represented by the state vector x(t) € S
where § is a Hilbert space with inner product < , >. The time evolution of the
state is described by the model

—— = Mx(t)] (1.1)
with the initial condition

x(ty) = Xp . (1.2)

In addition, observations {y°(t;}} of the state will be available at some time in-
stances {t;, ¢ =1,..., k}.

' 5

Let the misfit between the state and the observations be described by the scalar
cost functional J given by

) = = 57 < yolt) - x(t), yo(t) - x(t) > (13)
where u is the vector of control variables. For simplicity we consider the case that
the initial state is used as the control variables:

u = x(tp) (1.4)

The problem of variational data assimilation is now: Find the optimal vector 1
of control variables which minimizes the cost functional .J:

J] = min,J[u] (1.5)

To minimize J with respect to u, e.g. by the quasi-Newton optimization method,
the gradient V,J has to be computed. The gradient is defined by

OuJ =< Vi J, du> (1.6)

1.2 The Adjoint Method 9

where 8,/ is the first order variation of J with respect to u. du is the pertur-
bation of u. From equation (1.3) the first order variation of J resulting from a
perturbation dx(ty) is given by

Oud = Z < y°(t;) — x(t;), ox(t;) > (1.7)

i=1
where the first order variations {dx(¢;)} are related to the perturbation dx(¢) by

R(t;,to) is the resolvent of the linearization
d
Eéx(t) = M(t)ox(t) (1.9)

of equation (1.1) about the state x(t). Here M(¢) is the linearized model operator.
Equation (1.9) is also denoted the tangent linear model. The resolvent R(t;, %) is
the linear operator obtained by integrating equation (1.9) from time ¢, to time ¢
under the initial condition §x(t) = du.

For any continuous linear operator L on & exists a linear operator LT on & defined
by

<a, Ib>=<L’a, b>, VabeS. (1.10)

L' is denoted the adjoint operator of L. Introducing the adjoint resolvent Ri(2;, t),
equation (1.7) can be written as

v
Sud =Y < Ri(ti,t0) [y°(t:) — x(t:)], ox(t;) > . (1.11)

i=1
Hence, the gradient of J with respect to u is, according to equations (1.6) and (1.4),
k
Vad =Y Ri(t;,0) [y°(t:) — x(t:)) (1.12)
i=1
The adjoint resolvent can be determined in the following way: The adjoint model
to the tangent linear model (1.9) is given by

d o+) xt
201 (t) = =M (£)ax"(t) (1.13)

where 6x'(t) € S and M'(¢) is the adjoint of M(¢). Now it can be shown, see [14],
that the resolvent S(to,t;) of equation (1.13) is given by the adjoint resolvent of
equation (1.8):

S(to,t:) = R (ts,to) (1.14)

Thus, the gradient of J is finally obtained as

k
Vo = Z S(to, ;) [y°(t:) — x(t.)] . (1.15)

1.2 The Adjoint Method 10

The term S(to, t;) [y°(t;) — x(1;)] is evaluated by integrating the adjoint model (1.13)
backward in time from t; to t, with the initial condition §x'(¢;) = y°(t:;) — x(¢:).
Since equation (1.13) is linear, a single backward integration suffices to compute
the the gradient V,J. For this the integration is started at time ¢, with the ini-
tial condition dx'(t,) = y°(t) — x(¢). During the backward integration the term
yo(t;) — x(t;) is added to the current value §x'(t;) at time instants ¢; where obser-
vations are available.

Summarizing, the adjoint method to compute the optimal initial conditions is
given by the iterative algorithm:

1. Choose some estimate xq of the initial state vector: x(¢y) = Xo.
. For j=1,... loop:

. Integrate the model (1.1) from ¢ to t;. Store the obtained state trajectory.

> W N

. Evaluate the cost functional J according to equation (1.3).

. Integrate the adjoint model (1.13) backward in time from t; to %o starting
from 0% (tg) = y°(tr) — x(tx). Addy°(t;) — x(t:) to dx'(t;) at each observation
time. Then, according to equation (1.15), it is VyJ = §x'(%,).

(W2

6. If V,J < ¢ for some condition ¢, exit the loop over j.

7. Update the initial condition according to the chosen optimization algorithm,
e.g. quasi-Newton.

8. End of the loop over j.

Remarks on the adjoint method:
Remark 1: The formulation of the adjoint method can be extended to optimize,
e.g., physical parameters or lateral boundary conditions. In addition, the method
can be extended to handle observations which are functions of the state vector.
Thus, it is not required that the complete state vector itself is observed.
Remark 2: To apply the adjoint method, the adjoint operator Mi(¢) has to be
implemented. For large-scale nonlinear models the propagation operator M is im-
plicitly defined by its implementation in the source code of the model. Hence, also
the adjoint operator has to be implemented as an operator rather than as an explicit
matrix. The implementation is a difficult task. It can, however, be simplified by
automatic differentiation tools like TAMC, see [53].
Remark 3: The adjoint method does not provide an estimate of the error of the
obtained optimal control variables. To obtain an error estimate, the Hessian matrix
of the cost function J has to be determined [95].
Remark 4: The adjoint method requires to integrate the model and the adjoint
model multiple times during the optimization process. These integrations are the
most time consuming part of the algorithm.
Remark 5: To evaluate the adjoint model operator Mf(#), the state trajectory of
the forward integration (point 2) has to be stored. If the time integration is per-
formed over long time intervals with large-scale models, huge memory requirements
will result.

1.3 Sequential Data Assimilation 11

1.3 Sequential Data Assimilation

Sequential data assimilation algorithms combine the predicted state estimate of a
model with observations at the time when the observational data become available.
The combination, denoted analysis, is computed using weights obtained from the
estimated errors of both the model state and the observations. The computed state
estimate can be used to perform a model forecast. Also it is possible to formulate
smoothing algorithms which also modify the model state in the past on the basis of
a newly available observation, see [86]. This work will focus on filtering, that is, the
current state is estimated using only the observations available up to the present
time.

Over the recent years there has been an extensive development of filter algorithms
based on the Kalman filter (KF) [41, 42] in the atmospheric and oceanic context.
These filter algorithms are of special interest due to their simplicity of implementa-
tion, e.g. no adjoint operators are required, and their potential for efficient use on
parallel computers with large-scale geophysical models [45]. In addition, an error
estimate is provided by the filter algorithms in form of an estimated error covariance
matrix of the model state.

The classical KF and the extended Kalman filter (EKF), see [38], share the prob-
lem that for large-scale models the requirements of computation time and storage
are prohibitive. This is due to the explicit treatment of the error covariance matrix
of the model state. Furthermore, the EKF shows deficiencies with the nonlinearities
appearing, e.g., in oceanographic systems [15]. Due to this, algorithms are required
which reduce the memory and computation requirements and provide better abilities
to handle nonlinearity.

There have been different working directions over the recent years. One approach
is based on a low-rank approximation of the state error covariance matrix of the EKF
in order to reduce the computational costs. Using gradient approximations of the
linearized model which is required to evolve the covariance matrix, these algorithms
also show better abilities to handle nonlinearity than the EKF. Examples of low-
rank filters are the Reduced Rank Square-Root (RRSQRT) algorithm [88] and the
Singular Evolutive Extended Kalman (SEEK) filter [68]. An alternative approach
is to employ an ensemble of model states to represent the error statistics which are
treated in the EKF by the state estimate and its covariance matrix. An example is
the Ensemble Kalman filter (EnKF) [17, 8] which applies a Monte Carlo method to
forecast the error statistics. For an improved treatment of nonlinearities, Pham et
al. [67] introduced the Singular Evolutive Interpolated (SEIK) filter as a variant of
the SEEK filter. It combines the low-rank approximation with an ensemble repre-
sentation of the covariance matrix. This idea has also been followed in the concept
of Error Subspace Statistical Estimation (ESSE) [49].

The major part of the computation time in data assimilation with filter algo-
rithms is spent for the prediction of error statistics using the linearized or the non-
linear model. Thus, the efficiency of a filter algorithm will be determined by its
ability to yield sufficiently good estimates with as few model evaluations as possi-
ble. In general, using a larger rank for the approximation of the state covariance
matrix or a larger ensemble for its representation will provide a more reliable state
estimate. In practice, the rank or ensemble size will be, however, limited by the
available computing resources.

Chapter 2

Filter Algorithms

2.1 Introduction

This chapter introduces the mathematical foundations of filter algorithms based on
the Kalman filter. In addition, the equations of several approximating algorithms
are motivated and related to the extended Kalman filter. The focus lies on the
Ensemble Kalman Filter [17], the Singular Evolutive Extended Kalman (SEEK)
filter {68] and the Singular Evolutive Interpolated Kalman (SEIK) filter [67]!. The
EnKF and SEEK filters are representative for the two approaches of low-rank and
ensemble filters. The SEIK filter is considered because it unites aspects of both
approaches. The relation of these filters to other approximating filter algorithms
will be discussed. The SEEK, EnKF, and SEIK algorithms approximate the full
error space of the EKF by an error subspace. In addition, all algorithms apply the
analysis equations of the Kalman filter. For this reason, it will be referred to the
algorithms as Error Subspace Kalman Filters (ESKF).

The filter algorithms are presented and discussed based on the probabilistic view-
point similar to Cohn {11} but with a focus on nonlinear large-scale systems. For
ease of comparison, the notations follow, as far as possible, the unified notation
proposed by Ide et al. [37]. Section 2.2 introduces to the estimation theory. The
Kalman filter and the extended Kalman filter are motivated and discussed in sec-
tion 2.3. Subsequently, in section 2.4 the error subspace Kalman filter algorithms
SEEK, EnKF, and SEIK are introduced and discussed. The discussion of the ex-
tended Kalman filter and the ESKF filters is performed assuming a linear relation
between model fields and observations. The situation of nonlinearly related model
fields and observations is discussed in section 2.5.

2.2 Statistical Estimation

‘We consider a physical system which is represented by its state x(t) € S where S
is a Hilbert space. The state is described by a discrete numerical model governing
the propagation of the discretized state xt € S™, denoted the true state. Since the
discrete model only approximates the true physics of the system, x! is a random
vector whose time propagation is given by the stochastic-dynamic time discretized

!The names of the latter two algorithms have a French origin with “evolutive” coming from the
EFrench word “évolutif” meaning evolving.

12

2.2 Statistical Estimation 13

model equation
Xg -]\/1771_1[)(?_1} + mn; - (21)

Here M; ;. is a, possibly nonlinear, operator describing the state propagation be-
tween the two consecutive time steps ¢ — 1 and . The vector 0, is the model error,
which is assumed to be a stochastic perturbation with zero mean and covariance
matrix Q;.

At discrete times {t;}, each Ak time steps, observations are available as a vec-
tor y¢ of dimension my. The true state xi, at time ¢, is assumed to be related to
the observation vector by the measurement model

= H;\[XH + € . (22)

Here Hj is the forward measurement operator. It describes diagnostic variables,
i.e., the observations which would be measured given the state xi. The vector e
is the observation error consisting of the measurement error due to imperfect mea-
surements and the representation error caused, e.g., by the discretization of the
dynamics. €, is a random vector. It is assumed to be of zero mean and covariance
matrix Ry and uncorrelated with the model error n,.

The state sequence {x!}, prescribed by equation (2.1), is a stochastic process
which is completely described by a probability density function p(xt). The state
sequence is a Markov process under the assumptions that the model error n; is
Gaussian and white in time {xt}. In this case, the time evolution of p(x}) is described
by the Fokker-Planck or forward Kolmogorov equation (see Jazwinski [38]), in time
discretized form

N : a(p(xi~1)]\/[i.,z‘—1(a)(xi 1 (%1 Q(a@))
p(xi) = p(xi1) — Z . t3 Z m (2.3)

a=1

where the Greek indices denote the components. In practice, the high dimensionality
of realistic geophysical models prohibits the explicit solution of the Fokker-Planck-
Kolmogorov equation. Nonetheless, it is possible to derive equations for statistical
moments of the probability density like the mean and the covariance matrix, see,
for example Jazwinski [38].

In general, the filtering problem is solved by the conditional probability density
function p(xt[YQ) of the true state given the observations Y¢ = {yg, ..., y2} up to
time #. In practice, it is not feasible to compute this density explicitly for large-scale
models. Thus, one has to rely on the calculation of some statistics of the density.
In the context of filtering usually the conditional mean is computed, which is also
the minimurm variance estimate, see Jazwinski [38].

In the following we will concentrate on sequential filter algorithms. That is, the
algorithms consist of two phases: In the forecast phase the conditional probability
density p(xt_Ax[Y9_Ap), or statistical moments of it, is evolved up to the time t;
when observations are available, yielding p(x,|[Y¢_,,). Then, in the analysis phase,
the conditional density p(xk|Y‘3) is computed from the forecasted density and the
observation vector y?. Subsequently the cycle of forecasts and analyses is repeated.

To initialize the filter sequence an initial density p(x5|'Y3) is required. In practice
this density is unknown and a density estimate p(xg) is used for the initialization.

2.3 The Extended Kalman Filter 14

2.3 The Extended Kalman Filter

For linear dynamic and measurement models, the Kalman filter (KF) [41, 42] is the
minimum variance estimator if the initial probability density p(x§) and the model
error and observation error processes are Gaussian. To clarify the assumptions about
the statistics of the model error, the observation error and the probability density
of the model state, we will motivate the KF based on statistical estimation. With
this we will also show the approximations which are required for the derivation of
the Extended Kalman Filter. A detailed derivation of the KF in the context of
statistical estimation is presented by Cohn [11] and several approaches toward the
KF are discussed in Jazwinski [38].

First, let us consider linear dynamic and measurement operators. Thus, equa-
tions (2.1) and (2.2) can be written in matrix-vector form as

X = Mpg-arXe_ap + M (2.4)
y? = Hpxi+ e . (2.5)

Here the linear operator My, ;_ax propagates the state vector from time step £ — Ak
to time step k. We assume that the stochastic processes i, and €. are temporal white
Gaussian processes with zero mean and respective covariance matrices Qi and Ry.
Additionally, the probability density function p(x%) is assumed to be Gaussian with
covariance matrix Py, and all three processes are mutually uncorrelated. Denoting
the expectation operator by < >, the assumptions are summarized as

n; < N(0, Qi) 5 < mymj >= Qudy; (2.6)
€ X N(0,Ry) ; < eref >=Rydy (2.7)
xt o N(X,Py) (2.8)

<me >=0; <n(x)T>=0; <elx) >=0, (2.9)

where N (a, B) denotes the normal distribution with mean a and covariance ma-
trix B and &y, is the Kronecker delta with 8, = 1 for £ = [and §,; = 0 for k #£ [.
Under assumptions (2.6) - (2.8) the corresponding probability densities are fully
described by their two lowest statistical moments: the mean and the covariance
matrix. Applying this property, the KF formulates the filter problem in terms of
the conditional means and covariance matrices of the forecasted and analyzed state
probability densities.

To derive the forecast equations for the KF only a part of assumptions (2.6)
to (2.9) is required. Suppose the conditional density p(xi_ap[Y7i_a) at time t,_ag
is given in terms of the conditional mean

Xioak =< Xean| Yicar > (2.10)
denoted analysis state, and the analysis covariance matriz
Pl ae =< (Koak = Xioar) (Kioar = Xioaw) [Yioar > - (2.11)

In the forecast phase, the KF evolves the density forward until time ¢;. That is, the
mean and covariance matrix of the probability density p(xi|Y?_.,) are computed.
The forecast state is the conditional mean xj, :=< x}|Y¢ A, >. With the dynamic

2.3 The Extended Kalman Filter 15

model equation (2.4) and the assumption that the model error has zero mean this
leads to
X£ = Mk,k—A}-‘XZ—/_\k . (212)

The expression for the corresponding forecast covariance matriz follows from equa-
tions (2.4), (2.12), and the assumption (2.9) that x} and 77, are uncorrelated, as

Pl = < (g —x)0xt —x) Y as >
= Mk,k*AkP}ifAkM{k—Ak + Qg (2.13)

Equations (2.12) and (2.13) represent the forecast phase of the KF. Besides the as-
sumption of uncorrelated processes x, and 77, and unbiased model error no further
statistical assumptions are required for the derivation of these equations, in partic-
ular the densities are not required to be Gaussian.

Suppose a vector of observations y{ € R™ to be available at time ¢;. Then
the analysis phase of the KF computes the mean and covariance matrix of the
conditional density p(x.|Y$) given the density p(xi[Y¢_,,.) and the observation
vector y. Under the assumption that the error process € is white in time, the
solution is given by Bayes’ theorem as

p(YeIxLP(L YR ax)
(YAl Y7 _ar)

PO YR) = (2.14)
Since this relation only implies the whiteness of €, it is also valid for nonlinear dy-
namic and measurement operators. Assumptions (2.6) to (2.9) are however required
to derive the analysis equations as the mean and covariance matrix of the analysis
density p(x4Y?). A lengthly calculation leads to the analysis state x¢ and analysis
covariance matrix P¢ as

x¢ = x) 4 Ki(y? - Hixi) (2.15)
P! = (I-KH)P/I-KIH) +K,R.K (2.16)
= (I-KH,)P] (2.17)

where K}, is denoted the Kalman gain. Equation (2.17) is only valid for a K, given
by
K, = P/HI (H,P/H] + R,) " (2.18)

or, alternatively, if Ry, is invertible,
K, =P!H/R," . (2.19)

Equations (2.15) to (2.18) complete the KF theory.

The Extended Kalman filter (EKF) is a first-order extension of the KF to non-
linear models as given by equations (2.1) and (2.2). Again it is based on the first
two statistical moments of the probability density and on the probabilistic assump-
tions (2.6)-(2.9). The EKF equations are obtained by linearizing the dynamic and
measurement operators around the most recent state estimate. We will consider here
only the case of linear measurement operators. The use of nonlinear measurement
operators is discussed in section 2.5.

2.3 The Extended Kalman Filter 16

The EKF forecast equations can be derived by applying a Taylor expansion to
equation (2.1) at the last estimate, the analysis state x§ ;. That is

Xt = M %0]+ Miazd + 1, + 027, (2.20)

where z¢ | = x!_, —x2, and M,; ; is the linearization of the operator M;; ,
around the estimate x? ;. Neglecting in equation (2.20) terms of higher than linear
order in z® the conditional mean and the corresponding covariance matrix of the
density p(xt|Y{_A.) are computed. This yields the EKF analog of equations (2.12)
and (2.13) for the forecast of the state and the forecast error covariance matrix:

xI = M ax] (2.21)

P/ M- arPi_anMig-ar + Qi (2.22)

I

Here uncorrelated statistics of the model errors and the state were assumed as in
the KF. Equation (2.21) is iterated from time £;_ax until time £; to obtain xi.

Since here only linear measurement operators H are considered, the analysis
equations for the EKF are identical to those of the linear Kalman filter. Thus the
analysis of the EKF is given by equations (2.15) to (2.19).

To apply the KF or EKF the filter sequence has to be initialized. That is, an
initial state estimate x§ and a corresponding covariance matrix P§ has to be sup-
plied which represent the initial probability density p(x}).

Remark 6: The forecast of the EKF is due to linearization. The state forecast is
only valid up to linear order in z while the covariance forecast is valid up to second
order (z% o< P*). The covariance matrix is forecasted by the linearized model. For
nonlinear dynamics this neglect of higher order terms can lead to an unrealistic
representation of the covariance matrix [39] and subsequently to instabilities of the
filter algorithm [15].

Remark 7: To avoid the requirement for an adjoint model operator MY, ., the
covariance forecast equation is usually applied as l

Pl = My ar(Mps-arPioan)” + Qx (2.23)

Remark 8: The covariance matrix P is symmetric positive semi-definite. In a nu-
merical implementation of the KF this property is not guaranteed to be conserved,
if equation (2.17) is used to update the covariance since the operations on P are not
symmetric. In contrast to this equation (2.16) preserves the symmetry.

Remark 9: For linear models the KF yields the optimal minimum variance estimate
if the covariance matrices Q and R as well as the initial state estimate (x§, P§) are
correctly prescribed. Then the estimate is also the maximum likelihood estimate,
see Jazwinski [38]. For nonlinear systems, the EKF can only yield an approximation
of the optimal estimate. For large-scale systems, like in oceanography where the
state dimension can be of order 10% — 107, there are generally only estimates of the
covariance matrices available. Also x2 is in general only an estimate of the initial
system state. Due to this, the practical filter estimate is sub-optimal.

Remark 10: For large scale systems the largest computational cost resides in the
forecast of the state covariance matrix by equation (2.13). This requires 2n applica-
tions of the (linearized) model operator. For large scale systems the corresponding

2.4 Error subspace Kalman Filters 17

computational cost is not feasible. In addition, the KF and EKF require the storage
of the covariance matrix containing n? elements which is also not feasible for realistic
models and current size of computer memory.

2.4 Error subspace Kalman Filters

The large computational cost of the KF and EKF algorithms implies that a direct
application of these algorithms to realistic models with large state dimension is not
feasible. This problem has led to the development of a number of approximating
algorithms, sometimes called ’suboptimal schemes’ after Todling and Cohn [80].
While being clearly suboptimal for linear systems, this is not necessarily true for
nonlinear systems. Treating the forecast of the statistics in different manners; e.g.
by nonlinear ensemble forecasts, some algorithms are better suited for application
to nonlinear systems than the EKF.

This work focuses on three algorithms, the EnKF [17, 8|, the SEEK Filter [68],
and the SEIK Filter [67]. As far as possible the filters are presented here in the
unified notation [37] following the way they have originally been introduced by
the respective authors. The relation of the filters to the EKF as well as possible
variations and particular features of them are discussed.

All three algorithms use a low-rank representation of the state covariance ma-
trix P either by an explicit low-rank approximation of the matrix or by a random
ensemble. Thus, the filter analyses operate only in a low-dimensional subspace,
denoted as the error subspace. The error subspace approximates the error space
considered in the EKF. 1t is characterized by the eigenvectors and eigenvalues of the
approximated state covariance matrix. As all methods use the analysis equations
of the EKF adapted to the particular method, we refer to the algorithms as Error
Subspace Kalman Filters (ESKF). This corresponds to the concept of error subspace
statistical estimation {49].

2.4.1 SEEK — The Singular Evolutive Extended Kalman Fil-
ter

The SEEK filter [68] is a so called reduced-rank filter. It is based on the EKF using
an approximation of the covariance matrix P¢ by a singular matrix of low rank and
its treatment in decomposed form.

From the statistical viewpoint, the rank reduction is motivated by the fact that
the probability density function p(x}) is not isotropic in state space. If the density
function is Gaussian it can be described by a probability ellipsoid, whose center is
given by the mean x¢ and the shape is described by P§. Figure 2.1 sketches the prob-
ability ellipsoid with its main axes in two dimensions. The principal axes of the ellip-
soid are found by an eigenvalue decomposition of Pg: {Pv(® = AOv® i =1,... n},
where v(¥ is the i’th eigenvector and A® the corresponding eigenvalue. With this,
the principal vectors are {¥() = (AM)1/2v@1 Approximating P§ by the r (r < n)
largest eigenmodes corresponds to the neglect of the least significant principal axes
of the probability ellipsoid. Also it provides the best rank-r approximation of P§,
see Golub and van Loan [26]. The retained principal vectors {¥®, i = 1,... 7}

2.4 Error subspace Kalman Filters 18

Figure 2.1: Probability ellipsoid representing the probability density function p(x}).

are the basis vectors of a tangent space at the state space point x§. This is the
error subspace &£, which approximates the true error space characterized by the full
covariance matrix. The metric of & is given by G = diag (A®)~), ..., (A()=1),
In SEEK the error subspace is evolved until the next analysis time of the filter by
forecasting the vectors {v®¥, 4 = 1,... r} with the linearized model. In the analysis
phase the filter operates only in the error subspace, that is, in the most significant
directions of uncertainty.

The SEEK filter is given by the following equations:

Initialization:
The initial probability density p(x}) is provided by the initial state estimate x& and
a rank-r approximation (r < n) of the covariance matrix P§ given in decomposed
form:

x¢ =< xb >; Pgi=VUyV] ~ Pg (2.24)
Here, Matrix Vy € R™*" contains in its columns the corresponding eigenvectors
(modes) of Pg. The diagonal matrix Uy € R™" holds the 7 largest eigenvalues.
Forecast:
The SEEK forecast equations are derived from the EKF by treating the covariance
matrix in decomposed form as provided by the initialization.
Xf = J\Cfi,ifl{xf;l} (225)

13

Vi = Mig-arVi-ak (2.26)

Analysis:

The analysis equations are a re-formulation of the EKF analysis equations for a
covariance matrix given in decomposed form. To maintain the rank r of 15‘5 the
model error covariance matrix Qy is projected onto the error subspace by

Q= (VIVY) ' VIQuV, (VIVY) ™. (2.27)
With this the SEEK analysis equations are for an invertible matrix Ry
-1 A\t T-1
Uit = (Uese+ Qi) +(H V) RHLV, (2.28)
Xy = X£ + K, (y,‘f — H;;Xi) , (2.29)

K,

V.U, VIHIR, ™" . (2.30)

2.4 Error subspace Kalman Filters 19

The analysis covariance matrix is implicitly given by Po = V.U, VL.
Re-diagonalization:

To avoid that the modes {v(;} become large and increasingly aligned a re-ortho-
normalization of these vectors is required. This can be performed by computing the
eigenvalue decomposition of the matrix B € R™*" defined by

where Ay, is computed by a Cholesky decomposition of the matrix Uy: Uy = A, AT,
The eigenvalues of By, are the same as the non-zero eigenvalues of P{ = VkUka.
Let Cy, contain in its columns the eigenvectors of By, and the diagonal matrix Dy, the
corresponding eigenvalues. Then the matrix V holding re-orthonormalized modes
and the corresponding eigenvalue matrix U are given by

V. = L.CD; Y U, =D,. (2.32)

Remark 11: The state covariance matrix is approximated by a singular matrix P
of low rank. Throughout the algorithm the approximated matrix is treated in the
decomposed form P = VUVT. The full covariance matrix is never computed ex-
plicitly and has never to be stored. .
Remark 12: Due to its treatment in decomposed form, all operations on P are
performed symmetrically. Hence, P remains symmetric throughout the algorithm.
Remark 13: It is not required that the decomposition of P is computed from a
truncated eigenvalue decomposition of the prescribed matrix P§. However, mathe-
matically this yields the best approximation of P§.

Remark 14: The forecast of the covariance matrix is computed by only forecasting
the r modes of P. With typically r < 100 this brings this forecast toward acceptable
computation times.

Remark 15: The SEEK filter is a re-formulation of the EKF focusing on the an-
alyzed state estimate and covariance matrix. Hence its filtering performance will
be sub-optimal. Further, SEEK inherits the stability problem of the EKF by con-
sidering only the two lowest statistical moments of the probability density. If r is
too small, this problem is even amplified, as P® systematically underestimates the
variance prescribed by the full covariance matrix P®. This is due to the neglect of
eigenvalues of the positive semi-definite matrix P2,

Remark 16: The increment for the analysis update of the state estimate in equa-
tion (2.29) is computed as a weighted average of the mode vectors in 'V which belong
to the error subspace. This becomes visible when the definition of the Kalman gain
(equation (2.30)) is inserted into equation (2.29):

x¢=x{ +V, [Ukvgf HIR, ! (y;; - Hkxﬁ)] (2.33)

The term in brackets represents a vector of weights for combining the modes V.

Remark 17: In practice, it can be difficult to specify the linearized dynamic model
operator M;; ;. As an alternative, one can approximate the linearization by a
gradient approximation. Then, the forecast of column a of V2 |, denoted by v2),

is given by

Mialxt A — My
Mi,i_lv;ﬁ) ~ ; X +evi 7] a1[xg] . (2.34)

€

2.4 Error subspace Kalman Filters 20

For a gradient approximation the coefficient € needs to be a small positive num-
ber (¢ < 1). Some authors [91, 31 report the use of e &~ 1. This can bring the
algorithm beyond a purely tangent-linear forecast but it is no more defined as a
gradient approximation and requires an ensemble interpretation.

Remark 18: Due the neglect of higher order terms in the Taylor expansion (2.20)
the forecast of the state estimate will be systematically biased. To account for the
first neglected term in the Taylor expansion second order forecast schemes have
been discussed [87, 73]. The examination of the forecast bias can also be utilized to
quantify the nonlinearity of the forecast [89].

Remark 19: Equation (2.28) for the matrix Uy can be modified by multiplying
with a so called forgetting factor p, (0 < p < 1) [6§]:

Uit = (07 Upoan + Qo)™+ (H V) RTHLV, (2.35)

The forgetting factor can be used as a tuning parameter of the analysis phase to
down-weight the state forecast relative to the observations. This can increase the
filter stability as the systematic underestimation of the variance is reduced.
Remark 20: In equation (2.26) the modes V of P are evolved with initially unit
norm in the state space. However, it is also possible to use modes scaled by the
square root of the corresponding eigenvalue, i.e. the basis vectors of the error sub-
space, Then, matrix U will be the identity matrix. Using scales modes the re-
diagonalization should be performed after each analysis stage, with equations (2.32)
replaced by Vk = V;Cy and I]'k = I,,. This scaled algorithm is equivalent to the
RRSQRT algorithm introduced by Verlaan and Heemink [88].

2.4.2 EnKF — The Ensemble Kalman Filter

The EnKF {17, 8] applies a Monte Carlo method to sample and forecast the prob-
ability density function. The initial density p(x}) is sampled by a finite random
ensemble of state realizations. The density is forecasted by evolving each ensemble
member with the full stochastic model. For the analysis each ensemble state is up-
dated using an observation vector from an ensemble of observations, which has to
be generated according to the observation error covariance matrix.

From the viewpoint of statistics the EnKF solves the Fokker-Planck-Kolmogorov
equation (2.3) for the evolution of the probability density p(x*) by a Monte Carlo
method. In contrast to the SEEK algorithm, where the rank reduction directly
uses the assumption that the density is Gaussian and thus can be described by a
probability ellipsoid, the EnKF samples the density by a random ensemble of N
model states {xg(a), a = 1,..., N} The probability density is given in terms of the
ensemble member density in state space dN:

dN
~ p(xh)dx for N — oo (2.36)
This sampling of p(x4) converges rather slow (proportional to N~1/2), but it is valid
for any kind of probability density, not just Gaussian densities. Forecasting each
ensemble state with the stochastic-dynamic model (2.1) evolves the sampled density
with the nonlinear model until the next analysis time. In the analysis phase the

2.4 Error subspace Kalman Filters 21

EKF analysis, which implies that the densities are Gaussian, is applied to each of
the ensemble states. For the analysis the covariance matrix P is approximated by
the ensemble covariance matrix P. Since the rank of P is at most N — 1, the EnKF
also operates in an error subspace which is determined by the random sampling. Un-
like the SEEK filter the directions are not provided by the principal vectors of the
prescribed covariance matrix but determined by the random sampling. To ensure
that the ensemble analysis represents the combination of two probability densities,
the observation error covariance matrix R has to be represented by a random en-
semble of observations [8]. Each ensemble state is then updated with a vector from
this observation ensemble. This implicitly updates the state covariance matrix.

The EnKF algorithm is prescribed by the following equations:
Initialization:
The initial probability density p(x§) is sampled by a random ensemble of N state
realizations. The statistics of this ensemble approximate the initial state estimate
and the corresponding covariance matrix, thus

{(x2®) o =1,... N} (2.37)
with
1
Xg§ = NZXS(Q) —<xh > for N — oo, (2.38)
a=1
- A T
P} = o1 (xg(a) - x_8> (xg(“’) -)—(§> —P§ for N — . (2.39)
a=1
Forecast:

Each ensemble member is evolved up to time ¢, with the nonlinear stochastic-
dynamic model (2.1) as

) = M 2]) (240)

3

Analysis:

For the analysis a random ensemble of observation vectors {yz(ﬁ)., g=1...,N}
is generated which represents an approximate observation error covariance ma-
trix (f{k =~ Ry). Each of the ensemble members is updated analogously to the EKF

analysis by

x2@ = K@K, (yz(a) - Hkx,{(a)> , (2.41)
- - - X -1
K, = P/Hf <HkP£H£ +Rk> : (2.42)
- [—\ (g —\T
Pi: = ;V——]_ QZ::I <X£(Q) - Xi) <Xk(a) — X{;) . (243)

The analysis state and corresponding covariance matrix are then defined by the
ensemble mean and covariance matrix as
N

a 1 a(a
X = oy E xk(), (2.44)
a=1
N
Da 1 a(a a alca a T

2.4 Error subspace Kalman Filters 22

which complete the analysis equations of the EnKF.

An efficient implementation of this analysis is formulated in terms of “represen-
ters” [19]. This formulation as well permits to handle the situation when ka’,{HkT
is singular, which will occur if my, > N. The state analysis equation (2.41) is written

as
K@) @) 4 BIETH®) (2.46)

The columns of the matrix P{H} are called representers and constitute influence
vectors for each of the measurements. Amplitudes for the influence vectors are given
by the vectors {bg’) } which are obtained as the solution of

<ka’£HkT 4 Rk> (™ =y Hs @ (2.47)

The explicit computation of]_5{ by equation (2.43), is not required in the algo-
rithm. It suffices to compute (see, for example Houtekamer and Mitchell {34])

Af
. 1 W 7 o 7
P{Hf = N1 <x£()-—X£> [Hk <x£()~x£>] , (2.48)
a=1

Ly) of v —n\17
N‘:T;Hk (5 ~0) [(x9 =x)] " (29

For later use we also introduce the matrix notation of the EnKF. The initial state

|

H,P/H]

ensemble matrix holds in its columns the ensemble states as X§ = {xg(l)., e ,xa(N)v .
Tntroducing the ensemble matrix of the observation vectors Yj = {yzm, Ceey y,‘;m) }
we can rewrite equation (2.47) for the influence amplitudes as

<ka’£HkT + Rk> B, = Y? - H;X] (2.50)

where By, is the matrix of influence amplitudes. The ensemble update (eq. 2.46) is

now given as ~
¢ =X/ +P/H!B, . (2.51)

In addition, the computation of the representers f’{H;{ and the covariance matrix
HAP{HF{ is written in matrix notation as

BlH] = (X[X]) i (x-X0)] (2.52)
HP/HT = TVITlH’"‘ (x{j—i{) [Hk (x}:—x_i)r . (2.53)

Here the matrix X/ contains in all columns the vector x].

The EnKF comprises some particular features due to the use of a Monte Carlo
method in all phases of the filter:
Remark 21: The EnKF treats the covariance matrix implicitly in a square root
form, as is evident from equations (2.43) and (2.45). With this the covariance matrix
remains symmetric in the EnKF. As in the SEEK algorithm it is neither required
to store the full covariance matrix nor to compute it explicitly.

2.4 Error subspace Kalman Filters 23

Remark 22: The forecast phase evolves all N ensemble states with the nonlinear
model. This also allows for non-Gaussian densities. Algorithmically the ensemble
evolution has the benefit that a linearized model operator is not required.
Remark 23: The analysis phase is derived from the EKF. Thus, it only accounts
for the two lowest statistical moments of the probability density. Using the mean of
the forecast ensemble as state forecast estimate leads for sufficiently large ensembles
to a more accurate estimate than in the EKF. From the Taylor expansion, equa-
tion (2.20), it is obvious that this takes into account higher order terms than the
EKF does. In contrast to the EKF and SEEK filters P is only updated implicitly
by the analysis of the ensemble states.

Remark 24: The representer analysis method applied in the EnKF operates on
the observation space. Hence, the error subspace is not explicitly considered. An
algorithm which operates on the error subspace is given by the concept of Error
Subspace Statistical Estimation (ESSE) [49].

Remark 25: The analysis increments for the ensemble states are computed as
weighted means of the vectors X£ — Xi which belong to the error subspace. Thus
the analysis equation (2.51) for the ensemble update can be written as

X = X[+ (x] - x]) (N%T (1 (x] - Xi)er> (2.54)
Evensen [18] noted that the analysis can also be interpreted as a weakly nonlinear
combination of the ensemble states. The first interpretation, however, shows that
the update increments are computed in the error subspace.

Remark 26: Using a Monte-Carlo sampling of the initial probability density also
non-Gaussian densities can be represented. As the sampling convergences slowly
with O(N~Y2), rather large ensembles (N > 100) are required [17, 19] to avoid too
big sampling errors.

Remark 27: To enhance the quality of the filter estimate for small ensemble sizes
a variant of the EnKF has been proposed which uses a pair of ensembles [34]. From
the mathematical viewpoint it is, however, advisable to use as large as possible en-
sembles to ensure that the statistics can be estimated correctly. In addition, for a
given ensemble size the state estimate of the EnKF using a single ensemble is better
than the state estimate of the double-ensemble EnKF with the same total number
of ensemble states [84, 35)].

Remark 28: Since the estimated correlations of the EnKF will be noisy for small
ensembles it has been proposed [36] to filter the covariances by a Schur product of
correlations functions of local support with the ensemble covariance matrix. This
technique filters out noisy long-range correlations. Further, correlations are inter-
mediate distances will be weakened. Hence, the influence of observations are in-
termediate distances is reduced, see [30]. The localization will, however, introduce
imbalances into the ensemble states as has been studied by Mitchell et al. [56].
Remark 29: The generation of an observation ensemble is required to ensure consis-
tent statistics of the updated state ensemble [8]. With the observation ensemble the
covariance matrix Ry is represented as Ry, in equation (2.16) which would be miss-
ing otherwise. This, however, introduces additional sampling error to the ensemble
which is largest when the ensemble is small compared with the rank of Ry, e.g. if Ry,
is diagonal. Furthermore, it is likely that the state and observation ensembles have
spurious correlations. This introduces an additional error term in equation (2.16).

2.4 Error subspace Kalman Filters 24

Remark 30: In equations (2.42) and (2.47) it is possible to use, instead of the
prescribed matrix Ry, the ensemble error covariance matrix R, of the observation
ensemble {yzw), kE=1,...,N} As proposed by Evensen [18], this allows for an
analysis scheme which is numerically very efficient. However, due to the sampling
problems of Ry, this can lead to a further degradation of the filter quality.
Remark 31: To avoid the requirement of an ensemble of observations, several algo-
rithms have been proposed which perform the analysis only on the ensemble mean
and transform the ensemble after this update {1, 5, 94]. These filter algorithms can
be interpreted in a unified way as ensemble square root filters [79].

2.4.3 SEIK - The Singular Evolutive Interpolated Kalman
Filter

The SEIK filter [67] has been derived as a variant of the SEEK algorithm. It uses
interpolation instead of linearization for the forecast phase. Alternatively it can be
interpreted as an ensemble Kalman filter using a preconditioned ensemble. As in
the SEEK algorithm the SEIK filter uses a low-rank approximation of the covari-
ance matrix. From this an ensemble of minimum size is generated whose ensemble
statistics exactly reproduce the approximated covariance matrix. The ensemble is
forecasted with the nonlinear model like in the EnKF algorithm. The analysis is
performed in analogy to that of the SEEK filter with a single observation vector
using the ensemble mean and covariance matrix. Subsequent to the analysis, the
state ensemble is resampled to represent the analysis state estimate and covariance
matrix. The SEIK algorithm should not be confused with other interpolated vari-
ants of the SEEK filter, e.g. [90], which typically correspond to the SEEK filter with
gradient approximation.

Statistically the initialization of the SEIK filter is analogous to that of the SEEK:
The probability density p(x}) is again represented by the principal axes of P2 and
approximated by the r largest eigenmodes. In the SEIK algorithm the eigenmodes
are, however, not directly evolved but a random ensemble of 7 + 1 state realizations
is generated. This ensemble exactly represents the mean and covariance matrix of
the approximated probability density. The density is forecasted by evolving each of
the ensemble members with the nonlinear model. The evolved error subspace is de-
termined by computing the forecast state estimate and covariance matrix from the
ensemble. The analysis is performed analogous to the SEEK filter. This Kalman-
type analysis assumes again Gaussian densities.

The SEIK filter is given by the following equations:
Initialization:
The initial probability density p(x§) is provided by the initial state estimate x& and
a rank-r approximation of Pg given in decomposed form as

xt=<xi > Pl=V UVl ~P?. (2.55)

From this information an ensemble of v + 1 state realizations is generated as the

state matrix
Xo={xg",. x50V} (2.56)

2.4 Error subspace Kalman Filters 25

with
XT = x4, (2.57)
§ 1 = _ _ .
Pji= D6 - X (xg ™ - x5 =Py (2.58)
a=]1

To ensure that equations (2.57) and (2.58) hold, the ensemble is generated in a
procedure called minimum second-order exact sampling [65]%. For this, let Cy con-
tain in its diagonal the square roots of the eigenvalues of Pg, such that Uy = CT'C,.
Then P§ is written as

Pi =V CIQlQ,Co VY], (2.59)
where € is a (r + 1) X r random matrix whose columns are orthonormal and or-
thogonal to the vector (1,...,1)T which can be obtained by Householder reflections,
see, e.g., Hoteit et al. [33]. The state realizations of the ensemble are then given by

x2® = x2+ /r+1 Vo,CL(QD)@ (2.60)

where (£27)(®) denotes the a-th column of 7.
P¢ can also be described in terms of the ensemble states by

- 1
P = —X¢T(TTT) ' TH(X4)7T . (2.61)
r+1
T is a (r + 1) x 7 matrix with zero column sums. A possible choice for T is

_ Irxr 1
= (g0) = e (2:62)

Here 0 represents the matrix whose elements are equal to zero. The elements of the
matrix 1 are equal to one. Matrix T fulfills the purpose of implicitly subtracting
the ensemble mean when computing P¢. Equation (2.61) can be written in a form
analogous to the covariance matrix in (2.55) as

Pg = LoGLY (2.63)
with
Ly = X§T, (2.64)
1 -1
= TIT)™ . 2.6
=7 (T'T) (2.65)
Forecast:

Each ensemble member is evolved up to time #; with the nonlinear dynamic model

equation

Analysis:
The analysis equations are analogous to the SEEK filter, but here the forecast state

2Note that the definitions of the sampled covariance matrices are different in EnKF and SEIK.
The EnKF uses a normalization factor (N — 1)7! while SEIK uses (r + 1)7! = N~!. However,
in both algorithms the ensemble is generated to be consistent with the respective definition of the
covariance matrix.

2.4 Error subspace Kalman Filters 26

estimate is given by the ensemble mean xﬁ. To maintain the rank r of Py, matrix Qy

is again projected onto the error subspace according to equation (2.27) with 'V re-
placed by Ly defined by equation (2.64). Uy, is updated as in the SEEK algorithm
(equation (2.28)), but with Uj_a, being replaced by the constant matrix G (equa-
tion 2.65). Thus, the analysis equations are

Uyl = [G+ Q™ + (HLy) "Ry "H Ly (2.67)
xp = x|+ Ki(yp — Hix]) (2.68)
K, = L,UL'H/R, . (2.69)

The analysis covariance matrix is implicitly given by 13; = L, U,LE.
Resampling:

To proceed with the filter sequence the ensemble has to be resampled in consistency
with relations (2.57) and (2.58) at time ¢;. The procedure is analogous to the
injtial ensemble generation but here a Cholesky decomposition is applied to obtain
U;! = C,CI. Then P? can be written in analogy to (2.59) as

P = Ly(c;H'af .c'L (2.70)

where €, has the same properties as in the initialization. Accordingly the ensemble
members are given by

X2 = x¢ 4 /1 + 1 L(CHT(QD)© . (2.71)

The SEIK algorithm shares features of both the SEEK and the EnKF filters:
Remark 32: Using second order exact sampling of the low-rank approximated co-
variance matrix leads to smaller sampling errors of the ensemble covariance matrix
compared with the Monte Carlo sampling in the EnKF.

Remark 33: The ensemble members are evolved with the nonlinear model. Thus,
as algorithmic benefit, the linearized model operator is not required. In addition,
the nonlinear ensemble evolution yields a more realistic forecast of the covariance
matrix compared with the SEEK filter. Furthermore, the forecast permits to treat
model errors as a stochastic forcing like in the EnKF.

Remark 34: The forecast state estimate is computed as the mean of the ensemble
forecast. Analogous to the EnKKF this leads to a forecast accounting for higher order
terms in the Taylor expansion equation (2.20).

Remark 35: Like in the SEEK filter, the analysis phase of the SEIK operates
only in an error subspace given by the most significant directions of uncertainty.
With this the SEIK filter is analogous to the concept of Error Subspace Statistical
Estimation (ESSE) [49]. The difference of the SEIK to square root EnKF algo-
rithms [1, 5, 94, 79] lies in the fact that these algorithms compute the analysis
update in the observation space rather than the error subspace.

Remark 36: The forecast phase uses an ensemble which exactly represents the
low-rank approximated state covariance matrix. It has the minimal size r + 1. A
similar scheme, called unscented transformation, has been discussed by Julier et
al. [40, 39]. This scheme evolves an ensemble of 2r + 1 states. The ensemble is
initialized by the state estimate x2, the r states {x§ + v, a =1,...,r}, and the r
states {x2 — ¥(®} where the {¥{®)} are the basis vectors of the error subspace.

2.5 Nonlinear Measurement Operators 27

2.5 Nonlinear Measurement Operators

We formulated the Kalman filter and the error subspace Kalman filters with linear
measurement operators Hy. It is, in general possible to apply nonlinear measurement
operators H; with these filters. As we will explain below, the application of a
nonlinear measurement operator cannot be expected to provide an optimal filter
estimate.

2.5.1 Nonlinear Measurement Operators in the Extended
Kalman Filter

To derive the EKF analysis equations with a nonlinear measurement operator a
Taylor expansion is applied to the observation model (2.2) at the forecast state x£ .

Writing 2] := xt, — x/ it is
yo = Hyx!] + Hyzl + ex + O(22) . (2.72)

Here H), is the linearization of the measurement operator Hy around the forecast

estimate x,{: . Neglecting in the expansion terms of higher than linear order in Zi,
the analysis equations with nonlinear H are obtained analogous to equations (2.15)

to (2.18) as

Xt = xf+Kilyf - Hi[xl]) , (2.73)
P = (I-K.H,P] (2.74)

The Kalman gain K. is again given by equation (2.18).

The problem in the application of nonlinear measurement operators lies in the
fact that the derivation of the analysis equations of the KF implicitly assumes that
H,x% is Gaussian distributed. If the distribution of x% is Gaussian this will be
fulfilled for a linear operator H,. However, the nonlinear transformation Hj[x%] will
not yield a Gaussian distribution, even if x}, is Gaussian. Due to this, the analysis
probability density p(xi|Y¢) will not be Gaussian and hence not be completely
described by its mean and covariance matrix. Hence, the filter estimate will be sub-
optimal for all filters which are based on the analysis equations of the Kalman filter.
The state estimate will not be the minimum variance estimate. In some situations,
this can yield stability problems, as was shown, e.g., by van Leeuwen [85]. A possible,
more consistent, way to cope with the nonlinear H is to apply an iterative analysis
scheme instead of the EKF analysis equations (2.73) and (2.74), see e.g. [38, 11].

2.5.2 Direct Application of Nonlinear Measurement Oper-
ators

Despite the fact that nonlinear measurement operators will yield a sub-optimal filter
estimate, there is no reason which would forbid their application at all. In the error
subspace filter algorithms which use an ensemble formulation, namely the SEIK and
the EnKF algorithm, the nonlinear measurement operators can be directly applied.
We discuss this first in the context of the EnKF algorithm as has been shown e.g.
by Houtekamer and Mitchell [36]. Since all fields and operators refer to the time ¢
the time index is omitted in the following.

2.5 Nonlinear Measurement Operators 28

The application of the nonlinear operator H is, in general, always valid when
applied to a real model state x. Due to the nonlinearity the application of H to
a state difference as I [(@x/ — xf] will yield a different result than the operation
H[®x/] — H[x/]. Hence, equations (2.52) and (2.53) have to be reformulated with
nonlinear operators H as

1
N-1
- 1 . e \T
HP/HT = ﬁ(H[Xf} - H[Xf]) <H{Xf] - H[Xf}) (2.76)

P/HT = <Xf - ﬁ) <H[Xf] - W})T , (2.75)

where H[X7] denotes the operation of Z on all columns of X/. The notations on the
left hand side of the equations have to be considered as symbolic, since no simple
matrix-matrix operations are performed. Next to these equations, equation (2.50)
for the influence amplitudes reads

<H13fHT + R) B =Y°- H[X/] (2.77)

Using the SEIK filter, the nonlinear measurement operator can also be applied.
For this the term HL in equations (2.67) and (2.69) has to be replaced by (H[X/])T.
In addition equation (2.68) has to be written as

x* =x +K (yo ~H—[x—fT) , (2.78)

With these replacements the ensemble formulations used in the EnKF and SEIK
algorithms do no more require the linearized operator H. Despite this, these for-
mulations comprise the problem that the analysis will not yield an optimal result of
minimal variance since the analysis probability density will not be Gaussian.

2.5.3 State Augmentation to avoid Nonlinear Measurement
Operators

To avoid the use of a nonlinear measurement operator, it has been proposed, see
e.g. [1, 18, 4], to augment the state vector by the diagnostic variables. In this case,
the measurement operator becomes trivially linear reducing the augmented state to
the diagnostic variables.

For the state augmentation consider the state vector x € R™ and the observations
y° = Hlx] + ¢ € R". Now the augmented model state vector x € R™*" is defined

by

N x

X = (Hlx]) . (2.79)
The augmented state vectors are hold by the ensemble matrix X = {Vx, ..., (M %},
Now the measurement model is linear. It is given

y° =Hz' + € (2.80)

with the new linear measurement operator H= (O Linsem)-
We can rewrite the analysis equations (2.50) and (2.51) of the EnKF filter as

X* =X/ +P/H'B (2.81)

2.6 Summary 29

where B is computed from
(BP/AT+R)B = Y° - AX/ . (2.82)

In equation (2.81) we consider only the update of the first n elements in the state
vectors. The augmented part is not changed by the update.
The representer matrix P/H” and the matrix HP/H” are given by

I s

APIAT — N%H (%7 -%7) [(%! m?{f)]T . (2.84)

P/H”

(x/-X7) [(%7 - %7

Using equations (2.81) to (2.84) the analysis update can be performed applying only
the linear measurement operator H.

On the other hand, when the operation of H in equations (2.82) to (2.84) is
performed and the definition (2.79) of the augmented state is used it is

(ﬂﬁfﬂT +R> B =Y’ H[X] (2.85)

and
PHAT = ﬁl_—l(xf—kﬁj [(H[Xf]—H[XfD]T : (2.86)
APAT = N%(H[Xf]wm> [(H{Xf]—ﬁT}Tq)]T . (2.87)

Equations (2.85) and (2.87) are identical to equations (2.75) and (2.77) formu-
lated for the direct application of the nonlinear operator H discussed in section 2.5.2.
Thus, the method of state augmentation is in fact equivalent to the direct application
of the nonlinear measurement operator.

The logical fault in considering the method of state augmentation as the solution
to cope with nonlinear measurement operators is that, despite the linear measure-
ment operator, the distribution of the diagnostic variables H[x] will not be Gaussian.
This is hidden in the formulation and likely to be overlooked. As the problems of
state augmentation and direct application of H are the same, the latter method
should be used in numerical applications. It does not produce computational over-
head due to larger memory requirements for the state allocation.

2.6 Summary

Three different filter algorithms based on the Kalman filter have been motivated
and discussed in the context of statistical estimation. These have been the EnKF,
SEEK, and SEIK algorithms. These filter algorithms use a low-rank representation
of the state covariance matrix and perform an analysis derived from the Extended
Kalman filter (EKF). Due to this, we refer to these algorithms as Error Subspace
Kalman Filters (ESKF). The ESKF algorithms have been related to the EKF. In
addition, possible variations of the algorithms have been discussed.

2.6 Summary 30

The SEEK filter is a re-formulation of the EKF for a low-rank approximated
state covariance matrix given decomposed form. This formulation reduces the com-
putational costs to evaluate the forecast. In addition, the memory requirements are
reduced by storing the covariance matrix in decomposed form. The EnKF filter ap-
plies a Monte Carlo method to sample and forecast the probability density function
of the state estimate. In addition, the analysis computes the combination of two
probability densities. These are the densities of the state estimate and of the obser-
vations. The analysis is performed by applying the analysis equations of the EKF
to each ensemble state. The SEIK filter is an interpolated variant of the SEEK fil-
ter. Alternatively, it can be interpreted as an ensemble filter using a preconditioned
ensemble. The SEIK algorithm uses an ensemble forecast as the EnKF filter. The
analysis is computed analogous to the SEEK algorithm. The SEEK, EnKF, and
SEIK algorithms will be compared more detailed in the next chapter.

Besides the ESKF algorithms, the problem of nonlinear measurement operators
has been discussed. In this case, the filter estimate will be sub-optimal since the
probability density of the analyzed state estimate will generally not be Gaussian.
The ensemble based algorithms EnKF and SEIK show the advantage that they
permit to apply the nonlinear operator directly. In contrast to this, the SEEK filter
as well as the EKF require also the application of a linearized operator. It was also
shown that including the diagnostic variables into the state vector, referred to as
state augmentation, does only virtually solve the problem of nonlinear measurement
operators. This method is equivalent to the direct application of the nonlinear
operator.

Chapter 3

Comparison and Implementation
of Filter Algorithms

3.1 Introduction

For the application of filter algorithms to geophysical modeling problems we are
concerned with the search for filter algorithms for large-scale nonlinear systems.
The three ESKF algorithms introduced in the previous chapter are compared under
this aspect in section 3.2. Since all three filters owe the Extended Kalman Filter their
similarity, the comparison focuses on the differences of the filters and consequences
for their application to nonlinear systems. Further, relations to the error subspace
are discussed. The EnKF and SEEK algorithms have also been compared by Brusdal
et al. [7]. This work aimed at formulating the equations of the SEEK filter as similar
as possible to the equations of the EnKF algorithm. Thus, the focus was rather on
the similarity of the algorithms. Some of the results of the work by Brusdal et al.
disagree with our comparison since the authors used also a formulation of the SEEK
filter which differs from the formulation presented in section 2.4.1.

Besides the comparison of the algorithms, possible efficient implementations of
the filters are presented in section 3.3. This includes a framework for filtering and the
implementations of the analysis and resampling algorithms themselves. Finally, the
computational complexity of the three filter algorithms is compared in section 3.4.

3.2 Comparison of SEEK, EnKF, and SEIK

All three algorithms have in common that they treat the covariance matrix P implic-
itly in some decomposed form. This avoids the requirement to compute P explicitly
or to allocate storage for the whole covariance matrix. In addition, as all opera-
tions on P are symmetric, the covariance matrices remain symmetric throughout
the computations.

3.2.1 Representation of Initial Error Subspaces

The initialization of the algorithms implies a different representation of their error
subspaces representing the probability density p(x}). The initial density p(x§) is
usually assumed to be Gaussian or at least approximately Gaussian since the analysis

31

3.2 Comparison of SEEK, EnKF, and SEIK 32

phase of the filters also assumes a Gaussian density. Hence, p(x}) is fully described
by the state estimate x§ and the state covariance matrix P§. The Monte Carlo
sampling used in the EnKF filter represents p(x5) by a random ensemble of model
state realizations. This approach permits, in general, to sample arbitrary probability
densities. The sampling converges rather slow since the relative weights of the
eigenvalues of P4, and hence the relative importances of the directions in the error
subspace, are not taken into account. The statistics of the ensemble represent the
error subspace. The SEEK and SEIK algorithms represent the error subspace at
the state space point of the estimate x§ by the r major principal axes of the error
ellipsoid described by the covariance matrix P§. This implies that the probability
density is Gaussian or at least well described by P§. The SEEK filter treats the
covariance matrix directly in it's decomposed form given by eigenvectors and a
matrix of eigenvalues. The SEIK filter uses a statistical ensemble of minimum
size, generated by minimum second-order exact sampling, whose ensemble statistics
exactly represent the approximated P§. For SEEK and SEIK the convergence of
the approximation with increasing r depends on the eigenvalue spectrum of P§.
Typically, the sampling error in SEEK and SEIK will be much smaller then in the
EnKF.

To exemplify the different sampling methods, figure 3.1 shows the sampling which
represents the matrix

30 1.0 00
P,=| 1.0 30 00 | . (3.1)
0.0 0.0 0.01

P, has the eigenvalues \; = 4, Ay = 2, and A3 = 0.01. Thus, the smallest eigenvalue
can be neglected to perform a low-rank approximation. The full matrix P; can
be represented by a probability ellipsoid in three dimensions while the low-rank
approximation is represented by an ellipse. The sampling proposed for SEEK (upper
left panel of figure 3.1) directly uses the eigenvectors of P;. In contrast, the RRSQRT
algorithm [88], see also the remarks in section 2.4.1, uses modes which are scaled
by the square root of the corresponding eigenvalue. Pure Monte Carlo sampling as
used in the EnKF generates in this example an ensemble of much higher sampling
errors. This is visible in the upper right panel for an ensemble size of N = 100.
The second order exact sampling applied to initialize the SEIK filter is shown in the
bottom panel. Here, three stochastic ensemble states represent exactly the low-rank
approximated matrix P,.

The row-rank approximation used for second-order exact sampling assumes, that
the major part of the model dynamics is represented by a limited number of modes
or empirical orthogonal functions (EOFs). For realistic geophysical systems this
requirement should be fulfilled, as has been shown, for example by Patil et al. [61]
in the context of atmospheric dynamics.

Despite their different representations of the error subspace all three filters can be
initialized from the same probability density or covariance matrix. For a consistent
comparison of the filtering performance of different algorithms, it is even necessary
to use the same initial conditions. Furthermore, the forecast and analysis equations
of the EnKF and SEIK filters are in fact independent from the method the state
ensembles are generated. Thus, the initialization methods of Monte Carlo sampling
and second-order exact sampling can be interchanged between EnKF and SEIK.
Also the SEEK filter requires only the matrices V§ and Ug, but it is independent

3.2 Comparison of SEEK, EnKF, and SEIK 33

SEEK Monte Carlo Initialization (EnKF)
4 4
® SEEK modes + EnKF ensemble states
¢ scaled modes True prob. eflipsoid
3r —— True prob. ellipsoid 3 ---. sampled ellipsoid
2 2 :

-2 -2
-3] -3
4y -2 0 2 4 et 2 0 2 4

Minimum 2nd order exact sampling (SEIK)

4,
® SEIK ensemble states
—— True prob. ellipsoid
3 ---+ sampled ellipse
.

2!

1

0
-1 .

L]

-2t
-3F
=" -2 0 2 4

Figure 3.1: Sampling of a covariance matrix of rank 3 with SEEK (upper left), EnKF
(upper right), and SEIK (bottom panel).

from the method used to initialize these matrices. In general, the method to generate
an initial state ensemble should hence be considered separately from the particular
filter algorithm. It is still an open question which type of ensemble initialization
will provide the best filter results in terms of the estimation error and the error in
the estimated variance of the state estimate for a given ensemble size. The study of
different initialization approaches is a topic of current research in meteorology, see

e.g. [28, 29, 92].

3.2.2 Prediction of Error Subspaces

The forecast phase of the filter algorithms computes a prediction of the state esti-
mate x}: and the error subspace at the next observation time t,. The SEEK filter
evolves the state estimate xj_,, with the nonlinear model to predict xi . To evolve
the basis of the error subspace, the modes of P§_,, are evolved with the linearized
model or a gradient approximation of it. In contrast to this, the EnKF and SEIK

3.2 Comparison of SEEK, EnKF, and SEIK 34

filters rely on nonlinear ensemble forecasting. Apart from the treatment of model
errors, both algorithms evolve an ensemble of model states with the nonlinear dy-
namic model. The state estimate itself is not explicitly evolved as is done in the
SEEK filter. The statistics of the forecasted ensemble represent the state estimate
and forecast, covariance matrix.

The explicit forecast of the state estimate by the SEEK filter only approximates
the mean of the forecasted probability density. The ensemble forecast used in EnKF
and SEIK accounts for higher order terms in the Taylor expansion, equation (2.20).
Thus, these algorithms are expected to provide more realistic predictions of the
error subspace compared with the SEEK filter. Concerning the forecast performed
in SEEK, it can be dangerous to directly evolve the modes of P{_4,, since this
does not represent nonlinear interactions between different modes. Further, the
increasingly finer scales of higher modes can lead to forecasts which do not provide
meaningful directions of the error subspace.

3.2.3 Treatment of Model Errors

The SEEK and SEIK filters consider model errors by adding the model error covari-
ance matrix Q to the forecasted state covariance matrix. The same is done in the
EKF, except that the SEEK and SEIK algorithms neglect the parts of Q which are
orthogonal to the error subspace. Alternatively, a simplified treatment is possible
by applying the forgetting factor. This increases the variance in all directions of the
error subspace by the same factor.

The EnKF applies a stochastic forcing during the ensemble forecast to account
for model errors. Also it is possible to use a forgetting factor with the EnKFE (See,
for example, Hamill and Whitaker [30], where it is denoted as 'covariance inflation’).
Since the SEIK filter also uses an ensemble forecast, it is possible to apply stochastic
forcing in this algorithm, too.

In the context of a nonlinear system, the addition of Q at observation times is
only an approximation. Over finite time the additive stochastic forcing in equa-~
tion (2.1) will result in non-additive effects. Thus, applying stochastic forcing to
the ensemble evolution will generally yield a more realistic representation of model
errors than the addition of a matrix Q. However, this requires the model errors to
be known or, at least, to be well estimated. When the model errors are only poorly
known, the forgetting factor provides a simple and numerically very efficient way to
account for them. In addition, the forgetting factor can be applied to stabilize the
filtering process by reducing the underestimation of the variances.

3.2.4 The Analysis Phase

The analysis phase of all three algorithms is based on the EKF analysis. Hence,
only the first two statistical moments of the predicted probability density, the mean
and covariance matrix, are taken into account. Thus, the analysis phase will pro-
vide only reasonable and approximately variance minimizing results if the predicted
state probability density and the probability density of the ohservations are at least
approximately Gaussian. For linear models the forecasted density is Gaussian if the
initial density is Gaussian. For nonlinear systems the forecast density will contain
a non-Gaussian part, but usually the state density will be close to Gaussian if a

3.2 Comparison of SEEK, EnKF, and SEIK 35

sufficient number of observations with Gaussian errors is taken into account as has
been discussed by Brusdal et al. [7].

The increment for the analysis update is computed as a weighted average over
vectors which belong to the error subspace €. For SEEK these are the vectors in V
and for SEIK the vectors in the matrix L. In the case of EnKF the vectors are given

by the difference X}: — X£ of the ensemble states to the ensemble mean. While
SEEK and SEIK compute the weights for the analysis update in the error subspace,
the EnKF computes the weights in the observation space. If a large amount of
observational data is to be assimilated, i.e. if m > N, EnKF operates on matrices
of larger dimension than SEEK and SEIK.

The analysis equations of SEEK are a re-formulation of the EKF update equa-
tions for a mode-decomposed covariance matrix P2 = VUVT. The forecast state
estimate, given by the explicit evolution of XL Aps 18 updated using a Kalman gain
computed from ij which itself is obtained by updating the matrix Ug_ap € R™*7.
The analysis algorithms of EnKF and SEIK use the ensemble mean as forecast state
estimate x£ and a covariance matrix Py computed from the ensemble statistics.
The SEIK filter updates the single state x£ and the eigenvalue matrix Uj_a;. The
EnKF filter updates each ensemble member using for each update an observation
vector from an ensemble of observations which needs to be generated. The analysis
covariance matrix P¢ is obtained implicitly by this ensemble analysis.

The requirement for an observation ensemble points to a possible drawback of
the EnKF as, for finite ensembles, the observation ensemble will introduce additional
sampling errors in the analyzed state ensemble. This is particularly pronounced if
a large set, i.e. m > N, of independent observations is assimilated. In this case,
the observation error covariance matrix Ry is diagonal having a rank of m > N.
Thus, Ry cannot be well represented by an ensemble of size N.

For linear dynamic and measurement operators the predicted error subspace in
the SEEK and SEIK algorithms will be identical if the same rank 7 is used and model
errors are treated in the same way. Since also the analysis phases are equivalent
both filters will yield identical results for linear systems. The filtering results of the
EnKF will differ from that of the SEEK and SEIK filters even for linear dynamics
and N = r + 1. This is due to the introduction of sampling noise by the Monte
Carlo ensembles.

3.2.5 Resampling

Since the EnKF updates in the analysis phase the whole ensemble of model states
the algorithm can proceed directly to the next ensemble forecast without the need
of a resampling algorithm. In contrast to this, a new state ensemble representing P%
and x} has to be generated when the SEIK filter is used. This can be done by a
transformation of the forecast ensemble. Applying the SEEK filter, the forecasted
modes of the covariance matrix can be used directly in the next forecast phase. In
general, these are no more the basis vectors of the error subspace, since they are
not orthonormal. A re-orthonormalization of the modes is recommendable and can
be performed occasionally to stabilize the mode forecast. The choice whether an
algorithm with or without re-initialization is used has no particular implications for
the performance of the filter algorithms.

3.3 Implementation 36

3.3 Implementation

For the implementation of the filter algorithms we aim at a modular structure which
separates the routines of the model and filter parts of the program. In addition,
the treatment of observations, e.g. the initialization of the observation vector or the
measurement operator, should be dealt with separately from the model and the filter
parts. Data should be exchanged between the three parts using interface routines.
Typically the filter has to be implemented with an existing model which is not
designed for data assimilation purposes. Thus, the filter part should be attached
to the model with minimal changes to the model source code and a clear inter-
face structure. Here, we present an implementation of a serial filter environment
which assumes that the time stepper part of the model is available as a subroutine.
In chapter 8 we will present a framework for parallel data assimilation based on
Kalman filter algorithms. It includes an application program interface, allows for
efficient use of parallel computers, and does not require the model time stepper to
be implemented as a subroutine. An interface structure between model and filter
has also been discussed by Verlaan [87] in the context of the RRSQRT algorithm.

3.3.1 Main Structure of the Filter Algorithm

Besides the initialization, the filter algorithms consist of a forecast phase and an
analysis phase. In addition, a resampling phase is performed by the SEEK and
SEIK algorithms respectively for the modes or ensemble states.

To separate the filter part from the model we use a filter main routine which
controls the ensemble forecast and subsequently calls subroutines performing the
analysis and resampling phases of the algorithms. This filter main routine is called
from the main program providing the fields for the filter initialization as subroutine
arguments. These are either the initial state ensemble Xy (for EnKF and SEIK) or
the initial state estimate xo and matrices Uy and V| (for SEEK). The initialization
is performed in advance by some user written routine. The main routine for the
SEIK filter is shown as algorithm 3.1 exemplifying the structure.

The calls to the subroutine User_Analysis in algorithm 3.1 provide the possibility
to examine the assimilation progress during the execution. Here the user can analyze
either the forecast or the analysis state ensemble. To distinguish both cases, the
subroutine is called with the negative of the time step index steps in the forecast
case. The routine permits, e.g., to compute ensemble means or variances estimated
by the filter. In addition, the ensemble or analysis quantities can be written to files.
For physical consistency it can be necessary to post-process the analysis states, for
example to ensure mass conservation of a model ocean. This post-processing can be
also performed in User_Analysis when called after the filter analysis phase.

In the forecast phase an ensemble of N model state vectors X = {Mx, ..., x}
is evolved for nsteps time steps from the model time ¢, to time ¢, = t, + nsteps - At
where At is the time step size. This requires to perform N model evolutions begin-
ning from the same model time ¢,. The ensemble forecast is controlled by the filter,
since the model does not need to consider filter details. The parameters nsteps
and ¢, are dependent on the data assimilation problem rather than on the model
or the filter algorithm. Thus, they have to be provided by the user. For flexibility
and to achieve a clear structure we implement the initialization of nsteps and t, by

3.3 Implementation 37

Subroutine SEIK_Main(n,N,X)
int n {state dimension, input}
int N {ensemble size, input}
real X(n, N) {state ensemble array, input}
real x(n) {state estimate}
real Uinv(N — 1, N — 1) {inverse of eigenvalue matrix}
int ¢ {ensemble loop counter}
int step {time step counter}
int m {dimension of observation vector}
real ¢, {physical time}

1: call User_Analysis seik(0,n,N,X) {call to user analysis routine}
2: loop

3 call Next_Observation(step, nsteps, t,)

{get number of time steps, user supplied}
4: if nsteps = 0 then
5: exit loop
6: end if
7: for i=1 to N do
8: call Interface_Evolver(n,X(N),nsteps, t,)

{forecast state vector, user supplied}

9: end for
10: step «— step + nsteps
11: call User_Analysis(—step,n,N,X) {call to user supplied analysis routine}
12: call SEIK_Analysis(step,n,N,x,Uinv,X) {perform filter analysis phase}
13: call SEIK_Resample(n,N x,Uinv,X) {perform ensemble resampling}
14: call User_Analysis(step,n,N,X) {call to user supplied analysis routine}

15: end loop

Algorithm 3.1: Structure of the filter main subroutine for the SEIK algorithm. The
arrays x and Uinv are required for the resampling computed in SEIK_Resample. They
are initialized in the analysis routine SEIK_Analysis.

a call to the user supplied subroutine Next.Observation. It has as input the current
time step step. Outputs are nsteps and ,.

Having obtained the values of nsteps and t,, the forecast is performed in a loop
over all ensemble vectors. Each of the vectors is handed over to the subroutine
Interface.Evolver together with the stepping information. This interface routine
initializes the state fields of the model from the state vector and calls the time
stepper routine of the model. Finally the fields are written back into the state
vector and the routine returns. Since Interface_Evolver is model dependent it has
to be supplied by the user. The forecast phase requires that the N model evolutions
are independent. Thus, any reused variables of the model have to be re-initialized.

Subsequent to the forecast phase, the analysis will be computed. In algorithm 3.1
this is performed in the subroutine SEIK Analysis. We discuss the implementation
of the analysis phases of the three filters in the following section. Finally, the
ensemble will be resampled in the SEIK algorithm. The new ensemble is computed

3.3 Implementation 38

in the subroutine SEIK_Resample. The implementation of the resampling phases of
SETIK and SEEK is described in section 3.3.3.

The structure of the main routine of the EnKF algorithm is analogous to that of
the SEIK filter and thus not shown. The only functional difference is that the EnKF
algorithm does not call a resampling routine. Further, the arrays Uinv and x are
not required. For the SEEK algorithm the forecast part is different from the two
other algorithms. In SEEK the state vector x and the mode matrix V are evolved.
The structure of the forecast loop using a gradient approximation for the evolution
of the modes stored in V is shown in algorithm 3.2.

3.3.2 The Analysis Phase

For the discussion of the implementation of the analysis phase we omit the time index
from the equations. The analysis algorithms of the filter algorithms are shown in
pseudo code as algorithms 3.3 to 3.4. Implemented are the analysis equations (2.28)
to (2.30) of SEEK and (2.67) to (2.69) of SEIK. The EnKF analysis algorithm is
implemented using the representer formulation according to equations (2.46) and
(2.47). Further the ensemble representation of matrix HP/HT in equation (2.49) is
used.

The analysis equations contain references to quantities which are dependent on
the observations. The necessary observation-related operations in the source code
for the filter analysis phase are:

e Query the dimension m of the observation vector (subroutine Get.Dim_0bs).
The dimension m is required for dynamic allocation of arrays which are related
to the observation space.

Subroutine SEEK Main(n,rx,Uinv,V)
int r {rank, input}
real x(n) {state estimate, input}
real Uinv(r,7) {inverse of eigenvalue matrix, input}
real V(n,r) {mode matrix, input}
real ¢ {coefficient for gradient approximation}

for i=1 to r do

V(7)< x+€V(,,r) {generate ensemble from modes}
end for
for i=1 to r do

call Interface_Evolver(n,V(:,r),nsteps,t,) {forecast ensemble vector}
end for
call Interface_Evolver(n,x,nsteps,t,) {forecast central state vector}
for i=1 to r do

V{(:,7) « e 1(x —V{(:,r) {generate forecast modes from ensemble}
end for

© %P w

,_.
=

Algorithm 3.2: Structure of forecast part of the filter main subroutine for the SEEK
algorithm

3.3 Implementation 39

e Project a model state vector onto the observation space by applying the mea-
surement operator H (subroutine Measurement.Operator).

o Initialize the observation vector y° (subroutine Measurement for SEEK and
SEIK). For EnKF an ensemble of observation vectors Y° = {(1)y", G y°}
has to be generated according to the observation error covariance matrix R.
This is done in the subroutine FnKF_Obs_Ensemble.

e For SEEK and SEIK: Compute the product of the inverse of the observation
error covariance matrix R with the matrix of modes projected on the obser-
vation space (HV for SEEK and HX for SEIK). This is performed in the
subroutine RinvA. ‘

e For EnKF: Add R to the state covariance matrix projected onto the observa-
tion space (subroutine RplusA).

These operations are implemented using subroutines which are provided by the
user. This ensures modularity and keeps the analysis routines independent from the
particular implementation of the measurement operator H, the initialization of the
observation vector y°, and the implementation of the observation error covariance
matrix R.

This structure also permits, e.g., for the implementation of the product with R™!
or the addition of R in operational form, without explicit allocation of the matrix R
or its inverse. As well the measurement operator can be implemented as an oper-
ation rather than a matrix multiplication. This implementation permits also the
application nonlinear measurement operators which cannot be represented as a ma-
trix. A further documentation of the observation-related subroutines is provided in
appendix B.

In algorithm 3.3, the structure of the SEEK analysis routine with all calls to
observation related subroutines is shown. The analysis routine of SEEK is the
simplest of all three algorithms considered here.

The analysis routine of SEIK, shown as algorithm 3.4, is very similar to that
of SEEK. It contains some additional operations like the initialization of the ma-
trix G in line 9 and the computation of the ensemble mean in line 11. Also the
matrix T, defined by equation (2.62), has to be applied twice. For efficiency, the
matrix L = XT is not explicitly computed according to equation (2.64). Instead, T
is applied in two different ways. First, the matrix HL is computed in lines 4 to 7
of algorithm 3.4. For this, the state ensemble is first projected onto the observation
space yielding HX. Subsequently, matrix T is applied as (HX)T. To complete the
computation of the analysis state, the equation

x* =x/ + XTa (3.2)
has to be evaluated with a given by

a=ULTH"R (y° — Hx/) . (3.3)

3.3 Implementation 40

Here it is more efficient to act with T on the vector a € R¥=1 instead on the
ensemble matrix X € R™. Since the structure of T is known, the product of some
matrix or vector with T' does not need to be computed as a full matrix-matrix prod-
uct. The operation (HX)T involves the computation of the ensemble mean vector
of HX. This is then subtracted from the first 7 columns of HX. The last column
of this matrix is set to zero. Thus, the right-hand-side multiplication with T can be
performed in place. It does only require the temporary allocation of a vector holding
the ensemble mean. Further, only 2mN + m floating point operations are required
for the application of T on HX. The full matrix-matrix product would require mN?
floating point operations. The operation b = Ta involves the computation of the
mean over the elements of a. To obtain b € RY the mean value is subtracted from
each element of a. The last entry in b is initialized by the negative value of the
computed mean. The computation of b requires 2/N floating point operations.

Subroutine SEEK.Analysis(step,n,r,x,Uinv,V)
int step {time step counterinput}
int n {state dimension, input}
int 7 {rank of covariance matrix, input}
real x(n) {state forecast, input/output}
real Uinv(r,r) {inverse eigenvalue matrix, input/output}
real V(n,r) {mode matrix, input/output}
real T1,T2,t3,t4,d,y {local fields to be allocated}
int m {dimension of observation vector}
int ¢ {ensemble loop counter}

call Get_Dim_Obs(step, m) {get observation dimension, user supplied}
Allocate fields: T1(m,r), T2(m,r),t3(r), t4(r),d(m), y(m)

for i=1,r do
call Measurement_Operator(step, n,m, V(:,1), T1(:,4)) {user supplied}
end for
call RinvA(step, m,r, T1,T2) {user supplied}
Uinv « Uinv + T17T2 {with BLAS routine DGEMM}

call Measurement_Operator(step, n, m,x,d) {user supplied}
: call Measurement(step, m,y) {user supplied}
10 de—y—d

© o

11: t3 « T2"d {with BLAS routine DGEMV}

12: solve Uinv t4 = t3 for t4 {using LAPACK routine DGESV}

13: x <« x+ V t4 {update state estimate with BLAS routine DGEMV?}
14: De-allocate local analysis fields

Algorithm 3.3: Structure of the filter analysis routine for the SEEK algorithm with-
out handling of the model error covariance matrix. The subroutines called in the code
are the observation-dependent operations described in section 3.3.2 and documented in
appendix B. The matrices T1, T2 and the vectors t3, t4, and d are temporary arrays.
Other matrices and arrays appear which the same notation in equations (2.28) to (2.30).

3.3 Implementation 41

Subroutine SEIK_Analysis(step,n,N x,Uinv,X)
int step {time step counter input}
int n {state dimension, input}
int N {ensemble size, input}
real x(n) {state estimate, output}
real Uinv(r,r) {inverse eigenvalue matrix, output}
real X(n, N) {ensemble matrix, input/output}
real G,d,y {local fields to be allocated}
real T1,T2,T3,t4,t5,t6 {local fields to be allocated}
int m {dimension of observation vector}
int ¢ {ensemble loop counter}
int r {rank of covariance matrix, r = N — 1}

1. call Get_ Dim_Obs(step,m) {get observation dimension, user supplied}
2: Allocate fields: T1(m, N), T2(m,r), T8(m,r),y(m), t4(r), t5(r), t6(N),

3: G(r,r), Uinv(r,7),d(m)

4: for i=1,N do

5: call Measurement.Operator(step, n, m, X(:,4), T1(:,4)) {user supplied}
6: end for

7. T2« T1 T {implemented with T as operator}

& call RinvA(step,m,r,T2,T3) {user supplied}

90 G« NYTT T)"! {implemented as direct initialization}

10: Uinv « G + T2"T3 {with BLAS routine DGEMM}

11: x e NP2 X(:,4) {get state estimate as ensemble mean state}
12: call Measurement_Operator(step, n,m,x,d) {user supplied}

13: call Measurement(step, m,y) {user supplied}

14: de—y-d

15: t4 < T38"d {with BLAS routine DGEMV}

16: solve Uinv t5 = t4 for t5 {using LAPACK routine DGESV}

17: t6 «— T t5 {implemented with T as operator}

18: x «x+ X t6 {update state estimate with BLAS routine DGEMV}
19: De-allocate local analysis fields

Algorithm 3.4: Structure of the filter analysis routine for the SEIK algorithm. The
subroutines called in the code are the observation-dependent operations described in sec-
tion 3.3.2 and documented in appendix B. The arrays G and T2 are introduced for
clarity. They do not need to be allocated since their contents are stored respectively
in Uinv and T1. The array t5 is stored analogously in t4.

3.3 Implementation 42

Subroutine EnKF_Analysis(step,n,N,X)
int step {time step counter,input}
int n {state dimension, input}
int N {ensemble size, input}
real X(n, N) {ensemble matrix, input/output}
real D, B,x, T1,t2,T3,t4, T5, T6 {local fields to be allocated}
int m {dimension of observation vector}
int ¢ {ensemble loop counter}

W »

e gk

©° ®

11:

12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:
24:
25:

call Get Dim_Obs(step, m) {get observation dimension, user supplied}
Allocate fields: T1(m, N), t2(m), T3(m,m), t4(m), T5(n, N), T6(N,N),
B(m,), D(m, N), x(n)

for i=1,N do

call Measurement_Operator(step, n, m, X(:,4), T1(:,7)) {user supplied}
end for
t2 — N1 Z?;l T1(:,4) {get mean of ensemble projected on obs. space}
for i=1,N do

T1(:,4) « T1(:,7) — t2
end for
T3 — (N —1)~! T1 T1¥ {with BLAS routine DGEMM}

call Enkf Obs_Ensemble(step,m,N,D) {initialize ensemble of observations}
for i=1,N do
call Measurement_Operator(step, n, m, X(:,7),t4) {user supplied}
D(:,i) « D(:,4) — t4 {initialize ensemble of residuals}
end for
call RplusA(step,m,T3) {add matrix R to T3, user supplied}
solve T3 B =D for B {using LAPACK routine DGESV}

x — NS X(:,4) {get state estimate as ensemble mean state}
for i=1,N do

T5(:,7) « X(;,i) —x
end for
T6 — T1” B {with BLAS routine DGEMM}
X X+ (N-1)"tT5T6 {with BLAS routine DGEMM}
De-allocate local analysis fields

Algorithm 3.5: Structure of the filter analysis routine for the EnKF algorithm using
the represented update variant for a non-singular matrix T'3. Shown is the variant which
yields optimal performance if the dimension m of the observation vector is larger than half
the ensemble size N. The subroutines called in the code are the observation-dependent
operations described in section 3.3.2 and documented in appendix B. The arrays B and t4
are only introduced for clarity. They do not need to be allocated since their contents can
be stored respectively in D and t2.

3.3 Implementation 43

The analysis routine of EnKF is shown as algorithm 3.5. Using the representer
formulation it is most efficient to perform the ensemble update in matrix form. That
is, the residuals {d(®} are stored in the columns of a matrix D, then all influence
amplitudes {b(®} are computed at once as the matrix B. Subsequently, all state
vectors in the ensemble matrix X are updated at once. This procedure requires
more computer memory, but it can be more efficiently optimized by compilers than
a serial version executing a loop in which for each single residual vector a vector of
influence amplitudes and finally a single updated ensemble state are computed. The
second application of the measurement operator in line 14 is only shown to stress
the similarity of the algorithms, but it is not required since the loop initializing the
representer matrix in line 14 to 17 can be executed directly after the initialization
of T1 in lines 4 to 6.

Algorithm 3.5 shows the implementation of the analysis for large data sets
when m is not significantly smaller than the ensemble size N. In this case, the
matrix P/HT € R™™, given by equation (2.48), is not explicitly computed. It is
more efficient to compute the update of the ensemble states in equation (2.46) in

the form _
Xe =X + (X - XHe (3.4)

with
C=|(v-1)'EX -BX)| B (3.5)

where X7 € R™V denotes the matrix holding the ensemble mean state x/ in all
columns. This update requires (m + n)/N? operations, without the computation of
the term in brackets in equation (3.5).

The alternative algorithm for small m is shown in algorithm 3.6. Here the ma-
trix P/H” is explicitly computed. Thus, nmN floating point operations are per-
formed for equivalent computations to equations (3.4) and (3.5). If n >» m, this
alternative variant performs less floating point operations than the variant shown
above for 2m < N.

3.3.3 The Resampling Phase

The resampling phases of SEEK and SEIK are independent from model or observa-
tions. The implementation of the resampling algorithms is shown as algorithm 3.7
for the SEEK and 3.8 for the SEIK algorithm.

For SEEK the algorithm to re-orthonormalize the modes of the covariance ma-
trix is implemented by first computing the product VI'V. This is a rather costly
operation requiring nr? operations. The other products to complete the compu-
tation of B are only O(r®). The resampling of the ensemble in SEIK (equa-
tion 2.71) involves again the matrix L. As in the analysis algorithm, we do not
compute this matrix explicitly. Instead, matrix T is applied from the left to the ma-
trix (RC™HT € RW-DU*N_ This operation is analogous to the operation Ta which
was discussed for the analysis algorithm of SEIK. Since the application of T from
the left acts on columns, the operation in the resampling corresponds to the appli-
cation to N vectors. Thus, the application of T to a matrix is the generalization of
the application to a vector.

3.3 Implementation 44

Subroutine EnKF_Analysis(step,n,N,X)

1. call Get_Dim_Obs(step,m) {get observation dimension, user supplied}
: Allocate fields: T1(m, N), t2(m), T3(m,m), t4(m), T5(n, N), T6(n,m),
3: B(m'7 N)7D(m7N)7X(n)

23: T6 « T5 T1? {with BLAS routine DGEMM}
2. X X4+ (N-1"1T6B {with BLAS routine DGEMM}

Algorithm 3.6: Variant of the filter analysis routine for the EnKF algorithm using the
represented update variant for a non-singular matrix T'3. This variant will yield better
performance if there are significantly less observations then ensemble members. If n > m,
this limit is at 2m < V.

Subroutine SEEK _Reortho(n,r,Uinv,V)
int n {state dimension, input}
int 7 {rank of covariance matrix, input}
real Uinv(r,») {inverse eigenvalue matrix, input/output}
real V(n,7) {mode matrix, input/output}
real T1,T2,T3,T4,A,B,C,D,L, U {local fields to be allocated}

1: Allocate fields: T1(r,7), T2(r,7), T3(r,7), T4(r,7),
A(r,7),B(r,7),C(r,7),D(r,r),L(n,r), U(r,r)

e

U « Uinv™" {inversion using LAPACK routine DGESV}

Cholesky decomposition: U = AAT {using LAPACK routine DPOTRF}
T1 « VTV {with BLAS routine DGEMM}

T2 « T1 A {with BLAS routine DGEMM}

B« AT T2 {with BLAS routine DGEMM}

NP 9w

8: SVD: B=C D C” {using LAPACK routine DSYEV}
9. T3« CD?

10 T4« A T3 {with BLAS routine DGEMM}

11: L&V

122V« L T4 {with BLAS routine DGEMM}

13: Uinv « D!

14: De-allocate local analysis flelds

Algorithm 3.7: Structure of the re-orthonormalization routine for the SEEK algorithm.
The matrix D holding the singular values of B is introduced here for clarity. In the
program it is allocated as a vector holding the eigenvalues of B. Matrices A, T1, C, T3,
and T4 are not allocated in the program. Their information is stored in other arrays.

3.3 Implementation 45

Subroutine SEIK.Resample(n,N x,Uinv,X)
int n {state dimension, input}
int N {ensemble size, input}
real x(n) {state analysis vector, input}
real Uinv(r,r) {inverse eigenvalue matrix, input}
real X(n, N) {ensemble matrix, input/output}
real T1,T2,T3,027,C {local fields to be allocated}
int r {rank of covariance matrix, r = N — 1}

1 Allocate local analysis fields: T1(r, N), T2(N, N), T3(n, N), Q% (r, N),C(r, 1)

Cholesky decomposition: Uinv = C CT {using LAPACK routine DPOTRF}
initialize 7 {implemented as a subroutine}
solve CTT1 = Q7 for T1 {using LAPACK routine DTRTRS}
T2 — T T1 {implemented with T as operator}
for i=1,N do
T3(:,1) « X(:,4)
X(y1) & x
end for
X « X+ NY2 T3 T2 {with BLAS routine DGEMM}
11: De-allocate local analysis fields

._.
e

Algorithm 3.8: Structure of the re-orthonormalization routine for the SEEK algorithm.
The matrices C and T1 are introduced here for clarity. In the program they are not
allocated as their information is stored respectively in Uinv and Q7.

Subroutine SEEK_Reortho Block(n,r,Uinv,V)

int mazblksize {Maximum size for blocking}
int blklower, blkupper {Counters for blocking}

1. Allocate fields: ..., Ly(blkmaz,r)

11: for i = 1,n,mazblksize do

12: blkupper — min(blklower + maxblksize — 1,n)
13: Ly(1 : blkupper — blklower +1,:) « V (blklower : blkupper, :)
14: V (blklower : blkupper,:) — Ly(1 : blkupper — blklower + 1,:) T4

15: end for

Algorithm 3.9: Block formulation for the part of the re-orthonormalization routine of
SEEK which initializes the new covariance modes. The block formulation replaces lines 11
and 12 of algorithm 3.7. The lower index b denotes that only a block of size mazblksize xr
of the matrix L is allocated.

3.4 Computational Complexity of the Algorithms 46

3.3.4 Optimizations for Efficiency

The analysis and resampling phases contain several matrix-matrix and matrix-vector
products. The sequences chosen for the computation of the products minimizes the
size of the arrays to be allocated. For efficiency we implement the products using
the highly optimized BLAS library routines. Other operations, like the Cholesky
factorization in the resampling phase of SEIK, the eigenvalue decompositions, or
the inversion of U™! in the analysis phases of SEEK and SEIK are implemented
using LAPACK library routines. The use of library functions is documented in the
annotations in the algorithms 3.3 to 3.8.

All three analysis algorithms and both resampling algorithms allow for a block
formulation of the final matrix-matrix product updating the ensemble or mode ma-
trix. In some situations this can reduce the memory requirements of the algorithms
and may lead to a better performance of the algorithms (if the BLAS routine itself
does not use a blocking internally). In the context of the EnKF a block formula-
tion has been discussed by Evensen [18]. To exemplify the block formulation we
consider the resampling algorithm of SEEK. The variant without blocking is shown
as algorithm 3.7 while the variant with blocking is displayed as algorithm 3.9. For
the block algorithm a loop is constructed running from 1 to n with a step size of
the chosen blocking size mazblksize. Within the loop, matrix L is allocated as a
matrix L, with only mazblksize rows. The loop counter determines which rows
of V are updated in a single cycle. In each loop cycle only the corresponding rows
of L are initialized in L; and used to update the selected rows of V. With the
block formulation the required memory allocation for L can be significantly reduced
from n x r to mazblksize x r, where mazblksize =~ 100,...,500. In addition, the
performance of the algorithm may be higher with the block formulation, since the
smaller matrices may better fit into the caches of the processor. This would reduce
costly transfers between the caches and the main memory of the computer.

3.4 Computational Complexity of the Algorithms

In most realistic filtering applications the major amount of computing time is spent
for the model evolution. This time is proportional to the size of the ensemble to
be evolved. It is equal for all three algorithms if » + 1 = N where r is the rank
of the approximated covariance matrix in SEEK and SEIX and N is the ensemble
size in EnKF. For efficient data assimilation it is thus of highest interest to find
the algorithm which yields the best filtering performance, in terms of estimation
error reduction, with the smallest ensemble size. The forecast phase consists of N
independent model evaluations. This is also true for the SEEX filter if a gradient ap-
proximation of the linearized model is used. Distributing the model evaluations over
multiple processors would permit to compute several model forecasts concurrently.
Thus, the independence of the model forecasts can be utilized by parallelization.
We will examine this possibility in detail in part 2 of this work.

The computation time spent in the analysis and resampling phases can also
be non-negligible, especially if observations are frequently available. The three
filter algorithms can show significant differences in these phases. Below we as-
sume n >3 m > N. This situation occurs if we have a large scale model. Also m can
be significantly larger than N, e.g., if data from satellite altimetry is used. Under

3.4 Computational Complexity of the Algorithms 47

this assumptions operations on arrays involving the dimension n are most expensive
followed by operations on arrays involving the dimension m.

Table 3.1 shows the scaling of the computational complexity for the three filter
algorithms. Since we are only interested in the scaling, we neglect in the table the
difference between r and N. We use N if some operation is proportional to the
ensemble size of the rank of the covariance matrix.

Without the explicit treatment of the model error covariance matrix Q the SEEK
filter is the most efficient algorithm. All operations which depend on the state
dimension n scale linear with n. These operations occur in the update of the state
estimate in line 13 of algorithm 3.3. The matrix of weights for the state update is
computed in the error space. Thus, the complexity of several operations depends
on N. Most costly is the solver step in line 12 which scales with O(N®). The
product R™'HV, which is required in the update of U™! in equation (2.28), is the
only operation which can be proportional to @(m2N). The full cost will only occur
if different measurements are correlated. If the measurements are independent, the
observation error covariance matrix R is diagonal. In this case, the products will
scale with O(mN). Since the product is implemented as a subroutine, it can always
be implemented in the optimal way depending on the structure of R

The re-orthonormalization of the SEEK filter requires extensive operations on
the matrix V which holds the modes of the covariance matrix. The complexity of
the computation of the product VIV (line 5 of algorithm 3.7) and the initialization
of the new orthonormal modes in line 12 scales proportional to O(nN?). Since it
is only occasionally required to compute the re-orthonormalization, this operation
will not affect the overall numerical efficiency of the SEEK filter.

The numerical complexity of the analysis phase of the SEIK filter is very similar
to that of the SEEK algorithm. The computation of the ensemble mean state in
line 11 of algorithm 3.4 will produce some overhead in comparison to the SEEK
algorithm. Its complexity scales with O(nN + n). Other additional operations in
comparison to the SEEK filter are applications of the matrix T. As has been dis-
cussed above, these operations require 2mN + m + 2N foating point operations.
Finally, the initialization of the matrix G is required. This will require N? opera-
tions, since it can be performed directly.

The resampling phase of SEIK is significantly faster than that of SEEK, since no
diagonalization of P is performed. Hence, operations on matrices involving the state
dimension n only occur in the ensemble update in lines 6 to 10 of algorithm 3.8.
The complexity of these operations scale with O(nN? + nN). For rather large
ensembles also the Cholesky decomposition in line 2 and the solver step in line 4 can
be significant. The complexities of both operations scale with O(N?®). The cost of
the initialization of the matrix € can be neglected. For each resampling, the same
matrix §2 can be used in equation (2.71). Thus, Q can be stored.

The computational complexity of the SEEK and SEIK algorithms will increase
strongly if the model error covariance matrix Q is taken into account. This is due
to the amount of floating point operations required for the projection of Q onto
the error space (cf. equation (2.27)). This projection requires n?N + 2nN? + 3N3
operations if Q has full rank. Due to the part scaling with O(n?N), it is unfeasible to
apply this projection. The amount of operations is significantly smaller if Q has a low

3.4 Computational Complexity of the Algorithms 48

Table 3.1: Overview of the scaling of the computational complexity of the filter algo-
rithms. The scaling numbers only show the dependence of the three dimensions but no
constant factors. The first column shows the number of the corresponding equation. The
second column displays the corresponding rows of the algorithm which is named above
each list. The scaling numbers neglect the difference between the ensemble size N and the
rank r. Thus, the complexity is given in terms of NV also for the SEEK filters.

SEEK analysis, algorithm 3.3

equation | lines O(operations) comment
2.28 34 | m*N+mN?+m+N-h update U~*
2.29/2.30 | 810 | m+h initialize residual d
2.29/2.30 | 11-13 | nN +n+ mN + N3 + N? update state estimate x
2.27 n’N 4+ nN? + N3 compute Qy

SEEK re-orthonormalization, algorithm 3.7
2.31 3-7 | nN?+ N3 compute B
2.32 8-13 | nN? +nN + N3 + N2 compute V and U™?

SEIK analysis, algorithm 3.4
2.67 4-10 | m®N +mN?>+mN + N2+ N - h | compute U™}

2.68/2.69 | 11-14 | mN + h initialize residual d
2.68/2.69 | 15-18 | nN + n+mN + N3+ N? + N | update state estimate x
2.27 n*N +nN? 4 N3 compute Qy
SEIK resampling, algorithm 3.8
2.71 -5 | N*+ N+ N compute (C~1§2)7
[2.71 6-10 | nN? +niN update ensemble X
EnKF analysis, algorithm 3.5
2.49 411 | m*N+mN+N-h compute HPTHT
2.47 12 | m?+m?N+mN observation ensemble Y
2.47 13-18 | m®> + m*N + mN representer amplitudes B
3.4/3.5 [19-24 | nN? +nN +mN? update ensemble X

rank of k < n and is stored in square root form Q = AA” with A € R™F*. Tn this
case, the projection requires nN?+nkN +N2k+2N? floating point operations. Thus,
the complexity of the projection is comparable to the complexity of the resampling
phases of SEEK and SEIK if the low-rank formulation for Q is used. However, also
the low-rank formulation of the projection requires a very high amount of floating
point operations. If the model errors are only poorly known it would probably be
to expensive in terms of computation time to use this projection. Alternatively the
forgetting factor could be used. The application of the forgetting factor requires N?
floating point operations. In SEIK it is also possible to apply model errors as a
stochastic forcing during the forecast phase. If this forcing is applied at every time
step to each element of all ensemble states, the complexity of this technique scales
with O(nN - nsteps) for each time step.

3.4 Computational Complexity of the Algorithms 49

The EnKF algorithm appears appealing as it does not require an explicit resam-
pling of the ensemble. The ensemble states are updated during the analysis phase of
the filter. The complexity of the ensemble update in line 24 of algorithm 3.5 scales
with O(nN? + nN). Hence, this operation is equivalent to the ensemble update in
SEIK or the initialization of new modes in SEEK. In fact, the computation of new
modes or ensemble states amounts for all three filters to the calculation of weighted
averages of the prior ensembles or modes. Since the EnKF uses the representer for-
mulation which operates in the observation space, all other operations in the analysis
algorithm are dependent on m. The complexity of the solver step for the representer
amplitudes in line 18 of algorithm 3.5 scales with O(m® 4+ m2?N). Thus, this opera-
tion will be very costly if large observational data sets are assimilated. Costly will
be also the computation of the matrix HP/HZ. The cornplexity of this operation
is proportional to O(m?N). Another costly operation can be the generation of an
ensemble of observations. This operation has to be supplied as a subroutine by
the user of the filter. We use an implementation which applies a transformation of
independent random numbers. It is described in detail in section 4.2. The trans-
formation requires the eigenvalue decomposition of the covariance matrix R which
scales with O(m?). The complexity of the subsequent initialization of the ensemble
vectors is proportional to O{m2N). Hence, the generation of the observation ensem-
ble is of comparable complexity to the solver step for the representer amplitudes.
Overall, the EnKF analysis requires more floating point operations than the SEEK
and SEIK filters. This is caused by the representer formulation used in the EnKF al-
gorithm. Due to this, the EnKF algorithm operates on the observation space rather
than the error subspace which is directly taken into account by the SEEK and SEIK
filters.

To optimize the performance of the EnKF and its ability to handle very large
observational data sets, Houtekamer and Mitchell [36] discussed the use of an it-
erated analysis update. In this case, the observations are subdivided into batches
of independent observations. Each iteration uses one batch of observations to up-
date the ensemble states. Hence, the effective dimension of the observation vector
is reduced. Since the EnKF contains several operations which scale with O(m?®) or
O(m?), this technique diminishes the complexity of the algorithm. In addition, the
memory requirements are reduced. The iterative analysis update can also be applied
with the SEEK and SEIK filters. In contrast to the EnKF algorithm, most opera-
tions in the analysis algorithms of SEEK and SEIK are proportional to O(m). Only
the complexity of the matrix-matrix product implemented in the subroutine RinvA
will scale with O(m?) if R™! is not diagonall. Hence, no particular performance
gain can be expected for SEEK and SEIK when using batches of observations. The
memory requirements are, however, reduced also for these filters.

Recently, Evensen (18] proposed an efficient analysis scheme for the EnKF which
is based on a factorization of the term in parentheses in the Kalman gain equa-
tion (2.42). This relies on an ensemble representation of the observation error co-
variance matrix R and requires that the state and observation ensembles are inde-
pendent. As has been discussed in the remarks on the EnKF, this scheme can lead
to a further degradation of the filter quality. With this newer analysis scheme the
complexity of operations which scale with m® or m? is reduced to be proportional
to m. An exception from this is the generation of the observation ensemble which re-
mains unchanged. Thus, apart from the generation of the observation ensemble, the

3.5 Summary 50

complexity of the newly proposed EnKF analysis scheme will be similar to the com-
plexities of SEEK and SEIK. However, the generation of the observation ensemble
will remain costly.

3.5 Summary

The three error subspace Kalman filter algorithms introduced in chapter 2 have
been compared. The comparison focused on the capabilities of the filter algorithms
for data assimilation with large-scale nonlinear models. It became evident that the
EnKF and SEIK filters are comparable as ensemble methods. They use, however,
different initialization schemes for the ensembles. In addition, the analysis phase
of the EnKF algorithm has a higher computational complexity if the dimension of
the observation vector is larger than the ensemble size. This is due to the fact that
the EnKF algorithm operates on the observation space rather than on the error
subspace spanned by the ensemble states. The EnKF analysis also introduces noise
into the state ensemble caused by the requirement of an ensemble of observation
vectors. For finite ensembles, the observation ensemble will not exactly represent
the observation error covariance matrix. The SEEK filter is initialized similarly
to the SEIK algorithm. Also the analysis phases of both filters are rather similar.
However, the SEEK filter applies a linearized forecast of the covariance modes which
is distinct from the ensemble forecast used in the SEIK algorithm. Due to this, the
error subspace predicted by the SEEK filter can be strongly distinct from that
predicted by the SEIK filter.

It has been discussed, that the initialization of the filter algorithms should be
considered separately from the analysis and resampling phases. In particular, the
SEIK and the EnKF algorithm are independent from the method which is used
to generate the state ensemble. Thus, also the EnKF algorithm can be initialized
with a sampling scheme which yields a better representation of the state covariance
matrix than pure Monte Carlo sampling.

The discussion of the implementation of the ESKF algorithms showed that the
filter algorithms are relatively easy to implement since mostly algebraic operations
are performed. The EnKF has the plainest structure but also the SEIK filter, using
the most advanced mathematical formulation of the filters studied here, can be
implemented with a few hundred lines of source code. For the implementation, the
structure of a serial filtering framework was introduced. The framework is based on
a clear separation of the model, the filter, and the observational part of the data
assimilation problem. Main routines of the filter algorithms were implemented to
control the phases of the filters. The forecast phase is performed by a loop over all
ensemble states or modes. Subsequently the analysis and resampling routines of the
filter algorithms are called. This structure will be extended to a filtering framework
for parallel data assimilation with ESKF algorithms in chapter 8.

Chapter 4

Filtering Performance

4.1 Introduction

The previous chapters showed that the EnKF and SEIK filters both use nonlinear
ensemble forecasting to predict error statistics. Due to the necessity of an ensemble
of observations vectors in its analysis phase, the EnKF is likely to yield less realistic
state and covariance estimates compared with the SEIK filter. This is due to noise
inserted into the ensemble states by the observation ensemble. The SEEK algorithm
re-formulates and approximates the Extended Kalman filter. This first order exten-
sion of the classical (linear) Kalman filter is expected to show limited abilities to
handle nonlinearity.

Experimental studies of data assimilation with different filter algorithms showed
that quite different ensemble sizes are required to obtain comparable results. Heemink
et al. [31] reported that the RRSQRT filter yielded comparable estimation errors to
the EnKF for about half the number of model evaluations in a study using a 2D ad-
vection diffusion equation. A comparison between SEEK and EnKF with an ocean
general circulation model [7] used 8 model state evaluations for the SEEK filter and
an ensemble size of 150 for the EnKF. With these numbers both filters obtained
qualitatively comparable estimation errors. This result is, however, difficult to in-
terpret since both filters where applied to slightly different model configurations and
used different initial conditions for the filters.

In this chapter identical twin experiments are performed to assess the behavior of
the SEEK , EnKF and SEIK algorithms when applied to a nonlinear oceanographic
test model of moderate size. The experiments utilize shallow water equations with
nonlinear evolution and synthetic observations of the sea surface height. Identi-
cal conditions for the algorithms are used. This permits a direct and consistent
comparison of the filtering performances for various ensemble sizes. The experi-
ments are evaluated by studying the filtering performance in terms of the root mean
square (rms) estimation error for a variety of ensemble sizes. In addition, it is studied
how the distinct representations of the covariance matrix and the different analysis
schemes of the filter algorithms yield different filtering performances. This is done
by a statistical examination of the quality of the sampled state covariance matrices,
and hence the error subspaces represented by the filter algorithms.

In section 4.2 the configuration of the data assimilation experiments is described.
Section 4.3 presents and discusses the results of the data assimilation experiments
in terms of the estimation errors. Subsequently, the statistical examination of the

51

4.2 Experimental Configurations 52

quality of the sampled state covariance matrices is presented in section 4.4. Here
additional quantities for the examination are defined and subsequently discussed.

4.2 Experimental Configurations

To assess the filtering abilities of the different filter algorithms identical twin exper-
iments are performed with a toy model using the nonlinear shallow water equations,
see e.g. [62],!

Qi+ (AV)i+ fxd+gVh = 0 (4.1)
Oh+ V- ((Hy+h)i) = 0 (4.2)

where 4(7,t) = (u(7,t),v(F,t)) is the velocity field and h(7, 1) is the field of the sea
surface elevation (7= (z,y) is the 2-dimensional location vector). Ho(7,t) is the sea
depth and g is the gravitational acceleration. Further, f = 2{2sin § E, where) is
the angular velocity of the Earth, 8 is the latitude, and k is the vertical unit vector.

The shallow water equations are discretized in potential enstrophy conserving
form according to Sadourny [71] with the extension to include the Coriolis term.
The model domain is chosen as a box measuring 950 km per side with a flat bottom
at 1000 meters depth. Periodic boundary conditions are applied in zonal and merid-
ional directions. The Coriolis parameter 2{2sin 8 is constant over the domain with
a value of 107 s~!. This corresponds to a beta-plane approximation at a latitude
of 8 = 45°N. The experiments were performed with 30 x 30 grid points and a time
step of 100s using a leap frog scheme.

The state vector x, used in the filter algorithms, consists of the surface eleva-
tion h and the horizontal velocity components u and v at the grid points. The
state dimension amounts to n = 2700. This number is sufficiently large to obtain
meaningful filter results also for the low-rank algorithms, but it is still small enough
to allow for a direct study of the filter-represented covariance matrices.

For the twin experiments the 'true’ state trajectory of the system is generated by
initializing with the state shown in the left panel of figure 4.1. It is in geostrophic
balance and has a shape that ensures nonlinear evolution with the shallow water
equations. Synthetic observations of the surface elevation at each grid point are
generated by adding normally distributed random numbers of variance 10~* m? to
the true surface elevation. Using only the surface elevation as observations, the
dimension of the observation vector is m = 900. The generated observations are
quite accurate in comparison to the amplitude of the true surface elevation. This is
useful, since the dependence of filtering performance on ensemble size can be better
accessed for large ensembles with accurate observations. In the twin experiments it
is assumed that the model is exact, thus no model error is simulated.

Two types of experiments are performed. For the first one, referred to as exper-
iment 'A’, the initialization of the model state estimate x§ and the corresponding
covariance matrix P§ is performed for all three filter algorithms by applying the
EOF procedure described by Pham et al. [68] which uses a sequence of model states.

IWe use the notation % for a spatially continuous vector field. The discretization of a field A,
which is represented as a vector, is denoted by h.

4.2 Experimental Configurations 53

Figure 4.1: Surface elevation and velocity field of the true initial state (left) and mean
state over 8000 time steps using each 10th step (right).

The initial state estimate x§ is chosen as the mean state of the true model simulation
over 8000 time steps using each 10th time step. It is shown in the right panel of
figure 4.1. The covariance matrix P is computed as the variation of the true model
trajectory about this mean. This matrix does not reflect the estimated error of the
initial state but the estimated mean temporal variability of the model state. The
procedure, however, yields a consistent and simple way to obtain variance estimates
together with estimates of the covariances.

This mean and covariance matrix serve as a baseline. However, it soon turned
out that all algorithms can improve this ”state of large ignorance”. A much more
enlightening setting would be to use a model state and covariance matrix that are
already quite accurate and difficult to improve. To this end, the initialization of
the second type of experiments, referred to as experiment 'B’, is conducted with
the estimated state and covariance matrix after the second analysis update from
an assimilation experiment of type A with the EnKF using a very large ensemble
of N = 5000 members. This is a very accurate state estimate whose rms deviation
from the true state is two orders of magnitude smaller than the initial estimate of
type A. The structure of this state is thus very similar that of the true initial state
displayed in the left panel of figure 4.1. In addition, the covariance matrix of type B
is an estimated error covariance matrix of the state estimate. It has a strongly
different structure compared with the covariance matrix of type A. This is obvious
from the eigenvalue spectrum, displayed in figure 4.2. For type A the covariance
matrix is ill-conditioned and the ten largest eigenmodes already explain 99% of the
variance. In contrast to this, 371 eigenmodes are required to explain 90% of the
variance for type B.

Decomposed low-rank approximations 15‘5' = VoUgV{ of the covariance ma-
trix P§ are required to initialize the SEEK and SEIK filters. These are computed
by incomplete eigenvalue decompositions of P retaining only the r largest eigen-
modes. The N ensemble states required for the EnKF algorithm have been gener-
ated from the state estimate x§ and the covariance matrix P¢ by a transformation

4.3 Comparison of Filtering Performances 54

R

4 — lype A
10 ---- typeB

eigenvaiue

0 100 200 300 400 500
sigenvalue index

Figure 4.2: Eigenvalues for the covariance matrices for experiments of type A and B up
to eigenvalue index 500.

of independent random numbers. For this, the eigenvalue decomposition of P§
is computed, yielding Pg = VUV7Z. The eigenvectors are scaled by the square
root of the corresponding eigenvalue as L = VU2 For each ensemble state
{x2® o =1,... N} each scaled eigenvector L®) is multiplied by a random num-
ber bg“) from a normal distribution of zero mean and unit variance and added to the
state estimate xg:

q
Xg(a) — XS RS Zbga) L(l), o = 17 B N (43)

t==1

Since the prescribed covariance matrix has a maximum rank of 799, only ¢ = 799
eigenmodes are used in equation (4.3).

The assimilation experiments are performed over an interval of 8000 time steps
for type A and 7600 time steps for type B with an analysis phase each 200 time steps.
For a particular ensemble size N the rank in SEEK and SEIK is set tor = N — 1.
In this case the number of model evaluations is equal for all three filter algorithms
and the filtering performances can be directly related to computing time. Below the
expression “ensemble size” is used to denote the number of different model states to
be evolved. It will be equal to N for the EnKF and r + 1 for the SEEK and SEIK
algorithms.

4.3 Comparison of Filtering Performances

To evaluate the filtering performance of the three algorithms the estimation error £,
given by the rms deviation of the assimilated state from the true state, is considered
separately for the three state fields h, u, and v. For the EnKF figure 4.3 shows
estimation errors for experiments of type A with the three ensemble sizes r =30,
100, and 500. In addition, £, for an experiment conducting an evolution of the

4.3 Comparison of Filtering Performances 55

T T T T T — 7
— N=30 - — - N=100 - — N=500 no assimitation

Figure 4.3: Estimation errors Ey for experiments of type A. Shown is the time develop-
ment of Ey of the assimilated state for the EnKF for three ensemble sizes (N=30, 100,
500) and for a model simulation without assimilation.

Initial state estimate without assimilation is displayed. This free evolution shows
only small variations in F; over assimilation time.

The temporal development of F; in the experiments with assimilation is charac-
terized by a large reduction at the first analysis phase. This is due to an initially
large error in the state estimate in connection with quite accurate observations.
Subsequent analyses have significantly smaller influence. The EnKF algorithm per-
forms better with increasing ensemble size where E) is strongly diminished. For
small ensembles, like N = 30, F) increases with assimilation time, showing that the
filter is unstable. As is visible in figure 4.3 the state estimate of the assimilation
after 8000 time steps with 40 analysis cycles is even worse than without assimilation.
For larger ensembles the assimilated state remains close to the true state.

4.3 Comparison of Filtering Performances 56

Since only observations of the height field h are assimilated, the velocities are
merely updated via cross covariances between the height field and the velocities.
The representation of these covariances is generally worse than that of the height
field variances and covariances as will be discussed in the following section. Due
to this, the estimation errors F; normalized by the estimation errors of the free
evolution are larger for the velocity components u, v than for the height field.

For the SEEK and SEIK filters, the general behavior of the estimation error in
dependence on assimilation time and ensemble size is analogous to that of the EnKF.
In order to compare the performance of all three filter algorithms in a compact way
we define the normalized time integrated state estimation error by

L B,))
Ey = —_— 4.4
3 f;ﬁv <k§1n E{’le&(‘f; tk) ()
where EF*¢(f,t;) denotes the value of F; at time t;, for the state fleld f € {h, u,v}
from an assimilation experiment. E{"*(f,#) denotes the corresponding value for
the free evolution. The summation over the analysis times excludes the initial state
estimate since it would dominate the value of Fy due to the large error decrease at
the first analysis phase. Dependent on the type of experiment the summation starts
at kpnn = 1 for type A and k,,;, = 3 for type B. Es provides a rms measure of
the decrease in estimation error due to data assimilation which respects a possible
different scaling of the state fields.

Figure 4.4 shows Ey for the three filter algorithms in dependence on ensemble
size N for experiments of type A. For the EnKF and the SEIK algorithms mean
results and standard deviations over 20 experiments with different random numbers
used in the initialization phase are shown. There are significant variations of the
filtering performance depending on the used set of random numbers since the com-
puter generated random numbers in fact do not represent the prescribed statistics
exactly and do determine in which directions of the state space the ensemble vectors
point. For small N the latter will likely lead to different qualities of the forecast
ensemble. The SEEK algorithm is deterministic in its initialization, hence only the
result of a single simulation per ensemble size is shown. As the observations are also
generated using computer generated random numbers, they will also determine the
filtering performance. This is of no concern here, since the observation error is quite
small in the experiments and all three algorithms use the same observations.

Overall Ey converges in the same manner for the EnKF and SEIK filters. A
different convergence for SEIK which should be expected because of the second or-
der exact sampling is not visible. This is caused by the eigenvalue spectrum of the
covariance matrix P§ which shows that the number of significant eigenvalues is ex-
tremely small. For EnKF and SEIK, the convergence in the interval 100 < N < 500
can be approximated by F, o« N™% with z &~ 1.2 for the EnKF and z =~ 1.0 for the
SEIK algorithm. Depending on the ensemble size, the mean values of E, for the
EnKF are between 1.5 and 1.85 times larger than those for the SEIK filter. This
also shows that, to achieve the same filtering performance, the ensemble for the
EnKF needs to be between about 1.5 and 1.8 times larger than for the SEIK. These
numbers are of course specific for the configuration of these experiments. However,
variations of the assimilation interval and strong increase of the rms errors in the

4.3 Comparison of Filtering Performances 57

10 :
EnKF
ug
102 : : : }
0 100 200 N 300 400 500

Figure 4.4: Normalized time integrated estimation errors Ey for the three filter algo-
rithms in dependence on the ensemble size N (N = r + 1 for SEEK and SEIK) for
experiments of type A. For EnKF and SEIK mean values and standard deviations over 20
experiments for each ensemble size are show. FEach experiment used different random
numbers for the ensemble initialization.

‘EnKF

---- SEEK
-+- SEIK
107
o
w
107 : : :
0 100 200 " 300 400 500

Figure 4.5: Normalized time integrated estimation errors Fs analogous to figure 4.4 for
experiments of type B. For EnKF mean values and standard deviations over 20 experiments
are shown analogous to figure 4.4. The lines of SEEK and SEIK lie on top of each other.

4.3 Comparison of Filtering Performances 58

observations by a factor of 100 preserved the relative performances of the three al-
gorithms. The behavior for the SEEK deviates significantly from that of the EnKF
and SEIK. For N < 70 the SEEK filter shows the best filtering performance of the
three algorithms. But, with further increasing ensemble size, F., stagnates at a
rather large value. The reason for this behavior is further examined in section 4.4.

For experiments of type B with the EnKF, the estimation error #; over time
is displayed in figure 4.6. Here the initial state approximates the true state quite
well but without assimilation the rms deviation increases by about two orders of
magnitude until the final time step. Thus, the conditions for this experiment are
quite different. from those of type A in which the initial state estimate was strongly
deviating from the true state and the free evolution remained over simulation time at
an almost constant rms deviation from the true state. In the experiments of type B
the assimilation of height field observations keeps the estimates of all state fields
much closer to the true state compared with the simulation without assimilation.
As for type A, the estimation error of the velocity components is higher that for the
sea level.

The error measure E, is displayed in figure 4.5 in dependence on ensemble size
for the experiments of type B. Here mean results and standard deviations over 20
experiments with different random numbers in the initialization are only shown for
the EnKF. The dependence of the SEIK filter on the random numbers used in the
initialization is negligible for this type of experiment (data not shown). The perfor-
mance of SEEK and SEIK is almost indistinguishable, with a relative difference of
the values of B, below 6+ 1073, The values of Fy are smaller for type B than for
type A which is due to the normalization by E{"* when computing Fy. Since B/
increases strongly over time the normalization returns smaller values than in ex-
periments of type A in which F/™® remained almost constant. As for type A the
value of F, converges similarly for the EnKF and SEIK filters. But for small ensem-
bles (N < 75) SEIK converges faster than EnKF. Again the dependence of E; on N
can be approximated in the interval 100 < N < 500 to be Ey o< N™% with z =~ 0.42
for the EnKF and z ~ 0.44 for the SEIK algorithm. Thus, the convergence with
ensemble size is much smaller for type B than for type A. To obtain the same filter
performance, the ensemble in the EnKF would need to be between about 1.6 and 2.2
times larger than for SEIK. This result corresponds to that reported by Heemink
et al. [31]. There the RRSQRT filter, which is similar to the SEEK algorithm as
was discussed in section 2.4.1, yielded comparable estimation errors to the EnKF
for about half the number of model evaluations.

According to the discussion on the initialization of EnKF and SEIK in section 3.2,
it is possible to interchange the methods of Monte Carlo sampling and second order
exact sampling between these two filters. Figure 4.7 shows a comparison of SEIK
and EnKF with interchanged initializations for experiments of type B with N = 50.
The experiments of both types yield a 5 to 10% better filtering performance for the
EnKF algorithm when the filter is initialized by second order exact sampling instead
of pure Monte Carlo sampling. The performance of the SEIK filter degrades by about
the same amount if the Monte Carlo initialization is applied. After interchanging
the initialization the SEIK filter still performs better than EnKF. This is caused by
the introduction of noise into the ensemble by the observation ensemble required in
the analysis scheme of the EnKF algorithm as will be discussed below.

4.3 Comparison of Filtering Performances 59

T T T T T T

— N=30 - — - N=100 - = N=500 no assimilation

Figure 4.6: Estimation errors F; for experiments of type B. Shown is the time develop-
ment of E; of the assimilated state for the EnKF for three ensemble sizes (N=30, 100,
500) and for a model simulation without assimilation.

4.4 Statistical Examination of Filtering Performance 60

4.4 Statistical Examination of Filtering Perfor-
mance

To gain insight into the reasons for the different filtering performances of the three al-
gorithms, an examination of the sampling quality of the represented state covariance
matrices is performed in the sequel. At first, some additional analysis quantities are
defined. Based on these quantities it is then discussed how the different variants of
forecasting and different choices of ensembles can lead to estimates of the covariance
matrix, and hence the error subspace, of strongly different quality.

4.4.1 Definition of Analysis Quantities

To define analysis quantities measuring the sampling quality, let us reconsider the
filter algorithms. The SEEK filter evolves the state estimate with the nonlinear
dynamic model and the eigenmodes of the low-rank approximated state covariance
matrix with the linearized dynamic model or a gradient approximation of it. The
EnKF and SEIK filters both evolve an ensemble of model states with the non-
linear dynamic model. The capability of the forecast phase to provide a realistic

10 T T T T T T T
— EnKF; Monte Carlo
- - EnKF; 2nd order exact
— 10° b — SEIK; Monte Carlo . |
£ - - SEIK; 2nd order exact

1 O i 1 1 i 1
0 1 2 3 4 5 6 7

time [s] < 10°

fo's g ——

Figure 4.7: Comparison of the estimation errors Fy for SEIK and EnKF for experi-
ments of type B with their typical initialization and with interchanged initializations for
an ensemble size of N = 50. The dotted line shows E; for a model evolution without
assimilation. The behavior of E; for the zonal velocity component v is similar to that of u
and hence not shown.

4.4 Statistical Examination of Filtering Performance 61

representation of the error subspace is reflected by the sampling quality of the state
covariance matrix P.
To discuss the analysis phase we consider the covariance matrix to consist of

sub-matrices as:
thh Phu th

P = Puh Puu Pmr (45)
th P’Uu Pvu

Here the sub-matrices {P;; = Pﬁ} are n/3 x n/3 matrices with Py, Py, and Py,
containing respectively the covariances of the height field and the two velocity com-
ponents. The off-diagonal sub-matrices {P;;, ¢ # j} contain the cross covariances
between different state flelds. The measurement operator projects a state vector
onto its height field part, thus

H= (Imxm OmXQm) (46)

where I is the identity matrix and 0 the matrix containing only zeros. In the
experiments, all observations were assumed to be uncorrelated with variances of
constant value vary,. Thus the observation error covariance matrix is:

R = V&l’thmxm . (47)

With this specifications, the analysis equation for the state in SEEK and SEIK
(respectively equation (2.29) or (2.68)) simplifies to

P
x* =x! 4var;) | P2, |d (4.8)
%h
with observation-state residual, sometimes also called innovation, d = y° — h'
where h' is the estimated forecast height field. For the EnKF the analysis equa-
tion (2.41) for the ensemble states is also valid for the ensemble mean, see [17]. In
the case considered here it simplifies to

f
. P?h

a _
xt=x/+{ P/,

Pf

vh

-1 —
[P/{Zh -+ Va'rhh:[mxm d=:xf + Ad . (49)

According to equations (4.8} and (4.9) only the covariances Ppy, in the height field
and the cross covariances P.; and P,; between height field and the velocity com-
ponents are considered in the analysis update of the state estimate. The other
sub-matrices are as well updated during the analysis update of the covariance ma-
trix and all parts of P determine the quality of the forecast.

To compare the three filter algorithms despite their different analysis equations
we define update matrices B. For the SEEK and SEIK filters we define the ele-
ments {Bu,g,l <a<n 1< g <m}by

Blog = var, Pl dg) - (4.10)
For the EnKF the definition is analogously

Blog) = Awnde) - (4.11)

4.4 Statistical Examination of Filtering Performance 62

Table 4.1: Examination of the sampling quality at first analysis phase for experiments
of type A with N = 30. Shown are relative estimation errors E3 and the correlation pp
and regression fg coefficients between the ideal and sampled update sub-matrices for the
height field h and the zonal velocity u. In addition, the correlation p,q, and regression S,
coeflicients of the variance part for the height field are shown.

field EB B /BB Puar ﬂva’r
EnKF 0.168 || 0.305 | 0.091 || 0.961 | 0.071
SEEK | h |0.089 || 0.325 | 0.107 } 0.959 | 0.086
SEIK 0.135 || 0.320 | 0.107 || 0.959 | 0.084
EnKF 0.309 || 0.126 | 0.015
SEEK | u |0.179 || 0.188 | 0.035
SEIK 0.273 | 0.130 | 0.017

The update matrices B correspond to the matrix-vector products in equations (4.8)
and (4.9) without performing the summation. For the SEEK and SEIK filters this
amounts to a scaling of the covariances by the elements of the residual vector. Thus,
the update matrices take into account not only the different sampling qualities of
the state covariance matrix but also different residuals d. Accordingly, an estimate
of the analysis quality for the single state fields will be provided by the sampling
quality of the sub-matrices By, Bun, and Byy,.

To quantify the sampling quality we compare the computed update matrices with
an update matrix obtained from an EnKF assimilation experiment with ensemble
size N = 5000, referred to as the “ideal” update matrix B For the comparison
we compute correlation coefficients pg between the sampled and ideal update sub-
matrices and regression coefficients Og from the ideal to the sampled update sub-
matrices. We focus on the very first analysis phase in which for experiments of
type A the largest reduction of the estimation errors occurs.

4.4.2 The Influence of Ensemble Size in Type A

In table 4.1 experiments of type A are examined for assimilation with an ensemble
size N = 30. Displayed are the correlation and regression coefficients pg, Og for
the height field h and the zonal velocity component u. The coeflicients for the
meridional velocity component v are similar to those for u and thus not shown. In
addition the relative estimation error

Bre(f,t)
E["(f,t)

after the first analysis is shown for the fields f € (h,u). For comparison, the
values of E5 for the ideal experiment are much smaller with E3(h) = 0.005 and
Es(u) = 0.04. Thus, the filtering performance will increase strongly with growing
ensemble size and the improvement will be larger for the height field than for the
velocity components.

The order of the values of Ej5 for the three filters is the same as that of the time
integrated Fy values for N = 30 displayed in figure 4.4. The SEEK has the smallest
value of Ej, followed by SEIK and then EnKF. The ratio of the time integrated Ej

Ey(f) = (4'12)

4.4 Statistical Examination of Filtering Performance 63

Table 4.2: Examination of the sampling quality at the first analysis for experiments of
type A with N = 200. Shown are the same quantities as in table 4.1.

field E3 B /BB Puar ,Hvar
EnKF 0.015 || 0.756 | 0.570 || 0.996 | 0.477
SEEK | h]0.035 || 0.554 | 0.277 || 0.988 | 0.227
SEIK 0.012 | 0.756 | 0.598 || 0.995 | 0.503
EnKF 0.103 || 0.502 | 0.315
SEEK | u |0.191] 0324 (0.121
SEIK 0.081 || 0.496 | 0.332

for the EnKF to that of the SEIK is 1.59. It is larger than the corresponding ratio
of F3 values after the first analysis update which is 1.24. This is caused by the
use of an observation ensemble in the analysis of the EnKF which destabilizes the
assimilation process. This will be examined in more detail below.

The correlation and regression coefficients pg, g reflect the different filtering
performances of the first analysis update. Overall it is visible that there is a sig-
nificant correlation between the sampled and the ideal sub-matrices. The small
regression coefficients show in addition that the amplitudes are strongly underes-
timated. Using in the experiments observations with larger errors decreases the
amount of underestimation (data not shown). The underestimation is even more
pronounced when one considers only the correlation and regression coefficients for
the variance part, i.e. the diagonal, of the height field update sub-matrix. These
coeficients are also shown in table 4.1, denoted as pyr and Fuer. For N = 30 the
correlation coefficients p,,, are already very near to unity. The regression coeffi-
cients Sy show, however, a very strong underestimation of the variance. In the
experiments, the structure of the update sub-matrix By corresponding to a single
grid point, as well as the covariance sub-matrix P,;, consists of noise of rather low
amplitude and a significantly larger peak with a radius of about two grid points
around the location of the specified grid point. Thus the variance will dominate the
analysis while most of the noise will average out when computing the product Ppd.
For the EnKF the smaller values of pg and 8 for h point to the fact that here the
analysis is less accurate than for SEEK and SEIK. This is confirmed by the value
of E3 which is larger for the EnKF than for the two other filters. For the difference
between SEEK and SEIK this is less obvious.

For the velocity components the sampling quality of B is generally worse than for
the height field. This is due to the fact that only h is observed and u, v are updated
via the covariance sub-matrices P, and P,,. These have a structure with multiple
extrema and are more difficult to sample than the variance-dominated Py, (data
not shown). For all three filters the values of pg and fg are nearest to unity in the
case of the SEEK algorithm. This is consistent with the filter’s small value of Ej.
In experiments of type A the SEEK filter is able to sample the sub-matrices P,
and P, for small ensembles significantly better than the SEIK and EnKF filters.

For N = 200 the sampling quality of the update matrices is examined in ta-
ble 4.2. Compared with N = 30 the estimation errors F; after the first analysis
are much smaller. This decrease is minor for the velocity components than for

4.4 Statistical Examination of Filtering Performance 64

the height field due to the worse sampling of cross correlations between h and the
velocity components u, v. The increased regression coeflicients g show that the
underestimation of the correlations has diminished. In addition, according to the
increased correlation coefficients pg and py.r, covariances as well as variances are
sampled much more realistic. The similarity of the coeflicients for SEIK and EnKF
has increased compared with N = 30, but the SEIK still shows the better sampling
quality.

The estimation error measures E, and F3 for /V = 200 are larger for the SEEK
filter than for the SEIK and EnKF filters. This is consistent with the values of pp
and fg which are smaller for the SEEK than for the two other filters. This inferior
sampling quality of SEEK is caused by the direct forecast of the eigenmodes of the
state covariance matrix P. The modes with larger index represent gravity waves.
These are impossible to control by the data assimilation in our experimental setup.
Hence, these modes do not provide any useful information to the error subspace
and the filtering performance stagnates. For the estimated velocity components
the experiments show that this can even lead to a small decrease in the filtering
performance for increasing N.

4.4.3 Sampling Differences between EnKF and SEIK

The different sampling quality of the EnKF and SEIK filters is due to the distinct
variants to generate the ensembles in both algorithms. Interchanging the initial-
ization methods between the algorithms results, at the first analysis phase, in an
exchange of the values of Fs, pg, and Sg. Using the same ensemble and neglecting
model errors, both filters are equivalent during the first analysis phase with respect
to the update of the state estimate since the predicted error subspaces are iden-
tical. Such an equivalence does not exist for the update of P due to the implicit
update of this matrix in the EnKF algorithm. While the update of P for the Ex-
tended Kalman filter is described by equation (2.16) the update of P for the EnKF
algorithm is given implicitly by

P = (I- KH)P/(I - K'H") + KRK” + O(< §x/(6y°)" >) . (4.13)

Here R is the observation error covariance matrix as sampled by the ensemble of
observation vectors. P/, P® are the covariance matrices of the forecast and analysis
state ensembles. The last term O(< §xf(6y°)” >) denotes the spurious covariances
between the state and observation ensembles. In SEEK and SEIK this last term
is zero and R is replaced by the prescribed matrix R and P denotes the rank-r
approximated state covariance matrix. For SEEK and SEIK equation (4.13) reduces
to the correct KF update equation for a covariance matrix P. For the EnKF the
sampled matrix R and the correlations between the state and observation ensembles
insert noise into the analysis ensemble which represents the state covariance matrix.
Whitaker and Hamill [94] discussed this effect in a simple one-dimensional system.
In order to quantify the introduction of noise the two definitions (4.10) and (4.11)
of B can be examined. Without sampling errors, both definitions are equally valid.
Thus for the SEEK and SEIK filters the update matrices computed from either
equation are identical. For the EnKF the resulting update matrices are different.
In table 4.3 the coefficients pg and fg for update matrices computed with equa-
tions (4.10) or (4.11) are compared for the EnKF algorithm with N = 30 for

4.4 Statistical Examination of Filtering Performance 65

Table 4.3: Comparison of the sampling quality of the update sub-matrices for the EnKF
with N = 30 for experiments of type A. Shown are correlation pp and regression g
coeflicients for sampled update sub-matrices computed from the forecast covariance matrix
(Bf, equation (4.11)) and from the analysis covariance matrix (B?, equation (4.10)). In
addition, the correlation and regression coefficients (puar; Buer) for the variance part of
the height field update sub-matrix are shown.

B computed by field || pp Bn pvar | Boar
Bl. 5 = Awnd) h 0.305 | 0.091 || 0.961 | 0.071
B{, 5 = var,,P¢ ,dg | h | 0.207 | 0.093 || 0.937 | 0.072
B{a,ﬁ) = Awsdeg u 0.126 | 0.015
Bl s = va‘r}:hlpt(la,ﬁ)d(,ﬁ) u 0.082 | 0.014

experiments of type A. The values of pg computed from the forecast covariances
according to equation (4.11) are about 1.5 times larger compared with those com-
puted with equation (4.10) from the analysis covariances. Despite this, the regression
coefficients fg remain almost unchanged. Also the coefficients pyq, and Gy.. show an
analogous but much smaller ratio. The introduction of noise to the ensemble states
at each analysis phase leads to more unstable forecasts in the EnKF in comparison
to the SEIK. Over the course of the assimilation process the estimation error E
deviates increasingly for the two filters. This leads to the values of Es shown in
figure 4.4 in which the difference in filtering performance between EnKF and SEIK
is larger than just for the first analysis.

4.4.4 Experiments with the Idealized Setup (Type B)

The sampling quality of the update matrices for experiments of type B for ensembles
of size N = 30 and N = 200 are respectively shown in tables 4.4 and 4.5. For
the SEEK and SEIK filters the values of F3, pp, and (g for are identical for h
and almost identical for u and v for both ensemble sizes. Thus, the SEEK filter
shows no problem caused by the mode forecasts in this type of experiment. This
can be related to the different structure of the covariance matrix which leads to
mode forecasts which provide realistic directions of the error subspace even for high
eigenvalue indices. For h the EnKF shows a slightly larger estimation error Es than
SEIK. This corresponds to the smaller values of pg which show that the update
matrices are less realistic sampled for the EnKF compared with the SEIK. The
EnKF, however, underestimates the amplitude of the covariances to a lesser degree
than SEIK does. The variance part of the update matrices is represented better
by the EnKF than by SEIK as is visible from both the values of pu. and B
The smaller regression coefficients in the case of the SEIK filter result from the
low-rank approximation of the matrix P which systematically underestimates the
overall variance. Due to the structure of P in experiments of type B, as discussed
in section 4.2, the disregarded variance is non-negligible here even for N = 200.
The velocity components are much worse filtered here than in the experiments of
type A. For N = 30 the values of F3 even increase showing that the sampled covari-
ances are not realistic. For NV = 200 a small decrease of the estimation error is visible
which is stronger for the SEIK compared with the EnKF. Since the ideal values of Fy

4.5 Summary 66

Table 4.4: Examination of the first analysis for experiments of type B with N = 30.
Shown are the same quantities as in table 4.1.

fleld ES B ,BB Puar ﬁva'r
EnKF 0.446 { 0.408 | 0.206 || 0.973 | 0.150
SEEK | h |0.431} 0.425|0.171 | 0.944 | 0.119
SEIK 0.431 || 0.425 | 0.171 | 0.944 | 0.119
EnKF 1.045 {| 0.175 | 0.090
SEEK | u | 1.135) 0.366 | 0.213
SEIK 1.137 || 0.367 | 0.213

Table 4.5: Examination of the first analysis for experiments of type B with N = 200.
Shown are the same quantities as in table 4.1.

fleld ES B ,BB Puar ﬁvar
EnKF 0.273 § 0.802 | 0.703 || 0.996 | 0.630
SEEK | h |0.269 | 0.847 | 0.651 | 0.991 | 0.533
SEIK 0.269 || 0.847 | 0.650 || 0.991 | 0.532
EnKF 0.981 | 0.519 | 0.559
SEEK | u [0.872 | 0.766 | 0.729
SEIK 0.875 || 0.766 | 0.728

are 0.2 for h and 0.75 for u there will be no strong decrease in E; any more for larger
ensembles. Over the whole assimilation period the performance of all three filters
is however better than at the first analysis phase. While the non-assimilated state
diverges from the true state, the data assimilation keeps the estimation error almost
constant. This leads to the small values of the time integrated estimation error E,
displayed in figure 4.5.

4.5 Summary

The behavior of the SEEK, EnKF, and SEIK filters has been assessed utilizing iden-
tical twin experiments. The experiments applied a shallow water equation model
with nonlinear evolution and assimilated synthetic observations of the sea surface el-
evation. Two types of experiments have been performed with distinct initializations
of the state estimate and state covariance matrix. For identical initial conditions,
the filter algorithms showed quite different abilities to reduce the estimation error.
In addition, the filtering performances depended differently on the ensemble size.
Under some circumstances, the SEEK filter shows a distinct behavior from the
two other algorithms caused by the direct evolution of modes of the state covariance
matrix. This depends on the structure of this matrix. For the experiments of type
A, in which the covariance matrix is dominated by a small number of large-scale
modes, the performance of SEEK is different from that of EnKF and SEIK. For
experiments of type B, in which the covariance matrix is variance dominated, SEEK
and SEIK perform almost identical. The superior performance of SEEK for smallest
ensemble sizes in experiments of type A appears to be by chance but shows that a

4.5 Summary 67

mode-oriented filter algorithm can under some circumstances yield a superior filter
performance than the ensemble based filters. SEEK is well suited to filter rather
coarse structures in which nonlinearity is not pronounced.

The EnKF and SEIK algorithms show similar convergence with increasing en-
semble size. The SEIK filter exhibits superior performance compared with the EnKF
algorithm due to the initialization by minimum second order exact sampling of the
low-rank approximated state covariance matrix. This sampling leads to a superior
ensemble representation of this matrix, in particular, for small ensembles. In addi-
tion, the SEIK filter does not suffer from noise introduced into the state ensemble
by an observation ensemble as required by the EnKF.

Statistical analyses of the quality of the sampled state covariance matrices showed
how these matrices differ for the examined algorithms. The structure of the variances
is in all filters quite well represented, but their amplitudes are underestimated.
Dependent on the structure of the covariance matrix, the low-rank initialization
used in SEEK and SEIK tends to underestimate the variances even more than the
Monte-Carlo injtialization used in EnKF. The sampling of the full covariance sub-
matrices for the single state fields is inferior for all three filters in comparison to the
variances. The representation of the covariances for the height field is significantly
better than that of the cross correlations between the height field and the velocity
components. This is due to the variance dominated structure of the height field
covariances. The sampling quality of the covariances and cross correlations can be
improved, at least for the SEIK and EnKF, by increasing the ensemble size.

Chapter 5

Summary

This part of this two-part work compared three filter algorithms based on the
Kalman filter, namely the Ensemble Kalman Filter (EnKF), the Singular Evo-
lutive Extended Kalman (SEEK) filter and the Singular Evolutive Interpolated
Kalman (SEIK) filter. In the mathematical comparison, the unified interpretation
of the filter algorithms as Error Subspace Kalman Filters (ESKF) was introduced.
This interpretation is motivated by the fact that the three algorithms apply a low-
rank approximation of the state covariance matrix used in the Extended Kalman fil-
ter (EKF). Hence, they approximate the error space of the EKF by a low-dimensional
error subspace. In addition, the three filter algorithms apply the analysis equations
of the EKF adapted to the respective algorithm. Thus, the analysis assumes Gaus-
sian statistics of both the state estimate and the observations.

The SEEK and SEIK filters are typically initialized from a state estimate and
a state covariance matrix which can be provided in some decomposed form, e.g.
as a sequence of model states. The state covariance matrix is approximated by a
matrix of low rank. This low-rank matrix is then exactly represented either by the
eigenmodes of the matrix in the case of SEEK or by a random ensemble of minimal
size in SEIK. The EnKF algorithm can also be initialized from a state estimate and
a corresponding covariance matrix. This information is typically used to generate a
random ensemble by Monte Carlo sampling. The statistics of the generated ensemble
approximate the state estimate and the state covariance matrix.

In the forecast phase, the EnKF and SEIK filters are equivalent. Both perform a
nonlinear ensemble forecast. In contrast to this, the SEEK filter forecasts explicitly
the modes of the covariance matrix by the linearized model or a gradient approx-
imation of it. The state estimate is explicitly evolved using the nonlinear model.
It has been shown that the ensemble forecast performed in the EnKF and SEIK
algorithms is better suited for nonlinear models than the forecast scheme used in
the SEEK filter.

It has been shown that the analysis increment of all three filter algorithms is
given by a weighted average of vectors which belong to the error subspace. The
analysis phase of the EnKF algorithm is less efficient than that of the SEEK and
SEIK filters if the amount of observations is larger than the ensemble size. This is
due to the fact, that the EnKF algorithm uses the representer analysis variant which
operates on the observation space. In contrast to the EnKF algorithm, the SEEK
and SEIK filters operate on the error subspace. Another apparent problem of the
EnKF algorithm is that the analysis phase introduces noise to the state ensemble

68

69

caused by a numerically generated ensemble of observation vectors which is required
by the analysis scheme.

While the EnKF algorithm computes its new ensemble during the analysis phase,
the SEEK and SEIK filters contain a resampling phase. Its has been shown that
this will not render the latter two algorithms to be less efficient with respect to the
required computation time than the EnKF.

Overall, the mathematical comparison showed that the SEEK filter is a re-formu-
lation of the EKT for a low-rank state covariance matrix stored in decomposed form.
It has the numerically most efficient analysis scheme of the three filter algorithms but
shows only limited abilities to handle nonlinearity. The EnKF algorithm is a Monte
Carlo method which is not designed to profit from the fact that the probability
density of the model state will be at least approximately Gaussian. Thus, it is not
explicitly considered that the density can be represented by a linear error space which
can be approximated by its major directions. SEIK filter takes this into account
and approximates the covariance matrix, which characterizes the error space, by a
low-rank matrix. Hence, the SEIK filter has the same ability to treat nonlinearity
as the EnKF algorithm but a more efficient analysis scheme. The EnKF algorithm
can be expected to exhibit an enhanced filtering performance when it is initialized
from a low-rank covariance matrix analogous to the SEIK filter. The problem of
noise introduction by the observation ensemble will, however, remain.

The theoretical findings have been confirmed by numerical experiments using a
shallow water equation model with nonlinear evolution. In identical twin exper-
iments, synthetic observations of the sea surface elevation have been assimilated.
The experiments have been interpreted in terms of the estimation errors and by a
statistical analysis of the sampling quality of the state covariance matrices. The ex-
periments showed that the SEIK algorithm is an ensemble algorithm comparable to
the EnKF with the benefit of a very efficient scheme for analysis and resampling. In
addition, the SEIK filter does not suffer from noise introduced into the state ensem-
ble by an observation ensemble as required by the EnKF. As the EnKF and SEIK
filters, the SEEK algorithm is able to provide good state estimates. The SEEK filter
is, however, sensitive to the mode vectors it needs to evolve. Due to this, the SEEK
filter can exhibit a distinct filtering behavior from the EnKF and SEIK filters. In
the experiments this depended on the structure of the state covariance matrix. In
general, it will also depend on the physical system which is simulated. The SEEK
filter will be, however, well suited to filter rather coarse structures in which nonlin-
earity is not pronounced. The experiments also showed that initialization methods
using higher order sampling schemes like the second order exact sampling are ap-
pealing due to the better representation of the state covariance matrix, in particular
for small ensembles.

The experiments performed here are of course highly idealized. For example, an
inclusion of model error would be desirable. But, for the EnKF and SEIK filters,
it can be expected that this will not lead to significant changes in the relative
filter performance, since both algorithms can treat the model error in the same
way. Results obtained with more realistic experiments will be discussed in chapter 9
where the filter algorithms are applied to the three-dimensional finite element ocean

model FEOM.

70

Part 11

Parallel Filter Algorithms

71

Chapter 6

Overview and Motivation

The development of error subspace filter algorithms rendered large-scale data assi-
milation with Kalman-type filters possible. However, filters like the EnKF, SEEK,
and SEIK algorithms still exhibit a high computational complexity. The evolution
of the approximated covariance matrix still requires a vast amount of computation
time, in particular for large-scale models. Also the memory requirements are large
since, besides the fields required for the numerical model itself, the ensemble or
mode matrix has to be allocated. In addition, several matrices need to be allocated
temporarily for the analysis and resampling phases of the filter algorithms.

The computational and memory requirements can be alleviated by the use of
parallel computers. Using parallelization methods like the Message Passing In-
terface (MPI) [27], the ensemble or mode matrix can be distributed over several
processes. Thus, the memory requirements of each single process can be reduced.
Additionally, the inherent parallelism of the error subspace Kalman filters (ESKF)
can be exploited. The evolution of different ensemble states is independent, as was
mentioned in chapter 3. Thus, the forecast phase can be parallelized by distribut-
ing the state ensemble over multiple model tasks executed concurrently by different
processes. The ensemble states are then evolved concurrently by the model tasks,
see e.g. [17, 74]. Most of the execution time of a filtering application is usually spent
in the forecast phase, while the parts for the model initialization and the execution
of the analysis and resampling phases require a significantly smaller amount of time.
Thus, according to Amdahl’s law, the use of independent model tasks will provide
a high parallel efficiency. Hence, the time required to compute a particular data
assimilation problem will strongly decrease when an increasing number of processes
is used for the computations.

This is an advantage over the popular adjoint method which is inherently serial
due to the alternating forward and backward evolutions with the numerical model
and its adjoint, as was discussed in section 1.2. Hence, the adjoint method allows
only for a decomposition of the model domain to distribute the evolutions over
multiple processes. The value of the cost function and the gradient would then be
gathered by a single process to update the control variables according to the cho-
sen optimization algorithm. Trémolet and Le Dimet [82, 81] proposed to distribute
also the phase in which the control variables are updated. In this case, the cost
functional J is evaluated by each process on its local sub-domain. Further, the
gradient of J is computed for the local cost functional. To ensure continuity of the
model fields between neighboring sub-domains, the cost functional is augmented by

73

74

an additional term penalizing differences of the model fields at the boundaries of
neighboring sub-domains. Thus, this difference of the boundary values is also to be
minimized by the optimization algorithm. The speedup of the distributed adjoint
method will not be ideal. This is due to the exchange of data between neighboring
sub-domains during the evolutions as well as for the computation of the cost func-
tion. In addition, it is not assured that the minimization converges with the same
number of iterations on each sub-domain.

The parallelization of filter algorithms has been discussed most extensively in
the context of the EnKF algorithm [44, 45, 46, 36]. Here, different approaches have
been examined. The forecast phase can either be parallelized by exploiting its in-
herent parallelism, or by a domain-decomposition of the model grid. The analysis
phase can also be parallelized by either holding sub-ensembles of full model states
on each process or by operating on full ensembles of sub-states corresponding to a
sub-domain. In the context of a low-rank filter, the parallelization of the RRSQRT
algorithm has been examined [70, 74, 73]. Here, the same parallelization strategies
of domain-decomposition and distributed ensembles as for the EnKF algorithm have
been discussed.

For the implementation of filter algorithms with existing numerical models, a
clear logical separation between the filter and model parts of a data assimilation
application is valuable. In addition, a well defined interface structure for the trans-
fer of data between the filter and model parts is required. To support a separation
between these two parts of a filtering application, the interface systems SESAM [75]
and PALM [60] have been developed. SESAM is implemented using UNIX shell
scripts which control the execution of separated program executables like the nu-
merical model and the program computing the analysis and resampling phases of
the filter. Data transfers between the programs are performed using disk files.
The structure of SESAM has been developed with the aim of avoiding changes to
the source code of the numerical model when using it for data assimilation. Since
SESAM is based on shell scripts, it does not support multiple model tasks. The
numerical efficiency of a data assimilation application implemented with SESAM
will not be optimal since the disk operations used for data transfers are extremely
slow compared with memory operations.

The coupler system PALM uses program subroutines which are instrumented
with meta information for the PALM system. The data assimilation program is
assembled using the prepared subroutines and a library of driver and algebraic rou-
tines supplied by PALM. For a filter algorithm, the resulting program supports the
concurrent evaluation of multiple model tasks. In addition; a better numerical effi-
ciency can be expected compared with SESAM, since data transfers are performed
by subroutine calls. Thus, no disk operations will be required. For the implemen-
tation of a data assimilation application, PALM requires, however, to assemble the
algorithm from separate subroutines. Since the numerical model is used as a sub-
routine, it must not be implemented with a main program. Thus, the model has
to be adapted to fulfill this requirement. In addition, the control of the filtering
program will emanate from the driver routine of PALM. The numerical model is
reduced to a module in the PALM system. This might lead to acceptance problems,

75

since the major part of the source code for the data assimilation program is given
by the numerical model.

In the following chapters, the application of the EnKF, SEEK and SEIK algo-
rithms on parallel computers is studied. For the parallelization of the filter algo-
rithms a two-step strategy is used:

First, the parallelization of the analysis and resampling phases is considered in
chapter 7. These phases are independent from the model. Hence, the data transfer
between the filter and model parts of the program is of no concern here. Both par-
allelization variants of distributed sub-ensembles and of domain-decomposed states
are examined for all three filter algorithms. In addition, a localization of the analysis
phase is discussed. This localization neglects observations beyond a chosen distance
from a grid point of the model domain. It is shown that the localization is only
relevant for the EnKF algorithm.

Subsequently, in chapter 8, the parallelization of the forecast phase is discussed.
This phase is parallelized within a framework for parallel filtering which is developed
in this chapter. The framework provides two levels of parallelism. The model and
filter routines can be parallelized independently. Further, multiple model tasks can
be executed concurrently. The number of processes for each model task and for the
filter routines, as well as the number of parallel model tasks, are specified by the user
of the data assimilation program. The framework defines an application program
interface to assure a well defined calling structure of the filters. This permits to
combine filter algorithms with existing model source codes which are not designed
for data assimilation purposes. The structure of the framework amounts to attaching
the filter algorithm to the model by adding subroutine calls to the model source code.
The data assimilation program will be controlled by user-written routines. Thus, the
required parameters can be initialized within the model source code. The framework
permits to switch between filter algorithms in the same data assimilation program
by the specification of a single parameter. In addition, the observation-related parts
of the filter algorithms are implemented in routines separated from the core routines
of the filter. This allows for a flexible handling of different observational data sets.

To assess the parallel efficiency of the filtering framework in chapter 9, it has
been implemented with the finite element ocean model FEOM which has been re-
cently developed at the Alfred Wegener Institute [12]. First, the data assimilation
experiments of chapter 4 are extended to a more complex 3-dimensional test-case by
performing twin experiments with an idealized model configuration of FEOM. To
examine the filtering performance of the SEEK, SEIK, and EnKF algorithms, syn-
thetic observations of the sea surface height are assimilated. Subsequently to these
data assimilation experiments, the parallel efficiency of the filtering framework is
examined. Then, the parallel efficiency of the analysis and resampling phases of the
parallel filter algorithms is studied. The results will show, that the filtering frame-
work developed in chapter 8 exhibits an excellent parallel efficiency. Furthermore,
the framework and the filter algorithms are well suited for application to realistic
large-scale data assimilation problems.

Chapter 7

Parallelization of the Filter
Algorithms

7.1 Introduction

To cope with their high computational complexity, the error subspace Kalman filter
algorithms share the benefit that they comprise some level of natural parallelism
which can be exploited on parallel computers. The independence of the forecasts
of the ensemble members has often been stressed for the EnKF [17], but it is also
inherent in the SEIK filter. For the SEEK filter, the forecasts of the modes are inde-
pendent if the gradient approximation is used. They are not independent if SEEK is
used with the linearized model to evolve the modes. In this case, the nonlinear fore-
cast of the state estimate is required at each time step to evaluate the linearization.
If the numerical model is linear, either the modes or the columns of the state co-
variance matrix can be evolved independently in parallel even with the full Kalman
filter. This has been utilized by Lyster et al. [52] to perform data assimilation with
a linear 2-dimensional transport model for atmospheric chemical constituents using
the (full-rank) linear Kalman filter. The authors compared parallelizations which
either decompose the covariance matrix into columns or apply a decomposition in
which only several rows of the covariance matrix are stored on a process. The latter
method amounts to a decomposition of the model domain. While the forecast phase
showed a rather good speedup in this study, the parallel efficiency of the analysis
phase is only small. These results can be expected since the analysis phase involves
global operations on the model domain. Hence, a parallelized analysis algorithm
will contain a high amount of communication.

Applying the EnKF, Keppenne [44] exploited the inherent parallelism of the
ensemble forecast in data assimilation with a 2-layer shallow water model. In the
forecast, Keppenne distributed the ensemble members over the processes. (We will
refer below to this type of distribution as “mode-decomposition”.) For the anal-
ysis phase of the filter this work decomposed the model domain into sub-domains
(referred to as “domain-decomposition”) to allow for an analysis on a regional ba-
sis. This approach was further refined by Keppenne and Rienecker [45, 46] where
the filter was applied to an ocean genereal circulation model (OGCM) in a model
configuration for the Pacific basin. Here, the model and the filter were parallelized
by domain decomposition. In addition, a localized analysis is performed assimilating
only observations within a certain distance from a grid point. A localized analysis

76

7.2 Parallelization over the Modes 77

has also been described by Ott et al. [58]. In this work the analysis was formulated
using overlapping domains. Furthermore, only observations local to a domain are
considered.

In the context of the RRSQRT filter, two parallelization approaches have been
discussed. Roest and Vollebregt [70] split their data assimilation code into parts
which are independently parallelized using different types of parallelism. Applying
a mode decomposition in the forecast phase, they also utilize the inherent parallelism
of this phase. Other operations on the covariance matrix, like a re-diagonalization
analogous to the re-orthonormalization of the modes performed in the SEEK filter,
are evaluated using distributed rows of the matrix. Segers and Heemink [74] compare
mode and domain decomposition variants of the RRSQRT filter applied to an air
pollution model. In this example both methods yield rather comparable values for
the speedup. Segers and Heemink favor the domain decomposition method, based
on their experience that the parallelization of the analysis part of the RRSQRT
algorithm is easier for a domain decomposition than for a mode decomposition.
They stress that this method requires a parallel, domain decomposed model.

In this chapter, we will examine the possibilities for the parallelization of the
SEEK, EnKF, and SEIK algorithms. The variant of using the mode decomposition
of the ensemble matrix in these filters is discussed in section 7.2. Subsequently
in section 7.3 we examine the option to decompose the state vectors by a domain
decomposition. Finally, we introduce in section 7.4 a formulation for a localized
analysis which permits to assimilate observations within a certain distance from a
grid point of the model domain. We focus on the analysis and resampling phases of
these algorithms. The forecast phase is examined in connection with the develop-
ment of a framework for parallel filtering in chapter 8. For parallelization, we use
the Message Passing Interface (MPI) [27]. Some fundamental concepts of parallel
computing are discussed in appendix A which also contains an introduction to MPIL.

7.2 Parallelization over the Modes

For now, we consider a parallelization using mode-decomposition, i.e. the ensemble
matrix X, or the mode matrix V, is distributed such that the process with rank p
owns k, < N columns of the matrix. Thus, the local column indices 7, = 1,...,k,
correspond to the global indices ¢ = j,, ..., j,+k, where jo = 1 and j, = 1+>_7_ k,
for p > 0. This decomposition is displayed in figure 7.1 for s + 1 processes. Each
column of X represents a full state vector. Since each process has direct access only
to its k, local state vectors, operations on X are distributed, too. For efficiency, as
many computations as possible are performed in parallel during the analysis and
resampling phase. Thus, also some operations on derived matrices, which appear in
the filter algorithms, will be distributed. Some of these matrices are also stored dis-
tributed over the processes. If data from other processes is required, data exchanges
are performed by calls to communication functions of the MPI library.

7.2 Parallelization over the Modes 78

X Xp, Xp,

1 e N 1 ko is irtky s N
Process 0 Process 1 oo Process s

Figure 7.1: Distribution of the global ensemble matrix X into local sub-matrices X
with mode-decomposition.

7.2.1 Distributed Operations

Using distributed matrices, we encounter in the filter algorithms several operations
which have to be performed in parallel. Many of them are matrix-matrix products.
If matrices were completely allocated by a single process a matrix-matrix product
could be directly computed as AB = C. For distributed matrices there are, in
general, three different ways of evaluating a matrix-matrix product depending on
the type of distribution. These parallel matrix-matrix products are explained in
table 7.1.

Other distributed operations which occur in the filter analysis and resampling

phases are:

e The application of the measurement operator to the ensemble or mode matrix.
E.g., in SEEK this is HV, see equation (2.28). Only k, columns of the ma-
trix V, each representing a state vector, are allocated on a process. Thus, the
measurement operator is applied in a loop calling for each local column a sub-
routine performing the application of H to this column. If the full matrix HV
is required by a single process a ’gather’ operation has to be performed.

e The solution of linear equations of type AB = C. An example of this can be
found in the representer formulation of the EnKF when solving equation (2.47).
Here only k, columns of the matrix C are allocated on a process. Thus, the
solution B will consist of &, local columns. If the full matrix B is needed by
a single process, a ’gather’ operation is required.

e The initialization of the observation vector y which has to be known by each
processes. This is performed by a subroutine call. If y is read from a file,
it is most efficient to execute the file operation only by a single process. To
distribute the vector, a ’broadcast’ operation is performed afterwards.

7.2 Parallelization over the Modes 79

Type 1: Matrix A is fully allocated on
each process. It is multiplied with ma-
trix B from which only k, columns are
available locally. Performing the multi-
plication, we obtain k, columns of the =
product-matrix C. These columns corre-
spond to the same column indices as those
available of matrix B. To obtain the full
matrix C on a process a 'gather’ operation
has to be performed.

Type 2: Only &, rows of matrix A are
available locally. This occurs, e.g., for
the transpose of a column-wise distributed
matrix. Matrix B is fully allocated on []
each process. The local part of the prod- =

uct matrix C consists of k, rows whose
row indices correspond to those indices of
the rows of A which are available locally.
To obtain the full matrix C on the local
process, a 'gather’ operation is required as
in type 1.

Type 3: Only k, columns of matrix A
and k, rows of matrix B are allocated lo-
cally. The resulting product matrix C has
the full dimension but its elements repre-]
sent only a partial sum of the full matrix- =
matrix product. Thus, to obtain the full
product AB on the local process, a 're-
duce’ operation has to be performed to
sum up all partial sums distributed over
the processes.

Table 7.1: The different types of matrix-matrix products for distributed matrices. The
right column sketches the differently distributed matrices.

7.2 Parallelization over the Modes 80

7.2.2 SEEK

We develop the analysis algorithm of SEEK for a mode-decomposed matrix V such
that each process will hold the updated eigenvalue matrix U™! and the state esti-
mate x. This will reduce the total amount of communication, since U™ is required
by each process for the resampling phase and x is used by each process to compute
the gradient approximation.

The parallel version of the SEEK analysis algorithm is shown as algorithm 7.1.
It can be directly compared to the serial analysis algorithm 3.3. The routine is
called by all processes each holding its local part V, € R™"? of the mode matrix.
In the pseudo code of the parallel algorithm the subscript p denotes an array which
is private to a process. That is, the array can have a different size and hold different
values on each process. Variables without this subscript are global, i.e. they have
on all processes the same size and hold the same values. The application of the
measurement operator on the mode matrix (lines 4-6 in algorithm 7.1) is performed
only for the 7, locally allocated columns of V. Also the subsequent product R™T1
is only computed for the local columns. The the residual d is initialized in lines 11
to 13 equally by all processes. This operation does, in general, require negligible
computation time compared with the other operations of the analysis. Hence, ini-
tializing d by each process will not be problematic for the parallel efficiency. A
"broadcast’ operation is hidden in the initialization of the observation vector, as was
explained in the preceding section. The matrix-vector product in line 14 yields the
local part of a distributed vector. Although the full vector t3 has to be initialized by
a concluding ’allgather’ operation, this variant to obtain t3 is faster than performing
an ’allgather’ on the much larger matrix T2. The following solver step (line 16} has
to be performed by each process. We will see that this operation can limit the over-
all parallel efficiency of the SEEK analysis algorithm in mode decomposition. The
final update of the state estimate is performed with the local matrix V,. We divide
this operation into two parts. First we compute the analysis increment Ax using a
matrix-matrix product of type 2 followed by an ‘allreduce’ operation for the analysis
increment. Finally, the increment is added to the forecast state estimate x in order
to obtain the analysis state estimate on each process. Due to the non-parallelized
solver step and the required global communications, we can not expect that the
mode-parallel SEEK analysis algorithm scales well.

In the resampling phase of SEEK, the mode vectors distributed over the processes
are re-orthonormalized. The serial algorithm is shown as algorithm 3.7. The parallel
algorithm, shown as algorithm 7.2, distributes the inversion of the matrix Uinv.
Also the computations of the matrices T1 and T2 are parallelized. However, global
communication is required in the algorithm to obtain the matrix B. The most
expensive communication operation will be the allgather operation of the n x r
matrix V. In contrast to this, the re-initialization of the local columns of the mode
matrix V in line 14 is performed in a distributed matrix-matrix product of type 1
which is locally a full matrix-matrix product. Hence it is evaluated independently
by all processes. The resampling algorithm also contains some operations which
are performed equally by all processes: The Cholesky decomposition of U, the
computation of B, and the singular value decomposition (SVD) of B. We will see
later that these operations, together with the required communications, will limit the
overall parallel efficiency of the algorithm. An obvious drawback of the presented

7.2 Parallelization over the Modes 81

Subroutine SEEK_Analysis.Mode(step,n,r,x,Uinv, V)
int step {time step counter,input}
int n {state dimension, input}
int r {rank of covariance matrix, input}
real x(n) {state forecast, input/output}
real Uinv(r,r) {inverse eigenvalue matrix, input/output}
real V(n,r,) {local mode matrix, input/output}
real T1,t3,t4,d,y, Ax {fields to be allocated}
real T, T2, t3,, Ulnvy,, Ax, {fields to be allocated}
int 7, {number of local columns of V}
int m {dimension of observation vector}
int ¢ {ensemble loop counter}

1 call Get Dim_Obs(step,m) {by each process}
Allocate fields: T1(m, 1), t3(r), t4(r), d(m), y(m), Ax(n),
T1,(m,7,), T25(m,r,), t3,(rp), Uinvy(r, 1), Axp (1)

for i=1,r, do
call Measurement_Operator(step, n,m, Vp(:,4), T1,(:,¢)) {local columns}
end for
allgather T1 from T1, {global MPI operation}
call RinvA(step, m,r, T1,,T2,) {operate only on local columns}
Uinv, « Uinv, + T17T2, {matrix-matrix product type 1}
10: allgather Uinv from Uinv, {global MPI operation}

© o> gk

11: call Measurement.Operator(step, n, m,x,d) {by each process}
12: call Measurement(step, m,y) {by each process}
133 d«y—d {by each process}

14: t3, « T2,7d {matrix-matrix product of type 2}

15: allgather t3 from t3, {global MPI operation}

16: solve Ulinv t4 = t3 for t4 {by each Process}

17 Axp «— V, t4 {local state increment, matrix-vector product of type 3}
18: allreduce summation of Ax from Ax, {global MPI operation}

190 x «—x+ Ax {by each process}

20: De-allocate local analysis fields

Algorithm 7.1: Structure of the parallel filter analysis routine for the SEEK algorithm.
The mode matrix V is distributed such that each process holds 7, columns V of V.
The subscript p denotes variables which are private to a process. These can be either the
locally allocated parts of distributed fields or full-size fields which hold different values on
different processes.

7.2 Parallelization over the Modes 82

Subroutine SEEK_Reortho Mode(n,r,Uinv, V)
int n {state dimension, input}
int r {rank of covariance matrix, input}
real Uinv(r,r) {inverse eigenvalue matrix, input/output}
real Vy(n,7,) {local mode matrix, input/output}
int r, {number of local columns of V}
real A,B,C,D,U,V, T2 {fields to be allocated}
real U, I, T1,,T2,, T3, T4, {fields to be allocated}

Allocate fields: A(r,), B(r,7),C(r,r),D(r,r), U(r,r), V(n,r),
T2(r,r), Up(r,m,), Lp(rymy), T1p(r, 7p), T2, (r, 75), T35 (7, 1p), T4y (7, 1)

W

I, « X(,jp : o+ 15 — 1) {local columns of identity matrix}
Solve Uinv U, = I, for U, {get local columns of U}
allgather U from U, {global MPI operation}

Cholesky decomposition: U = AAT {by each process}
allgather V from V, {global MPI operation}

T1, « VT V, {matrix-matrix product of type 1}

T2, — AT T1, {matrix-matrix product of type 1}

10: allgather T2 from T2, {global MPI operation}

11: B« T2 A {by each process}

122 SVD: B =C D CT {by each process}

13: T3, «— CD(:, 5, : j, + 1, — 1)7/? {Initialize T3} using local columns of D}
14: T4, — A T3, {matrix-matrix product of type 1}

15V, « V T4, {matrix-matrix product of type 1}

16: Uinv « D~! {by each process}

17 De-allocate local analysis fields

Algorithm 7.2: Structure of the parallel version of the re-orthonormalization routine for
the SEEK algorithm. Matrix D holding the singular values of T3 is introduced here for
clarity. In the program, it is allocated as a vector holding the eigenvalues of T3. The large
number of matrices of sizes 7 X 7 or 7 X 7}, is introduced in the pseudo code for clarity. In
the program itself, only two matrices of size 7 x 7, and three of size r x r are allocated.
The index j, denotes the index of the first column of Vy, in the global matrix V.

algorithm is that the full matrix V has to be allocated on each process. [t is,
however, possible to formulate the algorithm with a block structure allocating only
several rows of V at a time. This will involve a lot of communication operations of
smaller amounts of data. The total amount of communicated data will be twice as
large since the full information on V' is required for the operations in line 7 and in
line 14.

7.2.3 EnKF

The parallel analysis algorithm for the EnKF with a mode-decomposed ensemble
matrix X is shown as algorithm 7.3. The serial algorithm has been given as algo-
rithm 3.5.

7.2 Parallelization over the Modes 83

The routine is called by all processes each holding its local part X, € R of
the ensemble matrix. In the parallel algorithm, the computation of the mean of the
ensemble projected onto observation space in line 7 corresponds to a matrix-matrix
product of type 3 in which the second matrix has only one column whose entries
are equal to N~'. An allreduce summation is necessary to obtain the ensemble
mean on all processes. This is analogous for the computation of the ensemble mean
state in line 22. The full matrix T1 is initialized by each process using an allgather
operation in line 12. Subsequently, the computation of T3 is performed equally by
all processes. Alternatively, several columns of T3 could be computed first via a
matrix-matrix product of type 1. Then the full matrix T3 would be initialized by all
processes by an allgather operation. Whether this parallelized variant is faster than
computing T3 directly by each process will depend on the ratio of computation to
communication performance.

In the EnKF, an ensemble of residuals has to be computed from an ensemble of
observations. The observations are generated in the subroutine Enkf Obs_Ensemble
which will involve a broadcast operation if the observation vector is read from a
file. The computation of the local residual ensemble Dy, itself (lines 15 to 19) is
performed independently by each process.

The solver step for the influence amplitudes B in line 20 is distributed over the
processes. Thus, local amplitudes B, are computed using the LAPACK routine
DGESV. The parallel efficiency of this operation is, however, limited since the LU-
decomposition of T3 € R™*™ is performed by each process. The final update of
the local state ensemble X, in line 28 is performed independently by each process.
The preparations for the update, which are performed from lines 22 to 27, include
the initializations of the ensemble mean x and the matrix TS by communication
operations. To avoid the allocations of the matrices T'5, and T5 as well as those of
the vectors x;, and x, we use a block formulation for lines 22 to 28.

In the mode-decomposed EnKF analysis algorithm, the computation of T3 is
not parallelized. In addition, the solver step for the representer amplitudes can not
be expected to show a good parallel efficiency. Next to these operations, several
global communication operations have to be performed. These properties of the
mode-decomposed algorithm will limit the parallel efficiency.

In the mode-decomposed EnKF algorithm, the global matrix T3 € R™*™ is
computed by each process since it is required for the solver step in line 20. This
requirement presents a particular issue for the mode-decomposed EnKF filter. Next
to the requirement to allocate this matrix, the operations involving T3 will be
costly. To reduce the operational complexity, it is possible to sequentially assim-
ilate batches of independent observations. This technique has been discussed in
section 3.4. Indeed, it will reduce the effective dimension of the observation vector.
Accordingly, the memory requirements are reduced. Furthermore, the number of op-
erations is decreased, since the complexity of the matrix-matrix product in line 13
scales with O(m?) and that of the solver step in line 20 is O(m3 + m2N).

7.2.4 SEIK

The analysis algorithm of the SEIK filter is very similar to that of the SEEK
filter. Hence, also the parallelization is almost identical in both cases. Discussing
the parallelization of SEIK, we focus on the unique parts of it. The parallel SEIK

7.2 Parallelization over the Modes 84

Subroutine EnKF_Analysis Mode(step,n,N,,X,)
int step {time step counter,input}
int n {state dimension, input}
int N {ensemble size, input}
real Xp(n, N,) {local ensemble matrix, input/cutput}
real T1,t2, T3, T5,x {fields to be allocated }
real T1p,t2,, t4,, T5p, T6,, Dy, By, x, {fields to be allocated}
int N, {local ensemble size}
int . {dimension of observation vector}
int 7 {ensemble loop counter}

w

10:
11:
12:
13:
14:

15:
16:
17:
18:
19:

20:
21:
22:
23:
24:
25:
26:
27:
28:
29:

call Get_Dim_Obs(step, m) {by each process}
Allocate fields: T1(m, N),t2(m), T3(m,m), T5(n, N),x(n), T1ly(m, N,),
t2p(m), tdp(m), TS5 (n, N,), T6p(N, N,), Bp(m, Np), Dp(m, Np), xp(n)

for i=1,N, do

call Measurement.Operator(step, n,m, X (:,%), T1,(:,2)) {local columns}
end for
t2, — N ! 221 T1,(:,4) {local mean of projected ensemble}
allreduce summation of t2 from t2, {global MPI operation}
for i=1,N, do

T1,(;,2) « T1,(;,%) — t2 {local columns}
end for
allgather T1 from T1, {global MPI operation}
T3 — (N — 1)~ T1 T1" {by each process}
call RplusA(step,m,T3) {by each process}

call Enkf Obs_Ensemble(step,m,N,,Dy) {get local ensemble of observations}
for i=1,N, do
call Measurement.Operator(step, n, m, X,(:, %), t4,) {local columns}
D,(:,4) « Dp(:,4) — t4, {local ensemble of residuals}
end for

solve T3 B, = Dy, for B, {get local representer amplitudes}
T6, «— T1" B, {matrix-matrix product of type 1}
xp — NP0 X () {local ensemble mean state}
allreduce summation of x from x,, {global MPI operation}
for i=1,N, do
T5,(:,4) « Xp(:,7) — x {local columus}
end for
allgather T5 from T5,, {global MPI operation}
Xp —Xp+ (N—1)"! T5 T6, {matrix-matrix product of type 1}
De-allocate local analysis fields

Algorithm 7.3: Structure of the parallel filter analysis routine for the EnKF algorithm
using the representer update variant for a non-singular matrix T5. Matrix By is not
allocated individually but stored in Dp,. Analogously, t4 is stored in t2. The allocation
of the full array T'5 can be avoided by a block formulation for line 28.

7.2 Parallelization over the Modes 85

Subroutine SEIK_Analysis_Mode(step,n,N x,Uinv,X,)
int step {time step counter,input}
int n {state dimension, input}
int N {ensemble size, input}
real x(n) {local state estimate, output}
real Uinv(r,r) {inverse eigenvalue matrix, output}
real X,(n, N,) {local ensemble matrix, input/output}
real T2,t4,t5,t6,y,d, Ax, {fields to be allocated}
real T1,, T2, T3, t4,, Gy, Uinv,, xp, Ax, {fields to be allocated}
int r {rank of covariance matrix, r = N — 1}
int 7, {number of local columns of covariance matrix}
int N, {local ensemble size}
int m {dimension of observation vector}
int ¢ {ensemble loop counter}

1: call Get.Dim_Obs(step,m) {by each process}

2. Allocate fields: T2(m,), t4(r),t5(r), t6(N), y(m), d(m), Ax(n), T1y(m, N,)
3: T2,(m,rp), T3,(m, 7p), t4p(rp), Gp(r,7p), Uinvy (r, 1), Xp(n), Axp(n)

4: for i=1,N, do

5: call Measurement_Operator(step, n, m, X (:,2), T1,(:,2)) {user supplied}
6: end for

7. T2, « T1, T {implemented with T as operator}

8 allgather T2 from T2, {global MPI operation}

9: call RinvA(step,m,r,T2,,T3,) {operate only on local columns}

10: Gy« (N"HTT T) 1), {implemented as direct initialization}
11: Uinv, « G, + T27T3, {matrix-matrix product of type 1}
12 allgather Uinv from Uinv, {global MPI operation}

13 xp — N2 X (:,4) {get local ensemble mean state}
14: allreduce summation of x from x, {global MPI operation}
15: call Measurement_Operator(step, n, m,x,d) {user supplied}
16: call Measurement(step, m,y) {user supplied}

17: d—y—-d

18: t4, « T3,7d {matrix-matrix product of type 2}

19: allgather t4 from t4, {global MPI operation}

20: solve Uinv t5 = t4 for t5 {by each process}

21: t6 « T t5 {implemented with T as operator}

22 Ax, « X, t6(j, : jp + N, — 1) {local increment, mat.-vec. product type 3}
23: allreduce summation of Ax from Ax, {global MPI operation}

24: x + x+ Ax {by each process}

25: De-allocate local analysis fields

Algorithm 7.4: Structure of the parallel filter analysis routine for the SEIK algorithm.
The arrays T2p, and t5 are introduced for clarity. Their contents are stored respectively
in T1, and t4. The index j, denotes the index of the first column of X, in X.

7.2 Parallelization over the Modes 86

Subroutine SEIK Resample Mode(n,N x,Uinv,X,)
int n {state dimension, input}
int N {ensemble size, input}
real x(n) {state analysis vector, input}
real Uinv(r,r) {inverse eigenvalue matrix, input}
real X,(n, N,) {ensemble matrix, input/output}
real T1,T2,,C,Q,", X {fields to be allocated}
int r {rank of covariance matrix, r = N — 1}
int N, {local ensemble size}

1: Allocate fields: T1(r, N), T2,(N, N,), C(r,7), 2,7 (r, Ny), X(n, N)

Cholesky decomposition: Uinv = C CT {by each process}
initialize 2, {local columns}
solve CTT1, = ©,” for T1, {local columns}
T2, « T T1, {implemented with T as operator}
allgather X from X, {global MPI operation}
for i=1,N, do
Xp(hi) —x
end for
X, « Xp+ NY2 X T2, {matrix-matrix product of type 1 with DGEMM}
11: De-allocate local analysis fields

._.
=)

Algorithm 7.5: Structure of the parallel resampling routine for the SEIK algorithm.
The matrix T1p is not allocated in the program. Its contents are stored in QT To avoid
the allocation of X, lines 6 to 10 can be implemented in block formulation.

analysis algorithm is shown as algorithm 7.4 while the serial analysis has been shown
as algorithm 3.4.

An additional operation in the analysis algorithm of SEIK compared with SEEK
is the matrix-matrix product in line 7. Here the ensemble matrix projected onto
the observation space (T1 in the pseudo code) is multiplied with matrix T defined
by equation (2.62). As has been discussed in section 3.3, this operation is most
efficiently implemented taking into account the particular choice of T. Accordingly,
this multiplication involves the subtraction of the global ensemble mean of T'1 from
each column of this matrix. This mean is computed as the means in the EnKF,
i.e. by calculating local means followed by an allreduce summation. The computed
ensemble mean is subtracted from each of the local ensemble states. In line 21, the
product T t5 is computed. Following the discussion in section 3.3, the mean value of
the elements of t5 is computed and subsequently subtracted from each column. The
final column is initialized by the negative of the mean value. The product T t5 does
not require communication, since t5 is allocated on each process. Other additional
operations in the analysis phase of SEIK are the computation of the ensemble mean
in line 13, which is computed as in the EnKF, and the initialization of matrix G in
line 10. This operation is parallelized by initializing only 7, local columns. These are
required for the subsequent computation of Uinv which is a matrix-matrix product
of type 1 followed by an allgather operation. Since the solver step in line 21 is not
parallelized and several global communication operations are performed, we cannot

7.2 Parallelization over the Modes 87

expect that the mode-parallel SEIK analysis algorithm scales perfectly.

A particular parallelization issue of the SEIK filter is that matrix T2 consists of
only r columns, while T1 contains NV = r+1 columns. Hence, for the load-balancing
of the analysis algorithm the application of T is problematic. Since the forecast
phase usually requires the most computation time, we chose a configuration in which
each process holds the same number N, = k of ensemble states (I.e. the same number
of columns in the local matrices X, and T1p). Computing the product T1, T
reduces the number of overall coluruns by one. Accordingly, one of the processes
(usually that one with the highest rank) holds only k& — 1 local columns of T1, T,
while all other processes hold k& local columns. Due to this, one of the processes
executes less operations than the other processes and will complete work earlier.
However, this is inevitable if the ensemble has to be distributed evenly in order to
obtain the best speed up in the forecast phase. For the parallel algorithm, this has
no special implications, as long as the number of columns in matrix T2, is not
reduced to zero on one of the processes.

In the resampling algorithm of SEIK, a new ensemble of states is computed
on the basis of the forecasted state ensemble X. The parallel algorithm is shown
as algorithm 7.5. It can be compared with the serial algorithm 3.8. The Cholesky
decomposition in line 2 is performed equally by all processes. The solver step for the
local columns of T1 in line 4 and the product T T1, (line 5) are parallelized. The
latter operation is implemented as in the analysis algorithm. The initialization of
the new ensemble matrix in line 10 is executed in parallel, too. Since this operation
requires the information on all ensemble members in X € R™%, this matrix is
initialized by all processes by an allgather operation (line 6). This operation will
be very costly due to the large dimension of X. To avoid the requirement to store
the full matrix X, we use a block formulation for the resampling. Therefore a loop
is built around lines 5 to 10. In each cycle of this loop, only a couple of rows
of the global matrix X are allocated and gathered at a time. In line 10 only the
corresponding rows of X, are updated.

7.2.5 Comparison of Communication and Memory Require-
ments

For comparison of the communication requirements of the three filter algorithms,
table 7.2 summarizes the sizes of the arrays involved in MPI operations.

The amount of communicated data in the mode-parallel analysis algorithm of
SEIK is larger than for SEEK. This is caused by the product T1, T in line 7 of al-
gorithm 7.4 and the computation of the ensemble mean in line 14. In the resampling
algorithm of SEEK, the global mode matrix V € R"*" has to be initialized by all
processes using an allgather operation. Analogously the ensemble matrix X € R™*¥
has to be initialized in resampling algorithm of SEIK. In the resampling algorithm
of SEEK, also the much smaller matrices U and T2 are gathered.

The communication requirements of the EnKF algorithm are similar to those of
the SEEK and SEIK algorithms. In the EnKF, the ensemble update is computed
within the analysis, while SEEK and SEIK have additional resampling routines.
Due to this, the EnKF includes the allgather operation on the matrix T5 € R**N
which is the analogue to the allgather operations of V or X performed respectively
in the resampling phases of SEEK and SEIK.

7.3 Filtering with Domain Decomposition 88

Table 7.2: Sizes of arrays involved in global MPI operations in the analysis and re-
sampling phases of the SEEK and SEEK algorithms and in the analysis phase of the
EnKF algorithm. Next to the matrix size, the name of the matrix is given as well as the
information whether the MPI operation is an allgather (g) or allreduce (r) operation.

EnKF SEEK SEIK
analysis | mN(T1, g) | mr (T1, g) mr (T2, g)
nN (T5, g) | v* (Uinv, g) | 7* (Uinv, g)
m (t2,r) |r (t3,g) r (t4, g)
n (x,71) n (Ax,r) n (x,1)
n (Ax,r)
m (in T1,T, r)
re- r? (U, g) nN (X, g)
sampling nr (V, g)
r? (T2, g)

Concerning memory requirements, the mode-decomposition only permits to dis-
tribute some fields which hold ensemble quantities. Other arrays, which hold ensem-
bles of observation-related vectors like T1 in SEEK and EnKF, are not decomposed.
Thus, the scalability of the memory requirements is limited. Next to these non-
distributed arrays, additional private arrays have to be allocated. Some of these,
like T2, € R™ 7 in algorithm 7.1, involve the observation dimension. These arrays
increase the overall memory requirements. Other arrays which involve the state
dimension n, are less problematic. Using block formulations, it is not necessary to
allocate these arrays in their full size. A particular memory issue is the allocation
of the full mode matrix V. € R™" in the resampling algorithm of SEEK. As has
been discussed in section 7.2.2, the allocation of this very large array can only be
avoided by a block formulation. This will, however, require to gather the full in-
formation on V twice. In the case of the EnKF algorithm, the allocation of the
matrix T3 € R™*™ is required. If very large data sets have to be assimilated, this
memory requirement can be problematic. In this case, the sequential assimilation of
independent observation batches with smaller dimension m will reduce the memory
requirements.

7.3 Filtering with Domain Decomposition

In the case of domain-decomposition, the ensemble matrix X, or the mode matrix V,
is distributed such that the process with rank p holds k, < n rows of the matrix.
The distribution of the ensemble matrix is sketched in figure 7.2. The local row
indices ¢, = 1, ..., k, of the matrix owned by process p correspond to the global row
indices i = j,,...,j, + k, where jo = 1 and j, = 1+ >V, k, for p > 0. Since each
column of X represents a full state vector, each process now holds a part of each
ensemble state. This configuration arises naturally, when the domain of a model
is decomposed into several sub-domains each being located on a different process.
Domain decomposition is a frequently used strategy in parallel computing [22]. If
data assimilation is performed using a domain-decomposed model, it appears to be
obvious to use a parallelization of the filter which follows the parallelization of the

7.3 Filtering with Domain Decomposition 89

X X,

o

J*k

Process 0 Process 1 s Process s

Figure 7.2: Distribution of the global ensemble matrix X into local sub-matrices X for
domain-decomposition.

model it is applied to. This avoids possible reordering requirements of the state
vectors and model fields in the communication between filter and model.

As the model state is decomposed into sub-domains, also the observations should
be domain-decomposed. This allows for a better parallel efficiency of the filter
analysis algorithms. If the observations are distributed rather evenly in space, the
decomposition of the observations should follow that of the model state. However,
the decomposition of the observation vector does not need to follow that of the model
state. This provides the freedom to choose a decomposition which yields an even
distribution of the observation vector over the processes. This can be important for
the load-balancing of the filter analysis algorithm if the observations are irregularly
distributed in space.

7.3.1 Distributed Operations

Using domain decomposed ensemble matrices, the filter algorithms will again require
distributed matrix-matrix products. As for mode-decomposition, these are of the
types described in table 7.1.

Other distributed operations occurring in the filter analysis and resampling al-
gorithms are:

¢ The initialization of the dimension of the observation vector which is per-
formed in subroutine Get_Dim_Obs. If the observation space is decomposed
into sub-domains, the call to Get_Dim_Obs has to provide the size of the local
sub-domain of the observation space.

e The application of the measurement operator H to a state vector or the ensem-
ble or mode matrix. In contrast to the mode-decomposition discussed above,

7.3 Filtering with Domain Decomposition 90

each process holds information on all ensemble members contained in the en-
semble or mode matrix, but only the about the local sub-domain. Due to this,
the application of the observation operator may require communications of
data, e.g. if interpolations are performed which require state information from
adjacent sub-domains. Communication operations will be also necessary if the
domain-decompositions of the observations and the model state are different.

e The initialization of the observation vector y. The call to the subroutine Mea-
surement has to initialize the part of the observation vector which lies in the
local sub-domain of the distributed observation space. If the observation vec-
tor is read from a file, the file operation should be performed only by & single
process. Thus, the initialization of y will involve communication operations
to distribute the observation sub-vectors to other processes.

e The product of the inverse of the observation error covariance matrix R with
the ensemble matrix projected onto observation space. This operation is per-
formed in SEEK and SEIK by the subroutine RinvA. If R is not diagonal, the
values of all elements of the state vectors in observation space are required by
each process to compute the matrix-matrix product. Thus, global communi-
cation of data is necessary.

7.3.2 SEEK

The analysis algorithm of SEEK for a domain-decomposed state and mode-
matrix is shown as algorithm 7.6. As has been explained above, the application
of the measurement operator in lines 5 and 11, as well as the subroutine RinvA,
can involve communication operations. In contrast to the mode-decomposed SEEK
filter, no global communication operations on the ensemble matrix itself are required
in the case of domain-decomposition. Only two allreduce summations on typically
rather small arrays are necessary. These are allreduce summations to initialize the
increment matrix AUinv € R™*" and to initialize the vector t3 € R". Matrix Uinv
is updated equally by all processes by adding the increment matrix AUinv. Also
the solver step in line 16 is performed by all processes, as in the case of mode-
decomposition. Since this operation involves the inversion of Uinv it can be rather
costly. Over all, the domain-decomposed SEEK analysis algorithm involves less
communications of data than the mode-decomposed SEEK analysis. Also less oper-
ations are executed equally by each process. Thus, we can expect that the domain-
decomposed SEEK analysis will show a better parallel efficiency than the mode-~
decomposed analysis. The parallel efficiency will of course not be optimal due to
the global communication operations and the operations which are not parallelized.

The SEEK resampling routine for a parallelization using domain decomposition is
shown as algorithm 7.7. Here only the operations on matrices which involve the high
dimension n are parallelized. These are the matrix-matrix product V,” V,, in line 5
and the initialization of the new mode matrix V in lines 12 and 13. An allreduce
summation is required to fully initialize the global matrix T1. This operation is
the only global MPI communication which is necessary in the domain-decomposed
SEEK resampling algorithm. The parts of the resampling algorithm which act on
matrices of size 7 X r are executed equally by all processes. This can, however, limit
the overall parallel efficiency of the resampling algorithm when, for higher numbers

7.3 Filtering with Domain Decomposition 91

Subroutine SEEK._Analysis_Domain(step,n,,r,Xp, Uinv,Vy,)
int step {time step counter,input}
int n, {state dimension on local domain, input}
int r {rank of covariance matrix, input}
real xp(n,) {local state forecast, input/output}
real Uinv(r,r) {inverse eigenvalue matrix, input/output}
real Vp(n,,r) {local mode matrix, input/output}
real t3,t4, AUinv, d,,, yp, T1,, T2;,t3,, AUinv, {fields to be allocated}
int m, {dimension of local observation vector}
int ¢ {ensemble loop counter}

W N

11:
12:
13:

14:
15:
16:
17:
18:

© NP g

call Get_Dim_Obs(step, m,,) {get dimension for local domain}
Allocate fields: t3(r), t4(r), AUinv(r,r), dp(m,), yp(my),
T1,(my,), T2p(my,7),t3,(r), AUinvy(r,7)

for i=1,r do

call Measurement_Operator(step, ny, mp, Vp(2,1), T1p(:, ¢)) {local domain}
end for
call RinvA(step, my, 7, T1lp, T2,) {operate only on local domain}
AUinv, « T1,7T2, {matrix-matrix product type 3}
allreduce summation of AUinv from AUinv,, {global MPI operation}
Uinv « Uinv + AUinv {by each process}

call Measurement_Operator(step, n,, m,, Xp, dp) {project local state}
call Measurement(step, m,, yp) {get local observation vector}
dp + yp — dp {residual for local domain}

t3p, — T2ppo {matrix-matrix product of type 3}

allreduce summation of t3 from t3, {global MPI operation}
solve Uinv t4 = t3 for t4 {by each process}

Xp — Xp + V, t4 {matrix-vector product of type 2}
De-allocate local analysis fields

Algorithm 7.6: Structure of the parallel SEEK analysis routine for domain decomposed
states. The mode matrix V and the state vector x are distributed such that each process
holds a sub-domain of dimension n,. Also the observation space is decomposed. Thus,
the observation vector y is distributed with each process holding a sub-domain of dimen-
sion my.

7.3 Filtering with Domain Decomposition 92

Subroutine SEEK.Reortho.Domain(n,,,Uinv,Vy,)
int n, {state dimension on local domain, input}
int r {rank of covariance matrix, input}
real Uinv(r,r) {inverse eigenvalue matrix, input/output}
real V(n,,7) {local mode matrix, input/output}
real T1,T2,T3,T4,A,B,C,D,L,, U, T1, {fields to be allocated}

1. Allocate fields: T1(r,r), T2(r,r), T3(r,r), Td(r,7), A(r,7), B(r,7),
C(r,r),D(r,r),U(r,7), Ly(n,, r), Tl(r,7)

[N

Solve Uinv U =1 for U {by each process}

Cholesky decomposition: U= AAT {by each process}

T1, « V.7V, {matrix-matrix product of type 3}

allreduce summation of T1 from T1, {global MPI operation}
T2 — T1 A {by each process}

B «— AT T2 {by each process}

9. SVD: T1=C D C” {by each process}

10 T3« C D"/? {by each process}

11: T4 «— A T3 {by each process}

122 Ly« 'V,

130V, « L, T4 {matrix-matrix product of type 2}
14: Uinv « D! {by each process}

15: De-allocate local analysis fields

Algorithm 7.7: Structure of the parallel version of the re-orthonormalization routine for
the SEEK algorithm for domain decomposed states. The matrix I holding the singular
values of B is introduced here for clarity. In the program, it is allocated as a vector holding
the eigenvalues of B. Only three matrices of size r X r need to be allocated in the program.
The other matrices of this size are only introduced in the pseudo code for clarity.

of processes, the execution time for the parallel parts reaches that of the non-parallel
parts. To minimize the memory requirements of the algorithm, a block structure
for the matrix-matrix product in line 13 can be implemented. In this case, only a
small number of rows of Matrix Ly, is allocated and only the corresponding rows of
V,, are updated at a time.

7.3.3 EnKF

The parallel EnKF analysis algorithm for a domain-decomposed ensemble matrix X
is shown as algorithm 7.8. In comparison to the mode-decomposed algorithm, less
communication operations are required in the case of domain-decomposition. In
particular, there is no need to gather the information on the full ensemble matrix.
The operations on the ensemble matrix are completely parallelized.

The information on the full matrix T1 € R™¥ js required for the computation of
the matrices T3 and T6. Thus, T1 is initialized on each process using an allgather
operation in line 12. Also matrix D € R™¥ which holds the ensemble of residuals,
is fully initialized by an allgather operation (line 20). Using the gathered matrices,
the computations of T3 and T6, the call to the subroutine RplusA, and the solver

7.3 Filtering with Domain Decomposition 93

step to obtain B are performed equally by each process. These non-parallelized
operations, together with the allgather operations on T'1 and B can be expected to
limit the overall parallel efficiency of the domain-decomposed EnKF analysis algo-
rithm. Compared with the mode-decomposed variant given as algorithm 7.3, the
amount of communicated data is smaller in the domain-decomposed variant. The
computations of B and T6, which are conducted by each process in the case of
domain-decomposition are parallelized in the mode-decomposed algorithm. Thus,
it is not obvious which of the decomposition variant will yield the better parallel
efficiency. Since this depends on the ratio of computation to communication perfor-
mance, it will depend on the computer architecture on which the algorithms will be
executed.

The domain decomposition of the observation space is controlled by the user by,
e.g., providing the implementations of the measurement operator. For consistency,
the two allgather operations in the domain-decomposed EnKF analysis algorithm
are implemented as subroutines to allow the user to modify them. The ordering
of matrix rows used for the allgather operation does not need to follow that of the
actual domain-decomposition. This fact can simplify the implementation, e.g. in
the case of an irregularly decomposed grid in which the sub-states on the processes
do not correspond to single blocks in the global state vector. Despite this, the
allgather operations in lines 12 and 20 can gather the sub-vectors as single blocks.
In this case, consistency is assured by gathering the matrices T1 and D with the
same ordering (This is actually assured by performing it by the same subroutine).
In addition the subroutine RplusA has to be consistent with the gathering order.
Ensuring this, the final ensemble update in line 27 will be consistent since the line
ordering in matrices T4, and B is equal.

7.3.4 SEIK

As in the case of mode-decomposed ensemble and mode matrices, the analysis al-
gorithm of the SEIK filter for domain-decomposition is very similar to that of the
SEEK filter. The parallel SEIK analysis algorithm for domain-decomposition is
shown as algorithm 7.9. Again we discuss the differences to the SEEK algorithm.

For domain-decomposition, a process knows the full state ensemble for its local
domain. Thus, the computation of ensemble means does not require any MPI op-
erations. Accordingly, the product of matrix T1, with matrix T in line 7 involves
no communications of data. The same is true for the computation of the ensemble
mean in line 13 and the application of T to t5 in line 20. Due to this, the amount
of communicated data is equal for the analysis algorithms of SEEK and SEIK in the
case of domain-decomposition. The algorithm contains several operations which are
executed without parallelization. These are the initializations of G and Uinv, the
solver step for t5, and the computation of t6. Most costly will be the solver step
for t5 in line 19, since it involves the inversion of Uinv € R™*". These operations, to-
gether with the required communication operations, will limit the parallel efficiency
of the domain-decomposed analysis. The parallel efficiency will be, however, better
than in the case of mode-decomposition, since there the amount of communicated
data is much higher than for domain-decomposition.

For domain-decomposed states, the resampling algorithm of SEIK, shown as
algorithm 7.10, has the benefit that no communication operations are required at

7.3 Filtering with Domain Decomposition 94

Subroutine EnKF_Analysis_Domain(step,n,,N,X;)
int step {time step counter,input}
int n, {state dimension on local domain, input}
int N {ensemble size, input}
real X, (np, N) {local ensemble matrix, input/output}
real T1,T3,T6,D,B {fields to be allocated}
real Ty, t2;,, t4,, T5,, Dy, x, {fields to be allocated}
int m, {dimension of local observation vector}
int m {dimension of global observation vector}
int ¢ {ensemble loop counter}

1. call Get_Dim.Obs(step,m,) {get observation dimension, user supplied}

2: allreduce summation of m from m, {global MPI operation}

3: Allocate fields: T1(m, N), T8(m,m), T6(N,N),D(m, N),B(m, N),

4: T1,(myp, N), t2p(my), t4p(my), TSp(n, N), Dp (my, N), %p(7)

5. for i=1,N do

6: call Measurement.Operator(step, n,, my, Xp(:,2), T1p(:,2)) {local domain}
7. end for

8 t2, «- N"'Y°N T1,(:,4) {mean of projected ensemble for local domain}

9. for i=1,N do

10: T1,(:,7) « T1p(:,4) — t2, {local domain}

11: end for

12: allgather T1 from T1, {global MPI operation}

13 T3 — (N—1)"1 T1 T17 {full matrix-matrix product on each process}
14: call RplusA(step,m,T3) {by each process}

15: call Enkf_Obs_Ensemble(step,m,,N,Dp) {local ensemble of observations}
16: for i=1,N do

17: call Measurement.Operator(step, n,, m,, Xp(:, 1), t4,) {local domain}
18: D,(:,4) « Dp(:,4) — t4p {ensemble of residuals for local domain}

19: end for

20 allgather D from D, {global MPI operation}

21: solve T3 B = D for B {Get representer amplitudes on each process}
22: T6 « T17 B {full matrix-matrix product on each process}

23 xp — N'3°N X,(:,4) {ensemble mean state for local domain}

24: for i=1,N do

25: T5,(:,4) « Xp(:,4) = xp {local domain}

26: end for

27 Xp « Xp+ (N —1)7! T5, T6 {matrix-matrix product of type 2}
28: De-allocate local analysis fields

Algorithm 7.8: Structure of the parallel filter analysis routine for the EnKF algorithm
for domain decomposed states. It uses the representer update variant for a non-singular
matrix T5. Matrix T1p, is not allocated but stored in Dp,. Analogously the contents of
the arrays B and t4 is stored respectively in D and t2. Line 27 can be implemented with
a block formulation. Then only some rows of T5p need to be allocated.

7.3 Filtering with Domain Decomposition 95

Subroutine SEIK_Analysis_Domain(step,n,,N ,xp,Uinv,X;)
int step {time step counter,input}
int n, {state dimension on local domain, input}
int N {ensemble size, input}
real xp(n,) {local state estimate, output}
rveal Uinv(r,7) {inverse eigenvalue matrix, output}
real X,(n,, N) {local ensemble matrix, input/output}
real t4,t5,t6, G, AUinv,y,, d,,, {fields to be allocated}
real T1,,T2,, T3,,t4,, AUinv, {fields to be allocated}
int m, {dimension of local observation vector}
int ¢ {ensemble loop counter}
int 7 {rank of covariance matrix, r = N — 1}

1. call Get_Dim_Obs(step, m,) {get observation dimension, user supplied}
Allocate fields: t4(r),t5(r),t6(N), G(r,}, AUinv(r,7),yp(m,}, dp(m,),
T1,(myp, N), T25(my,), T3p(myp, 7), t4(r), AUinvy(r,)

for i=1,N do
call Measurement_Operator(step, n,, my, Xp(:, 1), T1p(:,4)) {local domain}
end for
T2, — T1, T {implemented with T as operator}
call RinvA(step, m,r, T2,,T3,) {operate only on local domain}
G — (N"HT" T)™1) {by each process; implemented as direct initialization}
10: AUinv, « T2PTT3p {matrix-matrix product of type 3}
11: allreduce summation of AUinv from AUinv, {global MPI operation}
122 Uinv — G + AUinv {by each process}

13 xXp — N1 le Xp(:,%) {get ensemble mean state for local domain}
14: call Measurement_Operator(step, np, My, Xp, dp) {user supplied}

15 call Measurement(step, my,,yp) {user supplied}

16: dp —Y¥Yp — dp

17, tdp « T3,7d, {matrix-matrix product of type 3}

18: allreduce summation of t4 from t4, {global MPI operation}
19: solve Uinv 5 = t4 for t5 {by each process}

20: t6 — T t5 {implemented with T as operator}

21: Xp «— Xp + X, t6 {matrix-vector product of type 2}

22: De-allocate local analysis fields

Algorithm 7.9: Structure of the parallel filter analysis routine for the SEIK algorithm
for domain decomposed states. The arrays T2, and G are not allocated but stored
respectively in T1, and Uinv. Analogously, the contents of t5 are stored in t4.

7.3 Filtering with Domain Decomposition 96

Subroutine SEIK.Resample Domain(n,,N xp,Uinv,Xp)
int n, {state dimension on local domain, input}
int N {ensemble size, input}
real x,(n,) {state analysis vector, input}
real Uinv(r,r) {inverse eigenvalue matrix, input}
real Xp(n,, N) {ensemble matrix, input/output}
real T1,T2,0Q7,C, T3, {fields to be allocated}
int » {rank of covariance matrix, r = N — 1}

1. Allocate fields: T1(r, N), T2(N, N),Q%(r, N),C(r,7), T3p(n,, N)

2: Cholesky decomposition: Uinv = C CT {by each process}

3: initialize QT {by each process}

4: solve CTT1 = QT for T1 {by each process}

5. T2« T T1 {implemented with T as operator}

6: for i=1,N do

7: T3,(:,1) — Xp(:, 1)

8: Xp(:, 1) — xp

9: end for

100 X, X, + NY? T3, T2 {matrix-matrix product of type 2}

11: De-allocate local analysis fields

Algorithm 7.10: Structure of the parallel resampling routine for the SEIK algorithm for
domain decomposed states. The matrix T1 is never allocated in the program. Its contents
are stored in Q7. Lines 6 to 10 can be implemented with a block formulation. Then only
some rows of T3, are allocated.

all. The operations on the small 7 X and r X (r 4 1) matrices are performed equally
by all processes. They can be expected to require negligible time compared with the
computation of the new ensemble states. The operations on the ensemble matrix
are fully parallelized. Hence, the domain-decomposed resampling algorithm of SEIK
can be expected to show a nearly ideal speedup. To reduce the required memory,
we implement the ensemble transformation in line 11 using a block formulation. It
is analogous to the block structure described for the SEEK resampling algorithm.

7.3.5 Comparison of Communication and Memory Require-
ments

Table 7.3 summarizes the size of the communicated arrays in the domain-decomposed
filter algorithms. The numbers assume that no communication is performed in the
implementation of the measurement operator and in the subroutine RinvA.

Since we have usually n > m > N, r for realistic large scale models, it is obvious
from table 7.3, that with domain decomposition significantly less data has to be
communicated between processes. The smallest amount is in the SEIK algorithm.
Its analysis algorithm communicates only two arrays of sizes r X 7 and r. The
resampling algorithm of SEIK is even executed without any communication of data.
The largest amount will be in the EnKF algorithm, since here arrays involving the
dimension m are communicated.

7.4 Localized Filter Analyses 97

Table 7.3: Sizes of arrays involved in global MPI operations in the analysis and resampling
phases of the SEEK and SEEK algorithms and in the analysis phase of the EnKF algorithm
for domain-decomposed states. Next to the matrix size, the name of the matrix is given
as well as the information whether the MPI operation is an allgather (g) or allreduce (r)
operation.

EnKF SEEK SEIK
analysis | mN (T1, g) | r* (AUinv, 1) | r? (AUinv, 1)
mN (D, g) |r (t3,1) r (t4, 1)
1 (m,1)
resampling r? (T1, 1)

Comparing the mode-decomposed algorithms (7.1 to 7.5) with the algorithms
using domain decomposition (7.6 to 7.10), the smaller memory requirements of the
domain-decomposed filter algorithms become visible. Using domain-decomposition,
all arrays involving the state dimension n are distributed for all three filters. In
SEEK and SEIK also all arrays involving the dimension m are distributed. In
contrast to this, there are only small memory overheads. They are caused by arrays
involving the ensemble size N which have to be added in comparison to the serial
algorithms discussed in section 3.3. Since the ensemble size is typically much smaller
than the dimensions n and m, the domain-decomposed SEEK and SEIK algorithms
are scalable in terms of memory requirements. In the EnKF, the situation is more
problematic. The arrays T1 € R™¥, D ¢ R™¥ and T3 € R™™ are fully
allocated on each process. Also one array of size m, x N (D) has to be added
in comparison to the serial algorithm. If large observational data sets have to be
assimilated, matrix T3 will dominate the memory requirements.

7.4 Localized Filter Analyses

The parallelization schemes presented above are solely based on a reformulation
of the serial algorithms to distribute fields and work over the available processes.
Thus, no approximations are involved. Slightly different results in the analysis
might occur due to numerical reasons caused by a different order in parallelized
summations compared with a sum computed by a single process. The analyses
algorithms of the filters are spatially global, since long range covariances might exist.
In addition, the analysis and resampling phases are global over the state or mode
ensembles, since weighted averages of the ensemble members are computed. Due
to this, several global MPI operations are performed in the analysis and resampling
phases of the filter algorithms. These global communication operations will always
limit the parallel efficiency of the filter algorithms.

When we consider the filter algorithms developed for domain decomposed states,
the amount of communicated data is smaller than their mode-decomposed counter-
parts. The amount of data communicated in the SEEK and SEIK filters is much
lower than in the EnKF. The analysis and resampling algorithms of SEEK and
SEIK are formulated such that all operations on the state space and the observation
space are decomposed. These algorithms are global only in the error space of di-
mension r. Hence, with domain-decomposed states, communication operations are

7.4 Localized Filter Analyses 98

required only for fields in the error space. Since all operations in the state space
and the observation space are parallelized without communication of data, a further
localization of the SEEK and SEIK algorithms does not appear to be necessary.

The situation is different for the EnKF with domain-decomposition. The EnKF
computes the weights for the ensemble update in the observation space of dimen-
sion m. In particular, the computation of T3 in line 13 of algorithm 7.8 and the
solver step for the representer amplitudes B in line 25 are costly. These operations
are especially problematic since they are not parallelized and therefore executed
by each process. Thus, they reduce the parallel efficiency of the algorithm. The
efficiency is further diminished by the allgather operations in lines 12 and 20.

To reduce the dimension of the observation vector in the analysis algorithm, it is
possible to formulate a localized analysis algorithm. This is based on the assumption
that observations have negligible influence for the analysis update of a certain grid
point if they have a large distance to this grid point. In this case, only observations
within a certain distance from the grid point need to be taken into account for the
analysis of the state of this location. The local analysis is an approximation to the
global analysis, but it is motivated by the fact that long range covariances in the
matrix P, which is represented by the ensemble, are very noisy and their information
contents will be negligible. This topic has been discussed, e.g., by Houtekamer and
Mitchell [34]. To perform the localization, Houtekamer and Mitchell [36] filtered
the covariance matrix P by a Schur product, i.e. an element-wise product, with a
maftrix representing correlations of local support. This technique has also been used
by Keppenne and Rienecker [45] who apply the localization for data assimilation in
an parallelized ocean general circulation model.

The effect of the introduced smoothing and down-weighting of observations at
intermediate distances and neglecting of remote observations has been examined by
Hamill et al. [30]. Their results showed that for small ensembles the cut-off radius for
the observations should be rather small to obtain a minimal estimation error. Typ-
ically an optimal radius which minimizes the estimation error can be determined.
On the other hand Mitchell and Houtekamer [56] showed that the localization causes
imbalance in the analysis state of a primitive equation model. This imbalance in-
creases with decreasing cut-off radius. Evensen [18] also argued against a filtering of
the covariances, since this will introduce spurious and nondynamical modes in the
analysis. Evensen, on the other hand argues in favor of a local analysis since this
increases the degrees of freedom in the update of the ensemble states. L.e. each local
domain will be updated using a different combination of the ensemble states. This
will eventually lead to a state estimate with smaller estimation errors than a global
analysis update.

We will derive equations for the local analysis which do not use a Schur product
to filter and localize the covariances. Our formulation just neglects observations
beyond the cut-off radius. For the filtering by a Schur product this would corre-
spond to a step function of the correlations. In this respect, our formulation follows
that suggested by Evensen [18]. Figure 7.3 visualizes the domain decomposition
for a localized analysis in a structured rectangular grid. We intent to update the
sub-domain S. When we assume direction dependent cut-off radii (r;, 73), the in-
fluence region of observations for the upper right edge of S is given by the ellipse C.
The region D shaded in light grey is the observation influence region for the whole

7.4 Localized Filter Analyses 99

D 1 =

D /7 : c N\

Figure 7.3: Domain decomposition for a localized analysis in a structured rectangular
grid (Following the representation by Keppenne and Rienecker [45]). Region S is the
sub-domain in which the state is updated. The ellipse C marks the influence region of
observations for the grid point at the upper right edge of region §. C is defined by the
cut-off radii 7 and r5. The region D shaded in light grey marks the influence region of
the observations for the whole region S.

sub-domain S. In finite difference models with structured grids, for simplicity the
rectangular region D could be chosen as influence region. This localization differs
from that suggested by Ott et al. [58]. While Ott et al. use coinciding domains
for the sub-domain & in which the state is updated and the observation domain D
we assume that D contains all observations within a certain distance from the grid
points in S.

To obtain a mathematical formulation for the localization, we consider the basic
analysis equations 2.41 and 2.42 of the EnKF algorithm. Omitting the time index k,

the global analysis equations for each ensemble state {x(®, o =1,..., N} are:
%@ = xf@) | f<<yo(a) _ HXf(a)) (7.1)
with .
K= 15fHT<H15fHT n R) . (7.2)

Now let S, be a linear operator which reduces a global state vector x of di-
mension n to its local part x, of dimension n, < n in the sub-domain S, . The
subscript o denotes the set of parameters which specify the sub-domain. For sim-
plicity, we assume here that the sub-domain is specified by the spatial position 1 of
its center as well as its extent r, in the spatial directions. Then we can write the
analysis of the local state as

K0 = 8, %) = 8,5 4 8Ky - Hx/@) (7.3)

Let Djs be a linear operator which reduces a global observation vector y of di-
mension m to its local part y; in the sub-domain D;. The subscript § denotes the set

7.4 Localized Filter Analyses 100

of parameters which specify the sub-domain in the global observation domain. We
assume that Dy is centered at the same spatial location 1 as the state sub-domain S,
but the extent of D; will be different from that of S,. Now we can write the analysis
for the local state using only observations from domain Dj as

S x® — 8 x/@ L &, (Ddyo(a) - DBHXﬂa)) (7.4)

with

- - —1
K,; = sanHTD5T(D§HPfHTD§+D§RD§> . (7.5)

The application of the operator Ds amounts to the neglect of observations which
are beyond the sub-domain D;.

Now we define the measurement operator Hs := DsH which projects a (global)
state vector onto the local observation domain Ds. In addition, we define the obser-
vation error covariance matrix in Dj as R := DgRDZI. With these definitions the
local analysis equations for the EnKF are

5,7 = 5,7 4 Ko (757 — Hy) (76)
with .
K, = S, P H,T (HSPfH;f n R5> . (7.7)

For the local analysis these equations replace equations (2.41) and (2.42) of the
global analysis. The local representer formulation follows as the local alternative to
equations (2.46) and (2.47) as

x9(@) = xJ() 1 g, P HI b (7.8)

and
(HsPH,™ + Ry)b{™ = y2® — Hux/@ | (7.9)

Based on equations (7.6) and (7.7, we can also reformulate) the ensemble com-
putation of the matrices P/HT and HP/H” (equations (2.48) and (2.49)) for the
local analysis. These are:

N o -
SPHI = S (O DO X, (1)
a=1
~ 1 X _ _
HPH] = g STH(O (X) (1)

These equations can be implemented using the same optimization strategy as
for the other parallelized EnKF analysis algorithms. The Algorithm 7.11 shows the
algorithm in pseudo code. Apart from the distinction of private and global variables,
it is identical to the structure of the serial program shown in algorithm 3.5. In par-
ticular, no communications are performed in the analysis routine itself. However,
the called subroutines are different from their serial variants. Get_Dim_Obs now
provides the dimension of the local observation vector y¢ and EnKF.Obs.Ensemble

7.4 Localized Filter Analyses 101

Subroutine EnKF_Analysis_Local(step,n,.N,X,)

11:
12:

13:
14:
15:
16:
17:

18:
19:
20:
21:
22:
23:
24:
25:

int step {time step counter,input}

int n, {state dimension on local domain, input}

int N {ensemble size, input}

real X,(n,, N) {local ensemble matrix, input/output}

real T1,,t2;, T3y, t4,, T5,, T6,, Dy, x, {fields to be allocated}
int m, {dimension of observation vector in the local domain}

int ¢ {ensemble loop counter}

call Get_Dim_Obs(step, m,,) {dimension for local observation domain Dy}
Allocate fields: T1y(mp, N), t25(my,), T3p(my, my), t4p(my),
TSP(nm N)r T6P(N7]V)) Bp(7np’ *)’ Dp(mpv N)! Xp(np)

for i=1,N do
call Measurement_Operator(step, ny,, my, Xp(:,4), T1,(:,4)) {in domain
Dy}

end for

t2, — N'°Y T1,(;,%) {in domain Ds}

for i=1,N do
T1,(:,7) « T1,(:,4) — t2, {in observation domain Ds}

end for

T3, « (N —1)"' T1, T1! {full matrix-matrix product in Ds}

call RplusA (step,m,, T3;,) {in domain Ds}

call Enkf Obs_Ensemble(step,m,,N,D,) {ensemble of observations in Ds}
for i=1,N do
call Measurement_Operator(step, n,, m,, Xp(:,%),t4,) {in domain Ds}
D,(:,4) « Dp(:,4) — t4, {ensemble of residuals for domain Dy}
end for

solve T3, B, = D,, for B, {in domain Ds}
xp — N7'°Y X, (:,4) {ensemble mean state for local domain S, }
for i=1,N do
T5,(:,%) < Xp(:,%) — X, {in domain S,}
end for
T6, — T1] B, {in domain Ds}
Xp — Xp+ (N—1)"1 T5, T6, {full matrix-matrix product in Sy}
De-allocate local analysis fields

Algorithm 7.11: Structure of the local filter analysis routine for the EnKF algorithm
using domain decomposed states. This routine applies the representer update variant for
a non-singular matrix T5,. Matrix T1, is not allocated but stored in Dy. Analogously,
the contents of By, and t4p, is stored respectively in Dy, and t25. To avoid the allocation
of the full array T5p, line 24 can be implemented in block formulation.

7.5 Summary 102

initializes the local observation ensemble Y§. Also, RplusA adds the local observa-
tion error covariance matrix Rs. Analogously, the routine Measurement_Operator
provides a state vector projected on the local observation space on the basis of the
global state vector. This routine has as input only a state vector for the local do-
main. Thus the routine Measurement_Operator will involve communications of data
from other state sub-domains if the domains S, and D do not coincide. As long as
the local observation domain is smaller than the global observation domain, these
communication operations will not involve all processes. The implementation of
the localized analysis algorithm is independent of the model grid. Thus, it can be
also applied for unstructured grids like those which can appear with finite element
models.

The local formulation has the benefit that no arrays involving the full observation
dimension m need to be allocated. The Matrices T1, and Dy, are now of size m, x N
and matrix T3, has only dimension m, x m,. The amount of computations is as
well reduced in comparison to the domain-decomposed global analysis algorithm 7.8.
The matrix-matrix products to compute T3, (line 11) and T6, (line 23) involve
now the dimension m, instead m. Also, the solver step to obtain the representer
amplitudes By, (line 18) is computed in the domain D;.

As long as the domains 8§, and Ds do not coincide, the local analysis formulation
still requires communication of data. These communication operations are, however,
not global and involve less amount of data than the global domain-decomposed
formulation of the algorithm. In addition, the localization permits to distribute all
computations on observation-related matrices including, e.g., the solver step for the
representer amplitudes. Thus, the local algorithm can be expected to show a much
better scalability and parallel efficiency than the global algorithm.

7.5 Summary

In this chapter, we examined strategies to parallelize the analysis and resampling
phases of the SEEK, EnKF, and SEIK filter algorithms. There are two different
parallelization strategies:

1. Mode-decomposition — The filter can be parallelized over the modes of the
ensemble matrix X or the mode matrix V. In this case, the matrix is decom-
posed such that each process holds several columns of X or V. Since each
column of the matrix represents a full model state vector, the filter operates
on sub-ensembles of model states. This parallelization strategy of the filter
is independent from a possible parallelization of the numerical model used to
compute the forecast. Since each ensemble state can be evolved independently
from the other states, this parallelization exploits the inherent parallelism of
the ensemble forecast.

2. Domain-decomposition — The filter can be parallelized by a decomposition
of the model domain. In this case each process holds several rows of the
matrices X or V. Thus, each process operates on a full ensemble of model
sub-states for the domain owned by this process. With this parallelization
strategy, the filter typically applies the same domain-decomposition as the
numerical model. Different decompositions for model and filter are possible,

7.5 Summary 103

but will yield an overhead when the state information is transferred between
filter and model. This is due to the reordering of the state information.

We also discussed the implementation of a localized filter analysis for the situ-
ation of domain-decomposed states. This localization neglects observations beyond
some distance from a model sub-domain. Thus, it reduces the effective dimension
of the observation vector. It became evident that a localization is only useful for
the EnKF. The SEEK and SEIK filters operate globally only on the error subspace
which is spanned by the ensemble states. Since the error subspace is typically of
much lower dimension than the local model domain, the global operations will not
significantly limit the parallel efficiency of the algorithms. For the EnKF, the local-
ization reduces the amount of communicated data. In addition, the computations
are distributed more evenly among the processes than in the global formulation of
the analysis. Thus, the localization will provide a better scalability of the EnKF
algorithm compared with a global analysis. We obtained a particularly simple for-
mulation for the implementation of the EnKF analysis routine. The analysis routine
is formulated like the serial algorithm discussed in section 3.3 while the localization
is entirely handled in the observation-dependent routines which are provided by the
user of the algorithm.

For the global algorithms, tables 7.2 and 7.3 showed that significantly less data
is communicated if the variant with domain-decomposed states is used. The least
amount of communication is necessary for the SEIK filter. In addition, the mem-
ory requirements are smaller for the variant with domain-decomposition than with
decomposition over the modes of the ensemble matrix. Using domain-decomposed
states, all matrices involving the state dimension 7 or the dimension m of the ob-
servation vector are decomposed in the SEEK and SEIK algorithms. This provides
scalability of the memory requirements. In the EnKF, all matrices involving the state
dimension n are decomposed, too. It is, however, still required to allocate matrices
involving the observation dimension m. Thus, the EnKF requires more memory
than the SEEK and SEIK algorithms. In addition, the memory requirements do
not scale with the number of processes. Scalability of the memory requirements is
assured if the localized analysis algorithm is used. In this case, all matrices involving
the observation dimension are decomposed and refer only to the local observation
domain.

Since the state or ensemble updates of the filter analysis and resampling phases
correspond to the computation of weighted averages of the ensemble members, it is
much more efficient to store whole ensembles of sub-states on each process than to
store sub-ensemble of whole states. Thus, from the algorithmic point of view, the
domain-decomposed filter algorithms are superior to the mode-decomposed filters.
Most efficient is the domain-decomposed SEIK filter. It decomposes all matrices
involving the larger dimensions n and m. Communication operations are only nec-
essary on matrices involving the dimension r of the error subspace. The localized
EnKF algorithm will also be efficient. However, this algorithm approximates the
analysis by neglecting observations beyond a certain distance.

The different parallel efficiencies of the algorithms, however, will be less impor-
tant in data assimilation applications if the forecast phase dominates the compu-
tation time. In this case, it is important that the ensemble forecast exhibits good
parallel efficiency. This issue is discussed in the next chapter in conjunction with
the development of a parallel filtering framework.

Chapter 8

A Framework for Parallel Filtering

8.1 Introduction

As we have discussed above, the forecast phase of the EnKF and SEIK filters con-
sists of an evolution of V independent model states. In addition, the evolutions of
the modes in the SEEK filter are independent, if a gradient approximation for the
linearized model is used. To utilize this natural parallelism of the forecast phase
and the parallelization possibilities of the analysis and resampling phases discussed
in chapter 7, we develop a framework for parallel data assimilation based on filter
algorithms. The framework defines an application program interface (API) which
permits to combine a filter algorithm with a numerical model. The filter algorithm
is attached to the model with minimal changes of the model source code itself.
The API permits to switch easily between different filter algorithms. Parts of the
data assimilation program which are specific to the model or refer to observations
are hold in separate subroutines. These have to be provided by the user of the frame-
work such that they can be called in the filter routines via the API Accordingly,
no changes to the filter routines themselves are required when a data assimilation
system is implemented utilizing the filter framework. Thus, it is possible to compile
the filter routines separately from the data assimilation program and to distribute
them as a program library.

Existing interface structures are the programs SESAM [75] and PALM [60].
SESAM is based on UNIX shell scripts which control the execution of separated pro-
gram executables. This structure requires that all data transfers between different
programs in the data assimilation system are performed using disk files. SESAM
has the benefit that no changes to the model source code are required, since the
structure of the data assimilation system is defined externally to the model. The
problem of data exchanges between the model and the filter program, i.e. the anal-
ysis and resampling phases, is shifted to the problem of a consistent format of the
data files. Eventually the disk read/write routines have to be changed in the model
or file transformation programs are required. The system does not allow for parallel
model tasks, as it is based on shell scripts. Furthermore, the overall performance in
terms of computation time will not be optimal, since disk operations are extremely
slow in comparison to memory operations.

The concept of the PALM system is quite different. This coupler is based on an
abstract low chart representation of data assimilation systems [48]. PALM provides
a graphical user interface (GUI) in which the data assimilation system is assembled

104

8.2 General Considerations 105

from separated subroutines following the flow chart representation. In addition,
PALM provides a library of algebraic routines. These are prepared for the PALM
system and can be used directly in the GUI. Subsequently, an executable program
is compiled within the PALM framework according to a structure file written by
the GUL The structure of PALM is highly flexible. It requires, however, that sub-
routines are prepared to be used with PALM. For this, the routines are extended
by a definition header. In addition, subroutine calls for data transfers are added.
In PALM, the construction of the whole program including the data assimilation
algorithm is shifted to the GUI.

The data assimilation framework which we present in this chapter is less abstract
and flexible than PALM. On the other hand, the chosen structure gives more control
to the user who attaches the filters to the model source code. The calls to the
filter interface routines are added directly to the source code of the model. The
filter algorithms are fully implemented and optimized using library routines for
algebraic operations. We use the BLAS and LAPACK libraries which are provided
by the computer vendor, since these are typically highly optimized for the used
computer system. There is no need to modify the filter algorithms or to assemble
single routines to obtain a working data assimilation algorithm. In addition, the
execution of the program is controlled from within the model source code, which
is extended to perform data assimilation. The control is not shifted to an exterior
environment as in PALM. In discussions with oceanographers, these future users
apparently prefer a structure in which the physical model remains the essential part
of the data assimilation program and the filter is attached to the model. A structure
which passes the model to a coupler interface which controls the program execution
appeared to be accepted less. Such a structure was also used for the implementation
which we presented in section 3.3. There the control was given to the filter routines
after initializing the model. The time stepper of the model itself was called as a
subroutine.

There are two different process configurations for the framework. The filter rou-
tines can be either executed by (some of) the model processes or disjoint process
sets for the filter and model routines can be used. Thus, after introducing the gen-
eral structure of the framework in section 8.2, we discuss separately the framework
structures for two different process configurations in sections 8.3 and 8.4. In both
cases, we introduce the API. Further, we discuss possible configurations of the re-
quired MPI communicators and explain the execution structures of the framework.
Subsequently, we consider in section 8.5 the issue to define the transition between
the state vector notation of the filter routines and the physical fields of the model.

8.2 General Considerations

For the development of the framework, we base on the following considerations:

o The numerical mode! is independent from the routines of the filter algorithms.
The model source code should be changed as little as possible when combining
the filters with the model.

¢ The filter source code is independent from the model. It solely operates on
model state vectors, not on the physical fields of the model.

8.2 General Considerations 106

Physical Model Filter observation vector Observations
initialization state vector initialization < observation vector
time stepper time analysis phase »- measurement operator

post-processing resampling phase state vector observations errors

Figure 8.1: Logical parts of the data assimilation problem.

e The observations are independent both from the numerical model and from
the filter. The filter routines require information on the observations (obser-
vation vector, measurement operator, observation error covariance matrix) in
the analysis phase. The model does not need information about the observa~
tions. To implement the measurement operator, however, information on the
structure of the state vector is necessary. The physical meaning of the entries
{velocities, temperatures, etc.) and their spatial location in the model mesh
has to be known. Since the routines which initialize the state ensembles also
require this information, it can be shared between the ensemble initialization
routines and the implementation of the measurement operator using Fortran
modules. The framework can be logically partitioned into three parts as is
sketched in figure 8.1. The transfer of information between the model and
the filter as well as between the filter and the observations is performed via
the APL

e The framework has to allow for the execution of multiple concurrent model
evolutions, each of these can be parallelized itself and thus be executed by
multiple processes. Both, the parallelization of the model itself and the number
of parallel model tasks have to be specified by the user.

e Like the model, the filter routines can be executed in parallel, too. We have
discussed the parallelization of the filter routines in chapter 7.

e The filter routines can either by executed by (some of) the processes used for
the model evolutions or by a set of processes which is disjoint from the set of
model processes.

To combine a filter algorithm with a numerical model in order to obtain a data
assimilation program, we consider the *typical’ structure of a model which computes
the time evolution of several physical fields. These can be, for example, the temper-
ature and salinity fields in a modeled ocean. The 'typical’ structure is depicted in
figure 8.2a. In the initialization phase of the program, the mesh for the computations
is generated. Also the physical flelds are initialized. Subsequently, the evolution is
performed. Here nsteps time steps of the model fields are computed. These take into
account boundary conditions as well as external forcing fields, like e.g. wind fields
over the ocean. At certain time-step intervals, some fields are typically written into
disk files and diagnostic quantities are computed. Having completed the evolution
some post-processing operations can be performed.

The structure of the data assimilation program with attached filter is shown in
figure 8.2b. To initialize the filter framework, a routine Filter Init is added to the
initialization part of the program. Here the arrays required for the filter, like the
ensemble matrix X, the mode matrix V or matrix U of the SEEK filter are allocated.

8.2 General Considerations

y

Initialize Model
generate mesh
initialize fields

Initialize Model
generate mesh
initialize fields

I
Do i=1,nsteps

- Filter_init

Y
Time stepper D)
include BC
include forcin
clude foring

l

< nsteps07 >+

true

Do i=1,nsteps
A}
Time stepper
include BC
include forcing

EE—
Post—processing

Post~processing

o

Figure 8.2: Flow diagrams: a) Sketch of the typical structure of a model performing time
evolution of some physical fields. b) Structure of the data assimilation configuration of
the model with attached filter. Added subroutine calls and control structures are shaded
in gray.

8.2 General Considerations 108

Subsequently, the state estimate x% and the state ensemble or mode matrices are
initialized. The major logical change when combining a filter algorithm with the
model source code is that a sequence of independent evolutions has to be computed.
This can be achieved by enclosing the time stepping loop by an unconditioned outer
loop which is controlled by the filter algorithm. For each evolution the model obtains
a model state from the filter algorithm together with the number of time steps to
be performed. To enable the consistent application of time dependent forcing in
the model the filter also provides the model time at the beginning of the evolution
phase. The user has to assure that the evolutions are really independent. Thus,
any re-used fields must be newly initialized. In the framework, the model state,
the model time (t), and the number of time steps (nsteps) are provided by calling a
subroutine Get_State before the time stepping loop is entered. A value of nsteps = 0
uniquely determines that no stepping has to be performed. Thus, this setting is used
as an exit-condition within the unconditioned outer loop. After the time stepping
loop a subroutine Put_State is inserted into the model source code. In this routine
the evalved model fields are stored back as a column of the ensemble state matrix
of the filter. If the ensemble forecast has not yet finished, no further operations are
performed in the routine Put.State. When all model states of the current forecast
phase are evolved, Put_State executes the analysis and resampling phases of the
chosen filter algorithm.

For the parallelized version of the data assimilation program, a further change
to the model source code concerning the configuration of MPI communicators is
required. For MPI-parallelized models there is typically a single model task which
operates in the global MPI communicator MPI.COMM_WORLD. To allow for mul-
tiple model tasks which are executed concurrently, the global communicator has
to be replaced by a communicator of disjoint process sets in which each of the
model tasks operates. Thus, a communicator COMM_MODEL consisting of N,
disjoint process sets has to be generated. In the model source code, the reference to
MPI. COMM_WORLD has to be replaced by COMM_MODEL. Next to the commu-
nicator for the model a communicator COMM_FILTER has to be created defining
the processes which execute the filter routines. To couple the filter processes with
the model tasks another communicator COMM_COUPLE is required. Using this
communicator, data is transfered between the filter and model parts of the data
assimilation framework.

The configuration of the MPI communicators is dependent on the choice whether
the filter routines are executed by some of the model processes or on a set of processes
which is disjoint from the set of model processes. In addition, the API for calling
the subroutines Filter_Init, Get_State, and Put_State depends on this choice of the
process configuration. For this reason, we discuss the two different configurations
separately in the following sections.

The implementation of the filter routines has been discussed in chapter 7. The
names of user supplied subroutines are handled in the framework as subroutine
arguments in the filter routines and have thus to be specified in the API. This
allows the user to choose the subroutine names flexibly.

8.3 Framework for Joint Process Sets for Model and Filter 109

Subroutine Filter Init(type_ass,subtype_ass,param.int,dim. pint, param.real,
dim_prea COMM _MODEL COMM _FILTER,COMM_COUPLE,
modeltask,n_modeltasks, filterpe,Init_Ensemble,verbose,status)

int type_ass {Type a filter algorithm, input}

int subtype.ass {Sub-type of filter, input}

int param_int(dim.pint) {Array of integer parameters, input}

int dim_pint {Size of param_int, input}

real param_real(dim_preal) {Array of floating point parameters, input}
int dim.preal {Size of param_real, input}

int COMM _MODEL {Model communicator, input}

int COMM_FILTER {Filter communicator, input}

int COMM _COUPLE {Coupling communicator, input}

int modeltask {Model task the process belongs to, input}

int n.modeltasks {Number of parallel model tasks, input}

int filterpe {Whether the process belongs to the filter processes, input}
external Init_Ensemble {Subroutine for ensemble initialization, input}
int verbose {Whether to print screen information, input}

int status {Output status flag of filter, output}

Algorithm 8.1: Interface to the subroutine Filter-Init in the case of joint process sets
for model and filter.

8.3 Framework for Joint Process Sets for Model
and Filter

First we consider the situation that the filter routines are executed by some of
the processes which are used for the model evolutions. In this case, the internal
variables of the filter algorithms are mainly stored using Fortran modules. With
this, e.g., the ensemble matrix X or the counter for the ensemble member to be
evolved can be shared between the different subroutines of the filter. The names
of user supplied subroutines cannot be handled via modules. For this reason, the
subroutine names have to be used as arguments in the call to each routine using the
particular subroutines.

8.3.1 The Application Program Interface

The three subroutines Filter_Init, Get_State, and Put_State provide a defined in-
terface to the filter algorithms. In addition, the user-supplied routines like the
observation-related subroutines and the user analysis routine are called using a de-
fined interface. We discuss here the interface to the three routines of the framework
which are called from the model. The interfaces of the user supplied routines which
are called by the filter are described in appendix B. The interfaces of these routines
are equal for both process configurations. The implementation of the operations per-
formed in these routines depend, however, on the choice whether a parallelization
on basis of mode-decomposition or domain-decomposition is used.

The interface of the routine Filter_Init is shown as algorithm 8.1. This routine is
called in the model source code by all processes. For the initialization several vari-
ables are passed to the filter. With the integer argument type_ass the user chooses

8.3 Framework for Joint Process Sets for Model and Filter 110

Subroutine Get_State(nsteps,time,Next Observation,Distribute_State,
User_Analysis,status)
int nsteps {Number of time steps to be performed, output}
real time {Model time at begin of evolution, output}
external Next_Observation
{Subroutine to get number of time steps and current time, input}
external Distribute_State
{Subroutine to distribute state in COMM_MODEL, input}
external User_Analysis {Subroutine for user analysis, input}
int status {Output status flag of filter, output}

Algorithm 8.2: Interface to the subroutine Get.State in the case of joint process sets for
model and filter.

the filter algorithm to be used. For flexibility, subtype_ass defines a sub-type of
the filter. This might be, e.g., a variant of SEEK in which the modes in matrix V
are not evolved [33]. The array param_int is a vector of variable size dim_pint.
It holds integer parameters for the filters. In the current implementation of the
filters dim_pint = 3 is set if the SEEK or SEIK filters are used. For EnKF, it
is dim.pint = 4. The first entry of param_int holds the dimension n of the state
vector. The second entry specifies the ensemble size N for EnKF or the rank r of the
approximated state covariance matrix for SEEK and SEIK. The third entry specifies
whether a parallelization with domain-decomposition or a decomposition over the
modes of the ensemble matrix is used. For the EnKF the fourth entry is used to
specify the rank of the inverse on the left hand side of equation (2.47) if a pseudo
inverse has to be computed. A value of zero specifies that the solution of equa-
tion (2.47) is computed using the LAPACK routine DGESV. The array param._real
of size dim_preal defines a vector of floating point parameters which are be required
for some of the filters. For SEIK and EnKF param_real has a size of 1 and contains
only the value of the forgetting factor p. For SEEK it is dim_preal = 2. While
the first entry of param.real specifies the forgetting factor p, the second entry sets
the value of € for the gradient approximation of the forecast. The flexible sizes of
param_nt and param.real allow for future extensions of the functionality. Next
to these variables, the three communicators are handed over to the filter initializa~
tion routine. Further, the index modeltask of the model task of the process calling
Filter_Init and the total number n_modeltasks of parallel model tasks is passed to
the filter initialization routine. The argument filterpe specifies whether a process
belongs to the filter processes. The name of the subroutine performing the ensemble
generation is the next argument. The interface is completed by an argument which
defines whether the filter routines will print out screen information and a final ar-
gument which serves as a status flag. It will have a non-zero value if a problem
occurred during the initialization.

The subroutine Get State is called in the model source code before the time
stepping loop is entered. Get_State initializes the state fields of the model and pro-
vides the information on the current model time and the number of time steps to be
computed, The interface to this routine is shown as algorithm 8.2. All parameters
which are required by the filters have already been specified in the filter initialization.

8.3 Framework for Joint Process Sets for Model and Filter 111

Accordingly, the interface of Get.State contains only names of subroutines and out-
put variables which are initialized for the model time stepper. The variables nsteps
and time, as well as the status flag status are outputs of the routine. In addi-
tion, the names of three subroutines are specified. The routines Nezt.Observation
and User_Analysis have already been described in section 3.3.1. The routine Dis-
tribute.State transfers a state vector to model fields and distributes these within the
model task defined by COMM_MODFEL. In the variant with mode-decomposition,
the framework itself only initializes a state vector on a single process in each model
task. The model-dependent operations are then performed by the routine Dis-
tribute_State which is described in section 8.5.

Having computed the evolution of a model state, this forecast is stored back
in the ensemble or mode matrix of the filter algorithm. This is performed in the
routine Put. State. If Put_State is called after the filter forecast phase has been
completed, the analysis and resampling phases are executed by this routine. In its
interface, the names of several subroutines which are called by the filter analysis and
resampling algorithms have to be specified. The observation-related routines Mea-
surement.Operator, Measurement, RinvA, RplusA, and Get_Dim_QObs have already
been discussed in section 3.3.2. The routine Measurement_Ensemble is required in
the EnKF. It provides the observation ensemble according to the observation error
covariance matrix R. Collect_State performs the operation inverse to that of the
routine Distribute_State. That is, the ensemble fields in a model task are gathered
in a state vector. For mode-decomposed ensemble matrices, the state vector is gath-
ered by a single process of this task. Next to the names of subroutines, the interface
of Put_State contains again the status flag status as an output variable.

The routine Put_State is generic for all three filter algorithms. Due to this, the
interface requires the specification of all possible subroutine names, even if they are
not required for all filters. For example, SEEK and SEIK only require the routine
RinvA but not RplusA. The latter routine is required by the EnKF analysis while
the former one is not used by this filter. To generate an executable program all

Subroutine Put_State(Collect_State,Get_Dim_Obs,Measurement_Operator,
Measurement,Measurement_Ensemble, User_Analysis,RinvA RplusA, status)

external Collect_State

{Subroutine to collect state vector in COMM_MODEL, input}
external Get_Dim_Obs

{Subroutine to provide dimension of observation vector, input}
external Measurement_Qperator

{Subroutine with implementation of measurement operator, input}
external Measurement {Subroutine to initialize observation vector, input}
external Measurement_Ensemble

{Subroutine to initialize ensemble of observation vectors, input}
external User_Analysis {Subroutine for user analysis, input }
external RinvA {Subroutine for product of R™! with some matrix, input}
external RplusA {Subroutine to add R to some matrix, input}
int status {output status flag of filter, output}

Algorithm 8.3: Interface to the subroutine Pui_State in the case of joint process sets for
model and filter.

8.3 Framework for Joint Process Sets for Model and Filter 112

— logical process number (= rank in MPI.COMM_WORLD)

O 1 2 3 4 5 6 7 MPLCOMM.WORLD
O 1 o 1 [0 1 [0 1 COMM.MODEL

[0 1 [0 1 COMM.COUPLE

[0 1 COMM_FILTER

Figure 8.3: Example communicator configuration for the case that the filter is executed
by some of the model processes and the filter routines use a parallelization of the modes.

three routines must be present (possibly as an empty routine, if it is not called
by the chosen filter), since they are required for the linker step. To facilitate the
implementation if only one filter type is used, we have implemented specific routines
like Put.State .SEEK for the SEEK filter. The interface of the specific put-routines
contains only the names of the subroutines relevant for the chosen filter.

It would be possible to avoid the names of subroutines in the calling interfaces
to Filter_Init, Get_State, and Put_State. This would simplify the API considerable.
On the other hand this would disable the possibility to use arbitrary names for the
subroutines. We prefer this flexibility, since the user is not urged to use specific
names for his subroutines.

8.3.2 Process Configurations for the Filtering Framework

Before we explain the functionality of the filter interface routines and the com-
munication of data between the filter and the model part of the data assimilation
program, we discuss the configuration of the MPI communicators. These define the
process topology for the data assimilation framework. In general, the data assimila-~
tion framework requires that the user initializes the communicators and provides the
names of these communicators to the routine Filter_Init. To facilitate the initializa-
tion of the communicators, the framework includes templates for these operations.
These templates can be used in most situations without changes, but can be adapted
when necessary. The communicator configurations use simple 1-dimensional process
topologies. Dependent on the model, it might be useful to apply other topologies
inside the process sets of COMM_MODEL, e.g., to obtain optimal performance for
2-dimensional domain decompositions.

A possible process configuration for mode-decomposition is shown in figure 8.3.
In this figure each row corresponds to the communicator which is given on the right
hand side. The processes are ordered from left to right according to their logical
process number which is given by the rank of the processes in the communicator
MPI_COMM_WORLD. Thus, the entries in a single column refer to the same pro-
cess. The number entries denote the rank of the process in the communicator.
If no rank is given for a process in the context of some communicator, this process
does not attend in communications within this communicator. The brackets enclose
processes which build together a process set on the communicator.

In the example the program is executed by a total of 8 processes. These are dis-
tributed into four parallel model tasks each executed by two processes in the context
of COMM_MODEL. The filter routines are executed by two processes. These are the

8.3 Framework for Joint Process Sets for Model and Filter 113

— logical process number (= rank in MPI_.COMM_WORLD)
[0 1 2 3 4 5 6 7] MPI_.COMM WORLD

O 1 [1 [1 [0 1 COMM.MODEL
[0] [0] 0] [0] COMM_COUPLE
[0 1 2 3] COMM_FILTER

Figure 8.4: Example communicator configuration analogous to that in figure 8.3. Here
the filter is executed by all processes which have rank 0 in COMM_MODEL.

processes of rank 0 and 4 in the context of MPI.COMM_WORLD. In the context
of COMM_MODEL the filter processes have rank 0. Each filter process is coupled
to two model tasks. Thus, there are two disjoint process sets in COMM_COUPLE
each consisting of two processes. With this configuration, the filter initialization
will divide the ensemble or the mode matrix into two matrices which are stored on
the two filter processes. Each matrix holds a sub-ensemble of model states. For
the utilization of all four model tasks, each filter process will again distribute its
sub-ensemble to the two model tasks which are coupled to it by COMM._COUPLE.

A simpler configuration which will be sufficient for most applications is shown in
figure 8.4. Again there are four parallel model tasks each containing two processes.
The filter is executed in this configuration by each process which has rank 0 in the
context of COMM_MODEL. With this configuration, the communication scheme is
simplified since no communication via COMM._COUPLFE is required. Each process
set in COMM_COUPLE contains only a single process and the filter processes can
directly provide data to the model tasks. Using this configuration, the state or mode
ensemble is distributed into sub-ensembles in the routine Filter_Init. In contrast to
the configuration in figure 8.3, no further distribution of the ensemble is necessary.

If a domain-decomposition is used for the parallelization of the model and the
filter parts of the program, the configuration of the processes is distinct from the
case of mode-decomposition. considered is the situation that the filter uses the
same domain-decomposition of the states as the model. Figure 8.5 shows a possible
process configuration. Here the program is executed by six processes in total. These
are distributed into two model tasks each consisting of three processes. The filter
routines are executed by all processes of one of the model tasks. Hence, the sub-
state from this model task can be directly transfered between the local ensemble
matrix and the model fields. The second model task is connected to the filter via
COMM_COUPLE. With domain-decomposition, the initialization of the sub-states
is performed in the initialization phase of the filter. The filter operates on the whole
ensemble of local sub-states. To use multiple model tasks the ensemble is distributed
into sub-ensembles. These are sent to the model tasks via COMM_COUPLE.

A simplified configuration is possible which uses only a single domain-decomposed
model task. This would lead to a trivial coupling communicator which consists of
process sets containing a single process each. Thus, no communication in COMM_-
COUPLE would be necessary and the overall MPI communication would be mini-
mized. This configuration would, however, require a model with very efficient par-
allelization. On the other hand, overall scalability would be limited, since only a
single model evolution is computed at a time.

8.3 Framework for Joint Process Sets for Model and Filter 114

—— logical process number (= rank in MPI_.COMM_WORLD)
[0 1 2 3 4 5] MPI_.COMM_WORLD
[0 1 2] [0 1 2] COMM_MODEL
0 1
o 1] COMM_COUPLE
0 1
[0 1 2] COMM_FILTER

Figure 8.5: Example communicator configuration for the case of domain-decomposed
states. The filter is executed by some of the model processes.

8.3.3 The Functionality of the Framework Routines

To gain further insight in the functionality of the data assimilation framework, we
discuss here the operations which are performed in its main routines. The filter algo-
rithms are hidden behind the three subroutines Filter_Init, Get_State, and Put_State.
Due to this, the filter main routine, which was discussed in section 3.3.1, is split into
two parts. These parts reside in Getl_State and Put_State. Some additional opera-
tions are contained in these routines which are required for the parallel execution of
the data assimilation framework.

The interface to the routine Filter_Init has been shown in algorithm 8.1. Al-
gorithm 8.4 sketches the operations which are performed in this routine when the
SEIK filter is used with a mode-decomposed ensemble matrix. The routine is called
by all processes. Here several parameters are initialized, like the chosen filter algo-
rithm or the ensemble size. These parameters are shared between the filter routines
using Fortran modules. All subsequent operations in Filter_Init are only performed
by the filter processes. First, the sizes of sub-ensembles are computed. Subsequently,
the arrays required for the filter are allocated. These are the state vector x and the
local ensemble matrices X,. In addition, the full ensemble matrix X is allocated on
the filter process with rank 0. After the allocation of the fields, the user-supplied
subroutine Init_Ensemble is called. For the SEIK filter, this routine initializes the en-
semble matrix. If a parallelization with mode-decomposition is used, Init_Ensemble
is only called by the process with rank 0. Here the full ensemble matrix is initialized.
Subsequently, it is necessary to distribute sub-ensembles to all filter processes. This
is performed by MPI communication operations.

In the case of domain-decomposed states, the routine Init_Ensemble is called
by all filter processes. The routine has to provide the full state ensemble for the
local domain of each process. Since the state ensembles are readily initialized by all
filter processes no further distribution of the ensembles is performed in Filter_Init.
A similar technique could be used for a mode-decomposed ensemble matrix. That
is, Init_Ensemble is called by each filter process with the local sub-ensemble as ar-
gument. Then Init.Ensemble initializes only this local sub-ensemble. Since the
sub-ensembles are readily initialized on the filter processes, no distribution of sub-
ensembles would be required in Filter_Init. Using this variant would avoid the
storage of the full ensemble matrix on a single process. On the other hand the
user would be obliged to implement Init_Ensemble such that all sub-ensembles are
initialized correctly. From this point of view, the first variant, which initializes the

8.3 Framework for Joint Process Sets for Model and Filter 115

Subroutine Filter Init(...)

int mype_filter {Rank of process in COMM_FILTER}
int npes_filter {Number of processes in COMM_FILTER}

1: initialize parameters
2: if filterpe == 1 then
3: initialize local ensemble sizes NN,
4: allocate fields: X (n, N,), x(n)
5 if mype_filter == 0 then
6: allocate ensemble matrix X(n, N)
7 call Init_Ensemble(X) {Initialize full ensemble matrix}
8 for ¢+ = 1,npes_filter do
o: send sub-ensemble X(j, : j,+7,—1) to filter process ¢ {With MPI_Send}
10: end for
11: deallocate field X
12: else if mype_filter > 0 then
13: receive sub-ensemble X, {With MPI operation MPI_Recv}
14: end if
15: end if
Algorithm 8.4: Sketch of the operations which are executed in the routine Filter_Init for
the case of mode-decomposition. The interface to this routine is shown as algorithm 8.1

full ensemble matrix on a single process, is simpler to use. If memory limitations
render the allocation of the full ensemble matrix on a single process impossible, the
initialization should directly operate on the sub-ensembles. To allow for this flexi-
bility, Filter_Init contains both variants.

The subroutine Get.State is called prior to each model state evolution. Its struc-
ture is sketched in algorithm 8.5 for the SEIK and EnKF filters. If the routine is
called for the very first time, it calls the user analysis routine User_Analysis. This
permits to analyze the initial ensemble consistently with the calls to User_Analysis
which are performed during the assimilation. Also the ensemble counter member is
set to one at the very first call to Get_State. For the remainder of the routine, this
signals that a new forecast phase has to be performed.

If Get_State is called in the beginning of a forecast phase (i.e., with member = 1),
the routine Next_Observation is called by the process of rank 0 in COMM_FILTER.
Next_Observation initializes the number of time steps nsteps for the next forecast
phase and the current model time time. Subsequently, the value of nsteps is dis-
tributed to all processes. If nsteps > 0, also the variable time is distributed to all
processes by a broadcast operation. If the number of filter processes is smaller than
the number of model tasks, as was the case in figure 8.3, the sub-ensemble of each
filter process is further distributed such that each model task holds several ensemble
members. This concludes the initialization of a forecast phase.

When Get_State is called during a forecast phase, it calls the user-supplied rou-
tine Distribute_State. Here the model fields are initialized from the state vector which
is provided to Distribute_State as a subroutine argument. Since the state vector is

8.3 Framework for Joint Process Sets for Model and Filter 116

Subroutine Get.State(...)

int firsttime {Flag whether routine is called the very first time}
int member {ensemble counter; shared using Fortran module}

1: if firsttime == 1 then
2. call User.Analysis(. ..)

3. firsttime «— 0

4: member — 1

5: end if

6: if member == 1 then

7. if mype._filter == 0 then

8 call Next_Observation(step,nsteps,time) {User supplied routine}
9: end if

10: broadcast nsteps to all processes {With operation MPI_Bcast}

11: if nsteps > 0 then

12: broadcast time to all processes {With operation MPI Bcast}

13: distribute sub-ensembles {With operations MPI_Send and MPI_Recv}
14: end if

15: end if

16: if nsteps > 0 then

17: call Distribute State(n, X, (:, member)) {User supplied routine}

18: end if

Algorithm 8.5: Sketch of the operations which are executed in the routine Get State.
The interface to this routine is shown as algorithm 8.2

only initialized on a single process of a model task, it might also be necessary to
distribute the state information to the other processes of the model task.
Distribute_State is not called directly by the model routines. Accordingly, the
model fields or information on the model grid cannot be supplied as subroutine
arguments. Thus, Distribute_State requires that the model fields are available via
Fortran modules or ’common’ blocks. We will discuss this issue in section 8.5.

The routine Put.State is called after a model state has been evolved by the
model time stepper. Algorithm 8.6 sketches the operations which are performed
in this routine for the SEIK filter. During the forecast, the user-supplied routine
Collect_State is called with the current ensemble state vector as argument. Also the
ensemble counter member is incremented. Collect_State initializes the forecasted
state vector from the evolved model fields. This is the inverse operation to that
performed by Distribute_State. We will discuss Collect State in section 8.5.

If the forecast of all ensemble members is not yet finished, the program exits
Put_State and loops back to Get_State in order to evolve the next ensemble mem-
ber. If the ensemble forecast is completed, the filter processes proceed in routine
Put_State to perform the analysis and resampling phases of the filter algorithm. If
there are less filter processes than model tasks, all ensemble members are gathered
by the filter processes. Consecutively, the filter update phases are performed by
calling SEIK_Analysis and SEIK_Resample and the user supplied analysis routine

8.4 Framework for Model and Filter on Disjoint Process Sets 117

Subroutine Put_State(...) 7

int member {ensemble counter; shared using Fortran module}
int N, {local ensemble size; shared using Fortran module}

1: call Collect_State(n, X,(:, member))
2: member « member + 1

3: if member = N, + 1 then

4: gather sub-ensembles {With operations MPI.Send and MPI_Recv}
5. if filterpe == 1 then

6 call User_Analysis(...) {User supplied routine}

7 call SEIK_Analysis(...) {Perform filter analysis}

8 call SEIK _Resample(...) {Perform resampling}

9 call User_Analysis(...) {User supplied routine}

10: end if
11: member « 1
12: end if

Algorithm 8.6: Sketch of the operations which are executed in the routine Put.State.
The interface to this routine is shown as algorithm 8.3

User_Analysis. After the update, the ensemble counter member is reset to one and
the filter processes exit Put_State. Only the filter processes perform the update. The
remaining processes reset the ensemble counter and proceed directly to the routine
Get_State. Here, they wailt to receive the variable nsteps which is send from the filter
process with rank 0 in COMM_FILTER to all processes by a broadcast operation
(line 10 of algorithm 8.5).

8.4 Framework for Model and Filter on Disjoint
Process Sets

The variant of executing the model and the filter parts of the data assimilation
program on disjoint process sets permits a very clear separation between these to
parts of the program. All processes will call the filter initialization routine. Then, the
filter processes proceed directly to the filter main routine. The model processes will
exit the initialization routine and proceed to the model time stepper loop. During
the data assimilation phase, the model and filter parts of the program are connected
only by MPI communication.

8.4.1 The Application Program Interface

The application program interface in the case of disjoint process sets for model
and filter consists again of the three routines Filter_Init, Get_State, and Put_State. In
addition, the observation-related subroutines and the routines Distribute_State and
Collect_State are required. These routines can be identical to those routines which
are used in the framework discussed in section 8.3.1. Finally, the user analysis

8.4 Framework for Model and Filter on Disjoint Process Sets 118

Subroutine Filter Init(type_ass,subtype.ass,param._int,dim_pint, param_real,
dim.preal COMM_MODEL,COMM_FILTER,COMM_COUPLE,
filterpe,Init_Ensemble,Get_Dim.Obs,Next_Observation,
Measurement_Operator,Measurement,Measurement_Ensemble,User_Analysis,
RinvA ,RplusA verbose,status)

int type_ass {Type a filter algorithm, input}
int subtype_ass {Sub-type of filter, input}
int param_int(dim_pint) {Array of integer parameters, input}
int dim_pint {Size of param_int, input}
real param_real(dim_preal) {Array of floating point parameters, input}
int dim_preal {Size of param_real, input}
int COMM_MODEL {Model communicator, input}
int COMM _FILTER {Filter communicator, input}
int COMM_COUPLE {Coupling communicator, input}
int modeltask {Model task the process belongs to, input}
int n_modeltasks {Number of parallel model tasks, input}
int filterpe {Whether the process is a filter process, input}
external Init_Ensemble {Subroutine for ensemble initialization, input}
external Get_Dim_Obs

{Subroutine to provide dimension of observation vector, input}
external Next_Observation

{Subroutine to get number of time steps and current time, input}
external Measurement.Operator

{Subroutine with implementation of measurement operator, input}
external Measurement {Subroutine to initialize observation vector, input}
external Measurement._Ensemble

{Subroutine to initialize ensemble of observation vectors, input}
external User_Analysis {Subroutine for user analysis, input}
external RinvA {Subroutine for product of R™! with some matrix, input}
external RplusA {Subroutine to add R to some matrix, input}
int verbose {Whether to print screen information, input}
int status {Output status flag of filter, output}

Algorithm 8.7: Interface to the subroutine Filter_Init in the case of disjoint process sets
for model and filter.

8.4 Framework for Model and Filter on Disjoint Process Sets 119

routine User_Analysis is required. The interface for this routine is identical to that
of the joint-process case.

The interface of Filter_Init is shown as algorithm 8.7. It is called by all pro-
cesses, to allow also for the initialization of parameters for the routines Get_State
and Put_State which will only be executed by the model processes. The required
parameters in the interface of Filter_Init are the same as in the case of joint process
sets for model and filter. These parameters have been documented in section 8.3.1.
Also the name of the subroutine performing the ensemble initialization has to be
provided. In the call to Filter_Init the API for disjoint process sets requires, in
addition, the specification of the observation-related subroutines and the user anal-
ysis routine. This is necessary since the filter processes directly call the main filter
routine in Filter_Init.

Filter_Init is generic for all three filter algorithms. As for the routine routine
Put_State in the case of joint processes in section 8.3.1, all subroutine names have to
be specified in the interface, even if they are not required for all filters algorithms.
To facilitate the implementation, the framework also provides specific initialization
routines for the filters. These routines require only the specification of the subrou-
tines which are used for the particular filter.

Algorithms 8.8 and 8.9 show respectively the routines Get_State and Put_State.
As these routines are called from the model routine, they are only executed by the
model processes. The routines receive and send the state vectors. Furthermore,
Get.State receives the time stepping information. In addition, both routines con-
trol the transition between the state vector and the model fields. Direct outputs of
Get_State are again the number of time steps (nsteps) and the model time at begin
of the evolution (timme). Next to these variables and the status flag status, only the
subroutine Distribute_State has to be specified. The functionality of Distribute_State
is the same as in the case of joint processes for model and filter. The interface of
Put_State is considerably simpler here than in the configuration with joint processes.
Ouly the subroutine Collect_State has to be specified since the update routines of
the filter are not directly called by Put_State. The status flag is given as the second
argument of the interface.

8.4.2 Process Configurations for the Filtering Framework

A possible process configuration for mode-decomposed ensemble matrices is shown
in figure 8.6. The program is executed by six processes. There are two model
tasks which are executed by two processes each. The remaining two processes are
used to execute the filter. Each filter process is coupled to one model task by the
communicator COMM_COUPLE. Here, the communication in COMM_COUPLE is
always necessary, since it couples the disjoint process sets of filter and model. During
the forecast phase each filter process sends the states of its sub-ensemble to the model
task connected to it and receives forecasted state vectors. The model evaluations
are performed only by the model processes while the filter processes wait for data.
The filter analysis and resampling are computed only by the two filter processes.
Meanwhile, the model processes idle.

Figure 8.7 shows a possible configuration for domain-decomposed states. As be-
fore, six processes are used in total. Two processes are again used for the filter. The

8.4 Framework for Model and Filter on Disjoint Process Sets

120

Subroutine Get_State(nsteps,time,Distribute_State,status)
int nsteps {Number of time steps to be performed, output}
real time {Physical time at begin of evolution, output}
external Distribute.State
{Subroutine to distribute state in COMM_MODEL, input}
int status {Output status flag of filter, output}
int n {Model state dimension}
real x(n) {State vector}
int mype_-model {Process rank in COMM_MQODEL}

1: if mype-model == 0 then

2: receive nsteps in COMM_COUPLE {With operation MPI_Recv}
3: endif

4: broadcast nsteps in COMM_MODEL {With operation MPI_Bcast}
5. if nsteps > 0 then

6: if mype_model == 0 then

7: receive time in COMM_.COUPLE {With operation MPI.Recv}
8: receive x in COMM_COUPLE {With operation MPI_Recv}

9: end if

10: broadcast time in COMM_MODEL {With operation MPI_Bcast}
11: call Distribute_State(n,x)

12: end if

Algorithm 8.8: Pseudo code of the subroutine Get_State in the case of disjoint process

sets for model and filter.

Subroutine Put_State(Collect_State,status)
external Collect_State
{Subroutine to collect state vector in COMM_MODEL, input}
int status {output status flag of filter, output}
int n {Model state dimension}

real x(n) {State vector}
int mype_-model {Process rank in COMM_MODEL}

1. call Collect_State(n,x)

2. if mype_-model == 0 then

3 send x in COMM_COUPLE {With operation MPI.Send}
4: end if

Algorithm 8.9: Pseudo code of the subroutine Put_State in the case of disjoint process

sets for model and filter.

8.4 Framework for Model and Filter on Disjoint Process Sets 121

— logical process number (= rank in MPI_.COMM_WORLD)
[0 1 2 3 4 5] MPI_COMM_WORLD
[0 11 [0 1] COMM_MODEL
[0 1
0 1
0 1] COMM_FILTER

} COMM_COUPLE

Figure 8.6: Example communicator configuration for the case that model and filter are
executed by disjoint process sets and the filter routines use a parallelization over the modes
of the ensemble matrix.

— logical process number (= rank in MPI.COMM_WORLD)
[0 1 2 3 4 5] MPI_.COMM_WORLD
[0 1 Jo 1 COMM_MODEL

[0 L 2 } COMM.COUPLE

o 1 COMM_FILTER

J

Figure 8.7: Example communicator configuration for the case of domain-decomposed
states and execution of model and filter parts by disjoint process sets. The example is
analogous to that in figure 8.6. In contrast to the mode-decomposed case, each filter
process is coupled to respectively one process of both model tasks.

forecasts are evaluated on two model tasks, each consisting of two processes. The
communicator COMM_COUPLE now couples each filter process with respectively
one process of both model tasks. Thus, during the forecast phase, a filter process
sends local state vectors to both model tasks. When all processes of a model task
have received a sub-state, they start with the model evaluations.

8.4.3 Execution Structure of the Framework

The data assimilation for disjoint process sets for model and filter exhibits a clear
separation between the model and filter parts. Both are executed concurrently on
their respective processes. A flow diagram for the framework which exemplifies the
SEIK filter is shown in figure 8.8. The thick green lines symbolize communication.
On execution of the program, the MPI communicators are initialized by all pro-
cesses in global operations. Since in this phase of the program all processes are avail-
able, the user has to take care that the subsequent model initialization is performed
only by the model processes. The allocation and initialization of model fields is not
required by the filter processes. After the model initialization, the filter initialization
routine Filter_Init is called by all processes. In this routine, the model processes
store the information on the communicators COMM_MODEL and COMM_COUPLE
while the filter processes store the information on COMM_COUPLE and COMM_-
FILTER. Subsequently, the model processes exit the filter initialization routine. The
filter processes proceed in Filter_Init by allocating the arrays which are required for
the chosen filter. Then the state vector x and the ensemble matrix X or the mode
matrix V are initialized and sub-ensembles are distributed to all filter processes.

8.4 Framework for Model and Filter on Disjoint Process Sets 122

Finally the filter processes call the filter main routine whose components are shown
on the right hand side of figure 8.8.

Having left the routine Filter_Init, the model processes proceed to the forecast
loop shown on the left hand side of figure 8.8. In Get_State (see algorithm 8.8), the
processes wait to receive the value of nsteps which is sent by the filter. If nsteps = 0,
no forecast has to be performed. Thus, no further operations are necessary in
Get_State and the forecast loop is exited. If nsteps > 0, the processes also receive
the variable time and the state vector x to be evolved. Subsequently, the routine
Distribute_State is called which initializes the model fields on the basis of the state
vector x. Then the evolution of the state is performed by the model time stepper.
After the evolution, the routine Put_State is called. This routine is shown as algo-
rithm 8.9. Here Collect_State is called to initialize the forecasted state vector from
the model fields on the model process with rank 0. Subsequently, this process sends
the state vector x to the filter. This completes the forecast loop and the processes
return to the begin of the unconditioned loop.

The structure of the filter main routine on the right hand side of figure 8.8
is essentially the same as that of the serial algorithm which we have discussed as
algorithm 3.1. An addition to this algorithm is the subroutine Finalize_Model. It is
required in the parallel program to send nsteps with a value of zero to the model
tasks. As discussed above, this signalizes to the model tasks to exit the forecast
loop.

The subroutine Forecast controls the loop over all ensemble members to be
evolved. It is shown as algorithm 8.10. In the configuration with disjoint pro-
cesses for filter and model, an algorithm is used which sends a only single ensemble
state vector to the available model tasks. The filter part of the algorithm uses
non-blocking MPI operations. These only post the communication operation and
immediately return from the function even if the communication operation is not yet
completed. In contrast to this, the routines Get_State and Put_State apply block-
ing MPI operations to ensure that the data has been received or send completely.
Sending and receiving single state vectors permits a flexible handling of the forecast
phase. If a forecasted state vector is received back from some model task, a new
ensemble state vector can be send immediately to this task if there are any ensemble
states left. For sufficiently large ensembles, this ensures a good load balancing since
faster model tasks can evolve more ensemble states than slower model tasks. This
algorithm is more flexible than the configuration used for joint process sets for filter
and model. There the sizes of sub-ensembles are set during the initialization phase
of the framework. In addition, the memory requirements are smaller here. In the
case of mode-decomposition, a single state vector is allocated on the model processes
with rank 0 in COMM_MODEL. No filter-related memory allocations are required
on the remaining model processes. For domain-decomposition a single sub-state is
allocated on each model process. For the configuration using joint process sets for
filter and model, it is required to allocate sub-ensembles of state vectors.

8.4 Framework for Model and Filter on Disjoint Process Sets 123

Y
1Initialize Communicators‘

Y
Initialize Model
generate mesh
init of fields

!

| Fiternt |
&

model processes Y filter processes
filterpe=1?

nsteps, time, state g A
Get_State : | User_Analysis |
nsteps=0 v

| Next_Observation |

Do i=1,nsteps

true
> Forecast ‘
Time stepper
include BC

state ¥
include forcing

A

| User Analysis |

¥

| SEIK_Analysis |
|
Y
SEIK Resample
—— (e Fesampe |
‘<< PutState } L<| User_Analysis |

nsteps=0

Finalize_Model |

l

L Post—pr(vncessing]

Figure 8.8: Flow diagram for the framework when filter and model are executed by
disjoint process sets. Exemplified is the program flow for the SEIK filter. Shaded in gray
are the routines of the filter framework. The thick black lines denote communication. The
parts of the program which are horizontally centered are executed by all processes. After
the initialization, the program splits into the model part displayed on the left hand side
and the filter part on the right hand side. Both parts are connected by communication
operations.

8.4 Framework for Model and Filter on Disjoint Process Sets 124
Subroutine Forecast(step,nsteps,time)
int step {Current time step, input}
int nsteps {Number of time steps to be computed, output}
real time {Current model time, output}
int n {Model state dimension}
int N, {Size of local state ensemble}
real X,(n, N,) {Local state ensemble}
int npes {Number of processes in COMM_COUPLE}
int status(npes — 1) {Status array; idle: 0, working: 1}
int send_ens {Counter for ensemble member to become evolved}
int get_ens {Number of received state vectors}
. status(l : npes — 1) — 0 {Set status to idle for all tasks}
2: send_ens «— 1 {Send first ensemble member}
3: get_ens — 0 {No state received yet}
4: loop
5: for task = 1,npes — 1 do
6: if status(task) == 1 then
7 Test whether receiving from task has been completed
{With operation MPI_Test}
8: if receiving of task completed then
9: get_ens « get_ens + 1 {Increase counter of received states}
10: status(task) — 0 {Set task to idle}
11: end if
12: end if
13: if status(task) == 0 then
14 send nsteps to task {With operation MPI_ISend}
15: send time to task {With operation MPI_ISend}
16: send X, (:, send_ens) to task {With operation MPI_ISend}
17: post receiving of X, (:, send_ens) from task {Operation MPI_TRecv}
18: send_ens « send.ens + 1 {Increase index of member to send}
19: status(task) «— 1 {Set task to working}
20: end if
21: end for
22: if get_ens == N, then
23: Exit loop
24: end if

25: end loop

Algorithm 8.10: Structure of the routine of the filter framework which controls the
ensemble forecast in the case of SEIK and EnKF. (For SEEK, the state estimate itself is
also evolved. Hence, the forecast routine for SEEK contains an extension for evolving the
state estimate.) The used MPI operations are non-blocking. Thus, the algorithm directly

proceeds after posting a MPI_ISend or MPI_TRecv operation.

8.5 Transition between the State Vector and Model Fields 125

state vector model fields

Figure 8.9: Transition between the abstract state vector (left hand side) and the model
fields (right hand side). Shown is an example of three model fields of equal sizes. This
example originates from the experiments with the shallow water model discussed in chap-
ter 4. u and v are the two horizontal velocity components while h is the surface elevation.

8.5 'Transition between the State Vector and Model
Fields

The filter algorithms operate solely on the abstract state vectors. All operations
which require information on the physical nature of an element of the state vector
are performed in user-supplied routines. The arrangement of elements in the state
vector is defined in the initialization routine Init_Fnsemble. Here the user choses how
to order the information on different physical quantities and from different physical
locations. The observation-dependent routines have to consider this ordering to
allow for a consistent implementation, e.g., of the measurement operator or the
initialization of the observation vector. The arrangement of the elements in the state
vector is also important in the routines Distribute_State and Collect.State. These
routines are executed by all model processes. In contrast to this, the other user-
supplied routines, are executed only by the filter processes. Figure 8.9 exemplifies
the transition between the abstract state vector and model fields for the experiment
using the shallow water equations which has been considered in chapter 4. The
model consists of three fields, namely, the two velocity components u, v and the sea
surface elevation h. Each of these fields is 2-dimensional. For the filter, the model
fields are stored successively in the 1-dimensional state vector.

The routine Distribute_State is shown as algorithm 8.11. It is called from the
routine Get_State. The purpose of Distribute_State is to initialize the model fields
from the state vector such that the state information is sufficiently initialized for
the model time stepper.

If Distribute_State is called in the case of a mode-decomposed ensemble matrix, a
full state vector x of dimension 7 is initialized by a single process of the model task.
If the model task consists of a single process, the model fields can be directly ini-
tialized, e.g., by copying the data into the model fields. If the model task consists of
multiple processes, the required operations depend on the type of the parallelization.

8.5 Transition between the State Vector and Model Fields 126

Subroutine Distribute_State(n,x)
int n {State dimension, input}
int x(n) {State vector to be distributed, input}

... Initialize and distribute model fields . ..

Algorithm 8.11: Interface of the subroutine Distribute.State which performs the transi-
tion from the state vector of the filter and the model fields.

For example, the finite element model which will be used in the experiments in chap-
ter 9 requires that the model fields are fully initialized on all processes. Thus, the
model fields are first initialized in Distribute_State on the process which holds the
state vector. Subsequently, the model fields are distributed to the other processes
in the model task by MPI operations.

If Distribute_State is called in the case of domain-decomposed states, each model
process holds that part x;, of the state vector which corresponds to its local domain.
Hence, Distribute_State will perform only the initialization of the model fields in the
local domain. As long as the domain-decomposition of model and filter coincide, no
communication operations are necessary.

The routine Collect_State is shown as algorithm 8.12. It performs the inverse
operations to those of Distribute State. If domain-decomposition is used, the lo-
cal state vector is initialized on each model process. For mode-decomposition, the
state vector, which is allocated on one of the model processes, is initialized using
the evolved model fields. If the state information is distributed over the model
processes, it is necessary to gather them with communication operations on the pro-
cess holding the state vector. With the finite element model used in chapter 9, the
evolved model fields are fully initialized on all processes of the model task. Hence,
no communication operations are required.

Subroutine Collect_State(n,x)
int n {State dimension, input}
int x(n) {State vector to be distributed, input}

... Initialize state vector from model fields ...

Algorithm 8.12: Interface to the subroutine Collect_State which initializes a state vector
from the model fields.

A particular issue of the routines Distribute_State and Collect_State is that they
are not directly called by the model routines. This structure of the interface permits
to hide these filter-related operations from the model. It has, however, the drawback
that model-specific variables and arrays cannot be used as subroutine arguments.
In particular, the arrays holding model fields and variables with specifications of
the model grid cannot be provided as subroutine arguments. Hence, it is necessary
to use Fortran modules or common blocks to provide the routines Distribute_State
and Collect_State with model fields and specifications of the model grid. For models
fulfilling these implementation issues, the framework can be used with the clear
separation between model and filter. If, however, a model does not support this type
of storage, an alternative implementation of the routines Get.State and Put.State is
necessary.

8.6 Summary and Conclusions 127

Subroutine Get_State Alt(nsteps,time,n,x,status)
int nsteps {Number of time steps to be performed, output}
real time {Physical time at begin of evolution, output }
int n {Model state dimension,input}
real x(n) {State vector,output}
int status {Output status flag of filter, output}

Algorithm 8.13: Alternative interface of the subroutine Get.State in the case of disjoint
process sets for model and filter. The initialization of model fields is not performed in
the subroutine, but the state vector x is an argument of the interface. This permits to
initialize the model fields directly in the model routines.

Algorithm 8.13 shows the alternative variant of Get_State for the configuration
using disjoint process sets for model and filter. The algorithm is comparable with
the original implementation shown as algorithm 8.8. The routine Distribute_State is
not called in the alternative implementation. In addition, the interface is changed
to include the state dimension n and an array x(n) for the state vector. This
array has to be allocated in the model source code. In Get State_Alt, the state
vector x is initialized on a single process if mode-decomposition is used. For domain-
decomposition, a sub-state for the local domain is initialized on all processes. Since
the state vectors are known in the model context in this alternative implementation,
it is possible to initialize the model fields without using Fortran modules or common
blocks.

8.6 Summary and Conclusions

A framework for parallel data assimilation based on Kalman filter methods was in-
troduced. The framework is based on a clear separation between the model, the
filter, and the observational parts. This allows for a structure which requires only
minimal changes in an existing model source code when a data assimilation system
is implemented using the filter framework. With the framework, an application pro-
gram interface was introduced which defines the calling structure of the framework
routines which are called by the model. Also the interfaces to user-supplied rou-
tines are defined. These are, e.g., routines which are related to the observations or
routines to transfer the state vectors used in the filter algorithms to model fields
and vice versa. The interface permits to switch easily between different filter algo-
rithms. In addition, changes to the model and filter source codes can be conducted
independently.

The framework was introduced for two different process configurations. The fil-
ter can either execute by some of the model processes (which is denoted below as
joint process sets) or the filter and model parts are executed by disjoint process
sets. Both variants permit to handle domain-decomposed state vectors as well as a
parallelization which decomposes of the ensemble or mode matrices over the modes.
To compare the two different process configurations of the framework, advantages
and drawbacks of the two configurations are summarized in table 8.1.

A major drawback of the configuration using joint process sets is that at least
a part of the ensemble or model matrix has to be allocated on one process of each

8.6 Summary and Conclusions 128

Table 8.1: Advantages (+) and drawbacks (—) of the frameworks for the two different
process configurations.

one process set for filter and model disjoint process sets

— allocation of sub-ensemble on one | + allocation of a single state vector on
process of each model task one process of each model task

— allocation of filter fields on those | + allocation of filter flelds on processes
model processes which are also filter separate from the model processes
processes

+ no additional processes required for | — processes additional to the model
the filter part processes are necessary for the filter

part

+ reduced amount of communication | — high amount of communication,
if the number of model tasks equals since each model state vector has to
the number of filter processes be communicated between filter and

model processes

+ model grid information allocated | — model grid information not allocated
also on filter processes on filter processes

— load balancing of the forecast by a | + flexible load balancing due to com-
priori specification of sub-ensemble munication of single model state vec-
sizes tors

— inflexible possibilities of process con- | + flexible choice of process configura-
figurations to achieve good load bal- tions; model and filter can even be
ance executed on different computers

model task. This can considerably increase the memory requirements of these pro-
cesses, which also hold fields needed by the model. In addition, flelds which are
required for the analysis and resampling phases of the filters are allocated on those
processes which are also filter processes. These memory requirements can be critical
if the computer used for the data assimilation computations poses strong memory
limitations. The issue of memory requirements is minor for the case of disjoint pro-
cess sets. Here only a single state vector is allocated on a single process of each
model task. The fields which are required for the filter operations are allocated on
the filter processes which are separated from the model processes.

An advantage of the configuration using joint process sets is that the execution
of the filter does not require additional processes. All processes of the program are
used for model evaluations. In contrast to this, additional processes for the filter
part of the program, besides the processes performing the model evaluations, are
required for the configuration using disjoint process sets. During the forecast phase,
these processes only send control information for the forecast, and communicate
state vectors. For large-scale ocean models, the forecast of a state vector takes
significantly longer than the communication between the filter and model processes.
Due to this, the filter processes will idle most of the time.

Besides the requirement of additional processes for the filter, the configuration
with disjoint process sets communicates more data than the variant using joint
process sets. This is due to the fact that all ensemble state vectors, which have to
be evolved, need to be send from the filter processes to the model processes and vice

8.6 Summary and Conclusions 129

versa. For a parallelization using mode-decomposed matrices, the least amount of
communication is required in the case of joint process sets if the number of filter
processes equals the number of model tasks. In this situation, a sub-ensemble is
allocated on each filter process. The communication reduces to that amount which
is necessary to distribute the state information to all processes in a model task. For
domain-decomposed states, the amount of communications between filter and model
can be reduced to zero if the configuration of joint process sets and a single model
task is used.

A further potential advantage of the configuration using joint process sets lies
in the fact that the information on the model grid is also allocated on the filter
processes. This can be beneficial, e.g., for the implementation of the measurement
operator if it requires information on the spatial positions of observations and the
elements of the state vector. In the case of disjoint process sets, this information
has to be initialized separately from the model.

In addition to reduced memory requirements, the configuration using disjoint
process sets is significantly more flexible in the configuration of the MPI communi-
cators. Since only single model states are communicated between filter and model
tasks, possible deviations in the speed of different model tasks are easily balanced
by evolving more states with the faster model tasks than with the slower ones. This
flexibility cannot be achieved with joint process sets. Due to the strong separation
of filter and model, the configuration using disjoint process sets even permits to
execute the filter part of the program on a different computer than the model tasks.
Also it is possible to execute model tasks on different computers or to compute
forecasts concurrently using different models.

Concluding, this comparison showed, that neither the configuration with joint
process sets nor the configuration using disjoint process sets for the filter and model
parts of the program is clearly preferable. The variant with joint process sets should
be preferred if the computer memory permits to store sub-ensembles as well as
the fields required for the filter analysis and resampling algorithms on the same
processes as the model fields. Joint process sets permit to use all available processes
for the model evaluations and reduces the amount of communicated data. If it is
not possible to store the filter fields on the same processes as the model fields, the
variant using disjoint process sets for filter and model is preferred. This variant
should also be chosen if the use of multiple computers is desired to solve the data
assimilation problem.

Chapter 9

Filtering Performance and Parallel
Efficiency

9.1 Introduction

The parallel filtering framework developed in the preceding chapter 8 has been im-
plemented with the Finite Element Ocean Model (FEOM) {12]. The implementation
also includes the parallelized filter algorithms developed in chapter 7. FEOM is par-
allelized using MPI. Mainly the solver step, required for the implicit time stepping
scheme of FEOM, is performed in parallel. The model state fields have to be fully
allocated and initialized by all model processes.

The data assimilation system, which is obtained by combining FEOM and the fil-
tering framework, is used to study the parallel efficiency of the framework and of the
filter algorithms. In addition, the filtering performance of the three error subspace
Kalman filters is analyzed on the basis of twin experiments. These experiments
extend the twin experiments performed in chapter 4 to a 3-dimensional test-case.
The data assimilation experiments are performed with an idealized configuration of
FEOM using a rectangular grid. Assimilated are synthetic observations of the sea
surface height.

The major properties of the finite element model FEOM are described in sec-
tion 9.2. Subsequently, in section 9.3, the configuration of the twin experiments is
described in detail. The filtering performance of the three error subspace Kalman
filters SEEK, EnKF and SEIK is examined in section 9.4. Here the abilities of the
filter algorithms accurately estimate the 3-dimensional model fields is studied. The
parallel efficiency of the framework and the filter algorithms is finally assessed in
section 9.5.

9.2 The Finite Element Ocean Model FEOM

The finite element ocean model FEOM has been developed recently at the Alfred
Wegener Institute [12]. It is a three-dimensional model designed to study the ther-
mohaline circulation of the ocean on basin to global scales for periods from years to
decades. The data assimilation framework introduced in chapter 8 permits to use
this model as a ’black box’ to perform the required model forecasts. In particular,

130

9.2 The Finite Element Ocean Model FEOM 131

the filter routines are independent from the discretization method — finite elements,
finite differences, or others — used to compute the forecasts.

A detailed description of FEOM has been given by Danilov et al. [12]. Here
only the major properties of this model are summarized. FEOM is based on the
primitive equations, see e.g. [72], which describe the thermo-hydrodynamics of the
ocean. Namely, the primitive equations govern the velocity field (&, w) = (u, v, w),
the sea surface height ¢, and the baroclinic pressure anomaly p. Further, the sea
water density po + p, where gy is the mean density, the temperature field 7", and
the salinity field S are described in the spherical coordinate system (), 8, 2) by the
equations

Byl + f(R X) + gVC — V - AVil — 8, 4,0, = *%Vp + (@Y +wd)E, (9.1)
0

Opw =~V -4 , (9.2)
z=(
O+ V- ddz =0, (9.3)
z=—Hp
0.p=~gp, (9.4)
OT+V - (&T)—V k] VT — 8,678, =0 , (9.5)
0S+V - (78S)—-V-kVS—08,659,5 =0, (9.6)

Here, f is the Coriolis parameter and k is the vertical unit vector. A;, A, are the
lateral and vertical momentum diffusion coefficients. g is the gravitational accelera-
tion.] and I are the lateral and vertical diffusion coefficients for the temperature.
The corresponding coefficients for the salinity are x; and 5. The bottom of the
ocean is at —Hy(A,6). o(T, .S, p) denotes the equation of state. It is used to compute
the density p from the temperature, salinity, and pressure fields.

The primitive equations are discretized on an unstructured grid with variable
resolution. This 3-dimensional grid is built by tetrahedral elements. It is generated
from a 2-dimensional triangular grid at the ocean surface which defines vertical
prisms. Elementary prisms are obtained by subdividing the vertical prisms by level
surfaces. The elementary prisms are split into tetrahedrons. The model fields are
approximated using linear basis functions on these elements. A backward Euler
method is used for the time stepping. The system of linear equations, which results
from the finite element discretization, is solved by algorithms which are implemented
in FEOM using the Family of Simplified Solver Interfaces (FoSSI) by Frickenhaus
et al. [23]. FoSSI provides common interfaces to various solver libraries for sparse
systems of linear equations like PETSc [64] or the solver PILUT by Karypis and
Kumar [43].

Danilov et al. [12] tested the model performance in a configuration for the North
Atlantic. Due to the size of 86701 nodes of the 3-dimensional grid, it is not feasible
to use this configuration for the data assimilation and speedup experiments per-
formed here. For this reason, the experiments employ an idealized configuration of
FEOM. The configuration uses linear density stratification and a linear equation of
state o(T, S, p). Further, convection is neglected and the rigid-lid approximation is
used. The model domain is given by a rectangular box geometry with a structured

9.3 Experimental Configurations 132

grid. It is shown in figure 9.1. The box is centered at 44.5° north and occupies an
area of 9 by 9 degrees. It has a depth of 4000m. The discretization comprises 11
vertical levels and a horizontal grid of 31 by 31 points. This amounts to 10571 nodes
of the 3-dimensional grid and 961 surface nodes. The time evolution is performed
with a time step of 3 hours. The salinity field is chosen to be constant over the model
domain. The state vector for the filters consists of the zonal and meridional velocity
components u, v, the temperature T, and the sea surface height . Apart from the
2-dimensional sea surface height, all of these are 3-dimensional fields. Hence, the
state dimension amounts to n = 32674.

9.3 Experimental Configurations

To extend the examination of filtering performance presented in chapter 4 and to
study the parallel efficiency of the filter algorithms, identical twin experiments are
performed with the idealized configuration of FEOM. Synthetic observations only
of the sea surface height are assimilated. The physical process which is simulated
in the assimilation experiments is the propagation of interacting baroclinic Rossby
waves. The waves are initialized with two horizontally localized columnar tempera-
ture anomalies of the same amplitude but opposite sign. This initialization is shown
in figure 9.2. Propagating westward, the anomalies become deformed. They tilt
toward each other via the induced velocity field. That is, a negative temperature
anomaly produces a counterclockwise rotation in the upper levels and a clockwise
rotation in the lower levels. The rotation of a positive temperature anomaly is vice
versa. These opposing rotations introduce non-linearity which is necessary to test
the filtering performance of the error subspace Kalman filters.

The data assimilation experiments are conducted over a period of 40 days. The
interval between subsequent analyses is set to 2.5 days. For the twin experiments
the “true” state trajectory is generated by integrating the initialization displayed in
figure 9.2 over a period of 45 days. To generate synthetic observations of the sea
surface height, Gaussian noise with constant variance of 0.01 m? is added at each
time step to the sea surface height field of the true state sequence. The amplitude of
the temperature anomalies, and thus of the sea surface height, decreases over time.
This is caused by diffusion. Hence, the relative noise amplitude of the observations
increases during the assimilation period. Initially the standard deviation of the noise
in the observations is at about 20 percent of the amplitude of the true surface height.
After 45 days, the errors in the observations increased to about the same level of the
surface height itself. The generated observations are used with an offset of 5 days in
model time. Assimilating only observation of the sea surface height, the dimension
of the observation vector amounts to m = 961. Figure 9.3 compares the observed
sea surface height field with the true one at the initial time of the experiments. The
observation errors are clearly visible, but also the observed information is apparent.

To initialize the filter in the twin experiments, the covariance matrix of 2268
state vectors is computed. These vectors are generated by 28 model forecasts us-
ing different initial locations of the temperature anomalies. Further, an additional
variance of the sea surface height fields of 0.1m is assumed. The obtained covari-
ance matrix, which describes the temporal variations and correlations of the model
fields, is used as the initial error estimate in the filter experiments. The initial state

9.3 Experimental Configurations 133

depth

46

c 6
O, 44
0‘7@ 4 g‘\“)de

42 Vot

40 0

Figure 9.1: FEOM model grid used for the data assimilation experiments. It consists
of 10571 nodes. Vertical levels are at the surface and in the following depths: 7.5, 20,

50, 100, 500, 1000, 2000, 3000, 3800, and 4000 meters. The coloring shows the linear
temperature stratification.

AT [°C]
3

Figure 9.2: Cut into the model grid showing the temperature anomalies.

9.3 Experimental Configurations 134

T A —
48] \‘

47+

46+

s
o

latitude
latitude

o
~

43

42

41 o

G y R T e
longitude longitude

Figure 9.3: Comparison of the true (left) and the observed (right) sea surface height
field ¢ at the initial analysis update.

estimate for the twin experiments is chosen as the mean state of the 28 model runs.
The generation of the state ensembles for SEIK and EnKF and the initialization of
the mode matrix for SEEK is performed as described for the experiments with the
shallow-water-equation model in chapter 4. To examine the abilities of the filter
algorithms to estimate the true state from the chosen initial state, an evolution of
the initial state estimate is performed without assimilating observations. This state
sequence is denoted the “free” state trajectory.

To simulate model errors in the application of the EnKF and SEIK filters, a wind
forcing field of two gyres is applied whose shape and amplitude are controlled by
two parameters. To obtain a stochastic forcing, these parameters are initialized by
random numbers. Each ensemble member was forced by a different wind field which
was constant over the forecast period. To retain comparability, the SEEK filter was
used without a forgetting factor, since this could be applied to all three filters, or
explicit treatment of a model error covariance matrix. Thus, the twin experiments
using SEEK are performed without consideration of model errors.

Most of the computation time is spent in evolving the model states. Since the
computation time is usually a limiting factor in data assimilation problems, results
for assimilation experiments are compared in which all filters perform the same
number of model evaluations. This configuration provides also comparable execution
times for assessing the parallel efficiency of the three filter algorithms. To obtain
configurations with equal numbers of model evaluations, the rank r used in SEEK
and SEIK is set to r = N — 1 where N is the ensemble size of the EnKF.

The experiments have been performed on a Sun Fire 6800 server with 24 pro-
cessors, each having a frequency of 1050 MHz. The experiments in section 9.4 used
the solver PILUT while the experiments in section 9.5 used PETSc. This differ-
ent choice was motivated by the fact that the use of PILUT resulted in inferior
speedup values than PETSc. In contrast to this, the assimilation experiments with

9.4 Filtering Performance 135

the PILUT solver provided a better filtering performance than those using PETSc.
Since this work is not aimed at the optimization of the model, the solver was chosen
depending on the best results either in terms of filtering performance or in terms of
speedup.

9.4 Filtering Performance

Before the parallel efficiency of the filter algorithms is studied in section 9.5, the
filtering performance of the SEEK, SEIK, and EnKF algorithms is assessed for their
application to the configuration of FEOM described in the preceding sections. These
experiments extend the 2-dimensional experiments of chapter 4 to a 3-dimensional
test-case.

9.4.1 Reduction of Estimation Errors

For an ensemble size of N = 60, figure 9.4 shows the rms deviation E; of the
assimilated state from the true state normalized by the rms deviation of the free
state from the true state. The deviation is computed over all grid nodes with
equal weights for all nodes. Thus, no volume-normalization is performed which
would consider the different distances between neighboring levels of the model. The
relative estimation error is displayed separately for the four state fields. For N = 60,
the EnKF and SEIK filters yield comparable results. For smaller ensembles, the
difference of E; for the two filters is larger, with the EnKF performing worse than
the SEIK filter (not shown). This can be expected because of the inferior sampling
quality of the Monte Carlo sampling applied to initialize the EnKF algorithm. Since
the difference of the sampling quality decreases for larger ensembles, the results of
EnKF and SEIK become almost identical for larger ensembles. The SEEK filter
shows a behavior distinct from the two other algorithms. This behavior is caused
by the forecast scheme of the SEEK filter which applies a gradient approximation
of the linearized forecast of the covariance modes. For all model fields the relative
estimation errors tend to increase toward the end of the assimilation period. This
is due to the growing relative error level in the observations which is discussed in
section 9.3.

The largest error reduction is obtained for the sea surface height ¢. As obser-
vations of the sea surface height are assimilated, this field is expected to show the
smallest normalized estimation error of the four model fields. To get an idea of what
represents the achieved reduction of the relative estimation error to about 0.27 for the
sea surface height, the left hand side of figure 9.6 shows in the uppermost panel the
true sea surface height at the end of the assimilation period. In the middle panel, {
is shown as estimated by the EnKF filter with N = 60. The sea surface height which
is obtained from the free evolution, i.e. when the initial state estimate is evolved
without assimilation, is displayed in the lowermost panel. The sea surface height
estimated by the EnKF algorithm reproduces accurately the shape of the true (.
The locations of the minimum and the maximum are well estimated. The ampli-
tudes are underestimated by about 10%. In contrast to this, the sea surface height
without assimilation deviates strongly from both the true and SEIK-estimated (.

9.4 Filtering Performance 136

The velocity components u and v are updated via the estimated cross correlations
between the sea surface height and the velocity components. Despite this, the
relative estimation errors of the meridional velocity component u are of comparable
size to those of the sea surface height in the case of EnKF and SEIK. This relation
shows, that the cross covariances are estimated quite well by the nonlinear ensemble
forecast. In contrast to this, the linearized forecast performed in SEEK yields much
worse estimates of the cross covariances. This can be deduced from the much larger
estimation errors for u obtained with SEEK.

The estimate of the zonal velocity component v is less precise than the estimate
of u for all three filters. After the first analysis phase, the estimation error of
both velocity components is of comparable size. While the estimation error for u
decreases during the course of the assimilation experiment, the estimation error for v
remains at a level of about 0.4 when using the EnKF or the SEIK filter. Thus, the

1.1 1.1

¢ T
1P 1
0.9 0.9
0.8 — EnkF - 08
w” — — SEEK W
T 07 - SEIK ? 07
N o
g 0.6 /’l g 0.6
S <]
€ 05 = 05
0.4 0.4
0.3 0.3
0.2 0.2
0 0 10 20 30 40
time [day} time [day}
1.1 1.1
u v
Fhomp 1T
0.9 0.9
w0 0.8 \! e 0.8 /
he] bl [
g 0.7 —]I ﬁ 0.7 - '/1
9 06 n g 06 -
5 ~ 5 ——
£ 05) ¢ -1 N N
04 04}
0.3 0.3
0.2 0.2
0 10 20 30 40 0 10 20 30 40
time [day] time [day]

Figure 9.4: Time dependence of the relative estimate errors E; for experiments with
N = 60. Shown is E separately for the sea surface height ¢ (top left), the temperature
field T (top right), and the two components u, v (respectively on the left and right hand
sides of the bottom row) of the velocity fields.

9.4 Filtering Performance 137

cross covariances are not estimated sufficiently precise to further decrease the error
level for this velocity component. During some analysis updates, e.g. at day 25,
the estimation error increases. In this case the estimated cross covariances have the
Wwrong sign.

The relative estimation error of the temperature field T shows a behavior dis-
tinct from the other model fields. The error reduction at the first analysis update
is smaller for T than for the other fields. For the EnKF and SEIK filters, the rel-
ative estimation error of the temperature field increases immediately after the first
analysis update. Further, the estimation error remains almost unchanged during
the analysis update. Thus, no useful estimates of the cross correlations are available
after the first analysis update. The estimates of variances and correlations within
some model field are typically much more precise than estimated cross correlations.
Thus, even a limited number of temperature measurements would enhance the esti-
mation quality of the temperature field for all three filters.

9.4.2 Estimation of 3-dimensional Fields

To examine the ability of the filter algorithms to estimate the 3-dimensional model
fields by assimilating only surface measurements profiles of the relative estimation
errors at the end of the assimilation period are shown in figure 9.5. The values
displayed in the diagrams are the normalized rms estimation errors computed over
single levels of the model.

0 0 0
o
u v ¥ T |1 ;
! 1 I
) 1 i
-50 -50 + -50f + +
i ' 1
i v
- \ 8
T il I
-100 -100 + ~100 +
-500 -500 -500
-1000 -1000 ~1000
-1500 -1500 -1500
E
£ ~-2000 ~2000 —-2000
&
© _2500 2500 ~2500
-3000 ~3000 -3000
~3500 -3500 -3500
~4000 ~400 —-4000
4 0 02 04 06 08 1 12 0O 02 04 06 08 1 12 0 0.8 0.9 1 11
normalized E, normalized E, normalized E;

Figure 9.5: Profiles of the rms estimation errors of single layers normalized by the
corresponding rms deviation of the free state from the true state for N = 60. Shown are
the two components u, v of the velocity fields and the values for the temperature field T
at the end of the assimilation period.

9.4 Filtering Performance 138

The profiles for the two velocity components u and v, displayed on the left and
middle panels, show a small relative estimation error from the surface to -1000m
depth. Below -3000m the estimation error is a also small, but it increases toward
the bottom. At the depth of -2000m the estimation error shows a maximum. For
the experiments with SEIK and EnKF, this maximum is even larger than one. The
estimation errors obtained with SEEK are of similar size to those achieved by the
EnKF and SEIK filters. They are, however, larger at all depths, except at -2000m.
For all three filters, the relative estimation errors are smaller for the meridional
velocity component, u than for the zonal velocity v.

The peak in the relative estimation error at the depth of -2000m is due to the
normalization by the estimation error of the evolution without assimilation. As has
been described in section 9.3, the temperature anomalies generate a counterclockwise
rotation in the upper levels and a clockwise rotation in the lower levels. The turning
point of these rotations is approximately at the depth of -2000m. Due to this,
the velocities are minimal at this depth in the true state, the free state and the
assimilated states. This causes minimal rms deviations of the velocities of the free
evolution from the velocities of the true evolution. Without normalization, the
estimation errors of the assimilated velocities are of comparable size to those of the
non-assimilated velocities at -2000m depth. Due to the normalization, the estimation
errors appear larger than their absolute value.

The increase of the relative estimation error below -3000m is not due to the
normalization, as the absolute estimation errors also increase below -2000m depth.
Thus, the quality of covariances between the sea surface height and the velocity
fields is worse in the deep ocean than for the upper levels. Overall, all three filters
show good abilities to reduce the estimation error of the velocity field also in the
lower levels of the model. The level -2000m appears to be a rather pathological
situation which the algorithms cannot handle well.

The profile of the relative estimation errors of the temperature field, shown on
the right hand side of figure 9.5, exhibits a different dependence on depth than
the estimation errors of the velocity field. In the uppermost levels the estimation
error of the temperature field is not reduced by the SEIK and EnKF algorithms. In
contrast to this, the relative estimation error is decreased to a level of about 0.8 when
the SEEK filter is applied. Between -100m and -2000m all three filters reduce the
estimation error to similar level of about 0.85. Below -2000m the relative estimation
error increases for all three filter algorithms to a level around unity.

The large relative estimation errors in the uppermost 100 meters are misleading.
This becomes apparent from the panels on the right hand side of figure 9.6. The
uppermost panel shows the true temperature field at a depth of -50m. The panel
in the middle shows the temperature field as estimated by the EnKF with N = 60.
For comparison, the free temperature field is displayed in the lowermost panel. The
shape of the estimate from the EnKF reproduces the shape of the true temperature
field rather well. The amplitude of the positive temperature spot is, however, over-
estimated. The free temperature field is distinct by showing only a single positive
temperature anomaly.

In the level at -500m and below the temperatures are generally over-estimated
by about 0.1°C. This is displayed in figure 9.7 which shows the temperature fields
analogous to the right hand side of figure 9.6 for the levels at -1000m and -3800m.

9.4 Filtering Performance 139

True sea surface height ¢ True temperature T at ~50m

49 497
48

47

latitude
latitude
&

o
i

2 4 6 8) 2 4 6 8
longitude longitude
EnKF--estimated {, N=60 EnKF-estimated T at —50m, N=60

49

48

latitude

latitude
ey
o

o
N

42

41

4 6 % 4
longitude longitude
¢ without assimilation T without assimilation at ~50m

0025 .
48 e . 48

47-

gz
N
(o2}

latitude
latitude
iy
<

o
B

. . 4 //' / "

« \\2_2// Ny

42 v
\\“" /

- 247 ———

4 6 4
longitude longitude

Figure 9.6: Comparison of true, estimated, and free model fields (from top to bottom) at
the end of the assimilation period. The estimated field is shown for the EnKF with N = 60.
The left hand side shows the sea surface height ¢. The temperature field T at a depth
of -50m is shown on the right hand side.

9.4 Filtering Performance 140

True temperature T at —1000m True temperature T at -3800m

49, 1 49
48+ N 48
47 47
46] 467:
§45* §45>
844 844
43 43¢
42- - 42r
, L 408 3
41 ° 41t
T-200 - -
4% 2 1 6 g 4% 2 4 6 8
longitude longitude
EnKF-estimated T at —1000m, N=60 EnKF-estimated T at ~3800m, N=60
49 - . - . 49 e . - T
47 © //Q_l : /]

latutudi
N\
W,

44 o j
, ; /
X i /
43 Y . /
; J) i
o 1) e
41 S
% 2 4 6 g % 2 a 6 8
longitude longitude
T without assimilation at ~1000m T without assimilation at ~3800m
49 - —e 49— - - - -
=201 —
\
: |
3 g !]
2 / I 2
K] ! | k]
/
H //
'\\7 208 /4447__,,/
4% 2 4 8 8 4% 2 4 6 8
longitude longitude

Figure 9.7: Comparison of true, EnKF-estimated, and free temperature fields (from
top to bottom) at the end of the assimilation period. The right hand side shows the
temperature field at a depth of -1000m; the left hand side just above the bottom at a
depth of -3800m.

9.5 Parallel Efficiency of Filter Algorithms 141

While the shape of the estimated temperature field is still reasonable at -1000m,
this is no more the case for the level at -3800m. Here, the estimate resembles
the shape of the free temperature field which is obtained from the evolution of
the state estimate without assimilating observations. The assimilation has only a
small influence on the temperature field at -3800m. Namely, the warm area with
temperatures above 6.3°C is shifted further to the north-east. In addition, the
temperature is decreased around (44°N, 7°E).

Overall, the three filter algorithms show a very limited ability to estimate the
temperature correctly when only measurements of the sea surface height are assim-
ilated. The shape of the temperature field is reproduced by the estimates in the
upper 1000 meters. However, there is a bias in the temperature estimates. Due to
this, additional temperature measurements, also in the depth, would be useful to
obtain better estimates of the temperature field.

9.5 Parallel Efficiency of Filter Algorithms

Based on of the idealized configuration of FEOM, the parallel efficiency and the
speedup of the parallel filtering framework is now examined. First, data assimilation
experiments with a limited ensemble size are considered to assess the efficiency of the
complete filtering framework. Subsequently, the parallel efficiency of the filter part
is studied. For this experiments are conducted without time stepping. This reduces
the computation time and hence permits to perform more experiments. In addition,
the neglect of time stepping permits to examine also the efficiency of the domain-
decomposed filter algorithms, while FEOM is not based on domain decomposition.

9.5.1 Efficiency of the Framework

To study the parallel efficiency and the speedup of the data assimilation framework,
data assimilation experiments are performed with the three ESKF algorithms using
different numbers of parallel model tasks. Since FEOM does not apply domain-
decomposition, a configuration with mode-decomposed filters is applied. To reduce
the computation time of the experiments in comparison to those in the preceding
section, the data assimilation experiments are performed over a time period of 10
days. The interval between subsequent analyses is set to 12 hours. To compute the
speedup, the state ensemble has to be divided evenly over the available model tasks.
For this reason, an ensemble size of N = 36 (r = 35) is chosen. This ensemble size
has the following properties:

e The ensemble is sufficiently large to provide a realistic data assimilation ex-
periment. On the other hand, the ensemble is small enough to perform a large
number of experiments.

o To assess the speedup, a large variety of different numbers of model tasks
is required. To ensure that each model task evolves the same numbers of
ensemble states, the chosen numbers of model tasks need to be divisors of
the ensemble size. In addition, the number of possible parallel model tasks is
limited due to a limited number of processors in the computer system used for

9.5 Parallel Efficiency of Filter Algorithms 142

the experiments. Using N = 36, the experiments can be executed with 1, 2,
3,4,6,9, 12, 18, and 36 parallel model tasks. This enables efficient use of the
available 24 processors of the Sun Fire 6800.

Using the configuration described above, the execution time for a single-processor,
i.e. serial, experiment is about 9 hours on the Sun Fire 6800. The execution time
decreased to about 35 minutes when 18 parallel model tasks are used. Using a single
processor, the execution time for the EnKF algorithm was about 18 seconds. The
analysis and the resampling phases of SEEK lasted respectively about 0.2 and 2.2
seconds. The analysis phase of SEIK took 0.4 seconds while the resampling phase
lasted about 1 second. Thus, the analysis phase of SEIK is slower than that of
SEEK, but the resampling phase is faster. This is consistent with the computa-
tional complexity of the algorithms which was discussed in section 3.4.

Figure 9.8 shows speedup and parallel efficiency for filtering experiments using
the configuration of the framework where the filter is executed by one process of
each model task. The speedup is computed from the total execution time of one
series of experiments. Thus, the time for the initialization of the model and the
filter are included as well as the time for the user analysis routines. The user
analysis routines compute the filter-estimated variances and write the estimated
state to a disk file. Bach model task is executed by a single process. Hence, the
total number of processes for an experiment equals the number of model tasks and
the number of filter processes. This configuration has been chosen to allow for a
maximal number of parallel model tasks. This choice does not limit the significance
of the results when the speedup in relation to the used number of model tasks is
considered. Since here the number of processes in a model task does not change, the
computation time for the forecast of a single state is independent of the number of
parallel model tasks. Using a filter process on each model task minimizes the amount
of communication between model and filter (see section 8.3.1). In fact, since each
model task is executed by a single process, no communication between model and
filter is conducted. Thus, the parallel efficiency of the program is limited only by the
serial parts of the model and the filter algorithms, by the communication performed
within the filters, and by possible different times to compute the forecast of different
model states.

The speedup in figure 9.8 is excellent for all three filter algorithms. The small
differences between the filters are not statistically significant. The sensitivity of the
results was examined using 10-fold experiments with the same number of model
tasks. Due to variations in the total execution time of the experiments, a standard
deviation of about 3% results for the speedup. Thus, the filter framework yields
equal values of the speedup for the three ESKF algorithms. The parallel efficiency
of the data assimilation system decreases slightly when the number of parallel model
tasks is increased. With 18 model tasks an efficiency of about 85% is obtained.

For comparison, figure 9.9 shows speedup and parallel efficiency for experiments
using disjoint process sets for the model and filter parts of the program. In these ex-
periments the filter is executed on a single process only. Thus, the parallel efficiency
is limited by the serial operations of the filter, serial parts of the model, and by
the communication required to exchange the state vectors between filter and model.

9.5 Parallel Efficiency of Filter Algorithms 143

Speedup Parallef Efficiency
1.05 —
q
>
©
c
2 0.95
8
b=
[+
3
T 09
©
o
0.85
0.8 —
0 2 4 6 8 10 12 14 16 18 0 2 4 6 8 10 12 14 16 18
parallel model tasks parallel model tasks

Figure 9.8: Speedup (left hand side} and parallel efficiency (right hand side) in depen-
dence on the number of parallel model tasks for the framework with a filter process on
each model task.

Speedup Parallel Efficiency
1.05 T —
1
>
[&]
c
.2 0.95
S
D
S
T 09
©
o
0.85
0.8
6 2 4 6 8 10 12 14 186 18 6 2 4 6 8 10 12 14 16 18
parallel model tasks paralliel model tasks

Figure 9.9: Speedup (left hand side) and parallel efficiency (right hand side) in depen-
dence on the number of parallel model tasks for the framework with disjoint process sets
for filter and model. The filter part is computed by a single process.

9.5 Parallel Efficiency of Filter Algorithms 144

Further, different computation times for the forecasts can limit the efficiency when
other processes have to wait for one of the model tasks to complete its work.

Using disjoint process sets, the speedup is very similar to the speedup obtained by
the configuration with a filter process on each model task. The small differences are
again not statistically significant. The standard deviation of the speedup amounts
again to about 3%. Due to these uncertainties no more detailed results can be drawn
from the values of the speedup. In particular, it is not possible to determine which
of the two process configurations, filter processes joint with the model processes or
disjoint process sets for model and filter, is more efficient.

The deviation from an optimal parallel efficiency of the data assimilation system
is caused by varying execution times of the state evolutions on different model tasks.
Since the processes are synchronized at the end of a forecast phase, this desynchro-
nization reduces the speedup of the forecast phase. The influence of the analysis
and resampling phases are negligible. For the EnKF, which is the most costly of the
three filter algorithms, the execution time for the analysis and resampling phases
amounts to less than 0.1% of the total execution time for the serial experiment. In
addition, the influence of the serial model initialization and the execution of the
user analysis routine are negligible. These phases last respectively about 6 and 10
seconds in the serial experiment.

9.5.2 Speedup of the Filter Part for Mode-decomposition

Despite the fact that in the experiments conducted in the preceding section with
the idealized configuration of FEOM the computation times for the filters were
negligible, it is instructive to examine the speedup of the filter routines. It will be
important when the computation time for the model is less dominant. This can
occur, e.g., if observational data is frequently available causing the time interval
between successive analysis phases to by very small.

To assess the parallel efficiency of the filter routines, data assimilation experi-
ments without time stepping are performed. For this the call to the time stepper
routine of FEOM is out-commented in the source code of the program used for
the experiments in section 9.5.1. Apart from the time stepping, the experiments
are analogous to the filtering experiments discussed in the preceding section. To
obtain sufficiently large execution times of the filter routines, the analysis phase is
performed 20 times. This corresponds to an interval of three hours between subse-
quent analyses in the experimental configuration with time stepping. To study the
dependence of the parallel efficiency on the ensemble size, experiments with NV = 60
and N = 240 are performed.

Figure 9.10 compares the execution time and the speedup for two different ensem-
ble sizes for the update phase of the filters for mode-decomposed filter algorithms.
The left hand side corresponds to an ensemble size of N = 60; the right hand side
was computed with N = 240. For the SEEK and SEIK filters the timing includes
the time for the analysis and the resampling phases. The serial experiments have
also been performed with the parallel filter routine. Thus, the used routines were
not optimized for serial computations. The MPI operations were called also in the
serial experiments. The execution time for these operations is much shorter in this
case, but still there is a small overhead due to these redundant operations.

9.5 Parallel Efficiency of Filter Algorithms 145

Execution Time, N=60 Execution Time, N=240
60 120
—— EnKF
- - SEEK
50 .—. SEIK 100
40 \\'__—-1————-———‘ K
s 5
& 3
5 30t < 60
£ E
20 40
or 1 20
S~ T T o mr s s e
0 — 0
2 4 6 8 10 12 2 4 6 8 10 12
processors processors
Speedup, N=60 Speedup, N=240
5 . 5 .
45 45 A= E
/"/’- -7
4 1 4 L7
/I— s~ g
35 35 v
o o R
=] =] ’
° e ° N
g 3 e = = 2 3 z
& S & 7’
25 P 2.5 2
P R, I~ 4
r z -,
2 /;,_I/‘/ I~ . 2 ’
PER Is
15t 77 151/
1 1
2 4 6 8 10 12 2 4 6 8 10 12
processors processors

Figure 9.10: Execution time and speedup for the filter update phases in dependence on
the number of processes. In the experiments, the mode-decomposed filter was applied.
Displayed are mean values and standard deviations over ten experiments for each combi-
nation of filter algorithm and number of processes. The left hand side shows results for
N = 60, the right hand side for N = 240.

For N = 60, the SEEK and SEIK filters are much faster than the EnKF al-
gorithm. The fastest algorithm is the SEIK filter. This is due to the much faster
resampling phase of SEIK compared with SEEK. In the serial experiments, the anal-
ysis phase of SEEK takes about 0.6 seconds while the resampling lasts about 10.5
seconds. The analysis phase of SEIK is longer than that of SEEK taking 0.9 seconds.
However, the resampling phase of SEIK lasts only 4.3 seconds. In these experiments,
the resampling phase of the SEEK filter is executed after each analysis. As was dis-
cussed in section 2.4.1, this is actually not necessary. Thus, performing the resam-
pling in SEEK less frequently could significantly speed up this algorithm. The small
speedup of EnKF is partly due to the generation of the observation ensemble. Since
only a single observation vector is read from a file, the observation ensemble has

9.5 Parallel Efficiency of Filter Algorithms 146

to be generated by the transformation of independent random numbers which was
discussed in section 4.2. The generation of the observation ensemble took about 26
seconds for N = 60. The algorithm itself lasted about 17 seconds. But, even if the
time required for the initialization of the observation is neglected, the EnKF algo-
rithm would remain the slowest algorithm. This is caused by the solver step for the
representer amplitudes (line 20 in algorithm 7.3). The complexity of this operation
scales with O(m® + m?N) as was discussed in section 3.4. Other influences on the
speedup of the EnKF algorithm will be discussed below.

The relative differences in the execution times are smaller for N = 240 than
for N = 60. Using the larger ensemble size, the SEIK filter remains the fasted
algorithm while the EnKF algorithm is still the slowest filter, even if the generation
of the observation ensemble is neglected. The execution time for the EnKF triples
while that for SEEK and SEIK increases tenfold. The small increase in the exe-
cution time for the EnKF is due to the fact that the time for the initialization of
the observation enseruble only approximately doubles since here several operations
do not dependent on the size of N. The time for the remaining part of the EnKF
quadruples. The increase in the execution time of SEIK is dominated by the com-
putation of the new ensemble matrix in line 10 of the resampling algorithm 7.5. For
SEEK, the increase in time is also dominated by the resampling phase. Here most
of the time is spent in the computation of T1, in line & of algorithm 7.2 and the
computation of the new modes in line 15.

The speedup of the mode-parallel filter algorithms is rather disappointing. This
becomes apparent from the bottom row of figure 9.10 which shows the speedup for
the experiments with N = 60 and N = 240. The fluctuations in the speedup are
mainly due to cache-effects of the computer used for the experiments. Therefore,
the numerical efficiency of matrix-operations like matrix-matrix products depends
on the dimensions of the involved matrices. For N = 60, the best speedup is obtained
with the SEEK filter. Using 12 processes, a speedup of about 3.2 is obtained which
corresponds to a parallel efficiency of 27%. The worst speedup is exhibited by the
EnKF algorithm. It stagnates at a value of about 1.2 when 12 processes are used.
This corresponds to a parallel efficiency of 10%. The speedup is slightly better for
the large ensemble size of N = 240. Here the speedup for SEEK and SEIK reaches
respectively 4.4 and 4.7. Thus an efficiency between 37% and 39% is obtained
with 12 processes. The speedup of EnKF is twice as large as for N = 60 stagnating
at a value of about 2.4 with 12 processes.

The low parallel efficiency of SEEK and SEIK is mainly due to the extended
communication which is needed in the algorithms. For increasing ensemble size,
the time for computations increases relative to the time for communications. Thus
the parallel efficiency increases for larger ensembles. The distinct efficiency of SEEK
and SEIK for N = 60 is due to the different number of operations performed in their
resampling phases. The amount of communication in the resampling phases of both
algorithms is practically equal for NV = 60. Since SEIK performs less operations, the
allgather operation for X in line 6 of algorithm 7.5 is more dominant for the execution
time than the allgather operation performed for V in SEEK. Since the time to
perform the allgather operation increases with an increasing number of processes, the
efficiency decreases for a larger number of processes. Using more than 6 processes,

9.5 Parallel Efficiency of Filter Algorithms

147

Execution Time Speedup
120 4.5
- total
— lines 4-14 4
100 — — lines 15-19 "I*‘
----- line 20 35 A/I\,\ I’"/. 3
- = P .
80 ings 21-28 =
— 3 i
jo] o N
3 E] ¥
g 0 €25 x
E 2 ’ g
= 5 ; — =
40 1S F =
S N -4l P
W e - .51, /‘.- --------- T
20 S T T e m -
e DTimETT R s e 1
0 0.5
2 4 [¢] 8 10 12 2 4 6 8 10 12
processors processors

Figure 9.11: Execution times and speedup for the groups of operations in the EnKF
analysis algorithm for N = 240. Shown are means and standard deviations analogous
to figure 9.10. The line numbers given in the legend of the diagrams refer to those in
algorithm 7.3.

the allgather operation in SEIK lasts even longer than the computation of the new
ensemble states. Therefore, the execution time of SEIK increases if the number
of processes exceeds a value of 8. Hence, the speedup of SEIK decreases for the
experiments using more than 8 processes.

For models with larger state dimension n, the speedup of the SEEK and SEIK
filters will also be limited by the required initialization of the full ensemble or mode
matrix by allgather operations. Also the differences between SEEK and SEIK will
remain for increasing n, since the amount of communication and the complexity of
the most expensive floating point operations in the resampling algorithm scale both
with O(n).

The minor speedup of the EnKF filter is due to several factors. To examine
the reasons in detail, the execution time and the speedup of different groups of
operations are displayed in figure 9.11 for the EnKF with N = 240. In the serial
experiment, the generation of the observation ensemble and the initialization of the
residual matrix (lines 15 to 19 in algorithm 7.3) take together about the same time
as the ensemble update with its preparations (lines 21 to 28). The the ensemble
update shows a better speedup than the initialization of the residuals. The speedup
for the ensemble update does, however, stagnates at a value of about 3.5. This is
due to the allgather operation performed to initialize the matrix T5 € R™¥. The
generation of the observation ensemble does also show a limited speedup since this
operation requires the eigenvalue decomposition of the observation error covariance
matrix R € R™*™. The decomposition is independent of the local ensemble size
and is not parallelized. The speedup of the other parts of the EnKF algorithm is
worse than the ensemble update and the initialization of the residual matrix. The
computation of matrix T8 € R™ ™ in line 13 takes about 97% of the execution
time of the operations in lines 4 to 14. Since this operation is not parallelized, the

9.5 Parallel Efficiency of Filter Algorithms 148

speedup for this part of the algorithm will be approximately constant with a value
of one. The complexity of the solver step for the representer amplitudes in line 20
is O(m3+m?2N). Tt is dominated by the LU-decomposition of the matrix T3 which
is performed by the LAPACK routine DGESV. Thus, the achievable speedup of the
solver step is very small.

Overall, this discussion showed that the small speedup for the EnKF is caused
by a combination of high amounts of communication and operations which are per-
formed serially or do not have a good scalability in terms of performance. The
speedup of the ensemble update could be major if the communication was faster
relative to the computations. The solver step in line 20 and the computation of T'3
in line 13 will, however, remain a limiting factor for the parallel efficiency of the
EnKF algorithm. The speedup will be major if the dimension of the observation
vector relative to the state dimension is smaller. This can be achieved by using a
EnKF analysis algorithm which sequentially assimilates batches of observations as
has been discussed in section 3.4. In addition, a better speedup can be expected for
larger models if the amount of observational data remains constant.

9.5.3 Speedup of the Filter Part for Domain-decomposition

The experiments of the preceding section have been repeated using the domain-
decomposed filter algorithms developed in section 7.3. Figure 9.12 shows execution
time and speedup for the update phase of the filters. As in figure 9.10, results
for N = 60 are displayed on the left hand side and results for N = 240 are shown
on the right hand side.

The execution times for domain-decomposed filters look rather similar to those
for the mode-decomposed filters. For the serial experiments, the times are about the
same size. There are small differences due to the different number of communication
operations which are even called if the filters are executed by a single process. A
relevant difference to the experiments with mode-decomposed filters is the stronger
decrease of the execution times with an increasing number of processes which is
visible for SEEK and SEIK.

This behavior is quantified by the speedup. For N = 60 the SEEK and SEIK
filters show an ideal, even slightly super-linear speedup. The super-linear speedup
is caused by some operations which exhibit super-linear speedup. An example is
the computation of the matrix T1, in the SEEK resampling algorithm 7.7. This
operation reaches a speedup of 14.8 with 12 processes. The super-linear speedup is
caused by the effect that the local part of a decomposed matrix might fit better into
the processor caches of the computer than the full matrix. Thus, the caches can be
used more efficiently if the matrix is decomposed. In this case, the parallel efficiency
of the operation will by larger than one. Whether a super-linear speedup occurs is
dependent on the cache sizes of the computer system used for the experiments.

For N = 240 the speedup of SEEK and SEIK is not ideal. It is, however,
much better than for the mode-decomposed filters. The speedup for SEEK and
SEIK reaches respectively 7.6 and 10.6 with 12 processes but is not yet stagnat-
ing. The speedup corresponds respectively to a parallel efficiency of 63% and 88%.
The speedup of the two filters is smaller for the larger ensemble size since the fil-
ter algorithms have been parallelized such that several operations acting on matri-
ces of size (N — 1) x (N — 1) remained serial. For the smaller ensemble size, the

9.5 Parallel Efficiency of Filter Algorithms 149

Execution Time, N=60 Execution Time, N=240
60 120
- EnKF
-~ — SEEK
50 .—. SEIK 100
40 \\\ 80
= T
D @
2, 2,
~ 30 - 60
£ E
20 40}
1opr 20
~ = P
0 s AR ET TS E e ey o 0
2 4 6 8 10 12 2 4 6 8 10 12
processors processors
Speedup, N=60 Speedup, N=240
12 4 12
///
i0 ,./'I(10 T 7]
- o P
;-2 A
8 - 8 e
g e g Al
h=! ! - . -
3 6 /I] 6 /v‘/ -7
& 7 & E e
e S
4 e 4 }_: -
o P
A
ar 2 //—————ﬁ
VA
0 0
2 4 6 8 10 12 2 4 6 8 10 12
processors processors

Figure 9.12: Execution time and speedup for the filter update phases for domain-
decomposed filter algorithms. Displayed are means and standard deviations analogous to
figure 9.10. The left hand side shows results for N = 60, the right hand side for N = 240.
The dotted line shows the ideal speedup.

computation time of these operations was negligible. But, with increasing ensemble
size, the execution time of these operations increases strongly, since the complexity
of the matrix-matrix operations is proportional to (N —1)3 or (N — 1)?. Hence, the
execution time for the serial operations can become relevant for larger ensembles.
Then, the speedup will be limited by the serial parts according to Amdahl’s law.
To exemplify the influence of the serial parts, the resampling phase of SEEK is
considered. The execution time and the speedup for the resampling phase of SEEK
with N = 240 are shown in figure 9.13. The computation of the matrix T1, in
line 5 of algorithm 7.7 together with the allreduce summation to initialize the global
matrix T1 (line6) shows a slightly super-linear speedup. In addition, an almost ideal
speedup is visible for the operations in lines 10 to 14. When the filter is executed by a
single process, the operations in lines 5 and 6 together with the operations in lines 10

9.5 Parallel Efficiency of Filter Algorithims 150

Execution Time Speedup
14
, — total A
10 — lines 3,4,7,8 12 ‘s
- — lines 5,6 RS
---- line 9 ‘0 o
N, n _ EDE
S lines 10-14 e =7
g ' S 8 . =
R ~ 3 , A
o 10 N I Ll
=i e oy
g ema, 5o 4
— N\.‘ //
4 s
£
100 2
0
2 4 6 8 10 12 2 4 6 8 10 12
processors processors

Figure 9.13: Execution time and speedup for the groups of operations in the SEEK
resampling algorithm for N = 240 for domain-decomposition. Analogous to figure 9.10
means and standard deviations are shown. The line numbers given in the legend of the
diagrams refer to those in algorithm 7.7. The dotted line shows the ideal speedup.

to 14 take about 95% of the total execution time of the resampling algorithm. Thus,
the time for the serial parts of the algorithm is about 5% of the total time. Most of
this remaining time is spend in the computation of the singular value decomposition
of T1 € RW-Dx(N=1) iy line 9. Since this operation is not parallelized, its influence
on the total execution time grows with the number of processes. Using 12 processes,
the singular value decomposition takes about 25% of the computation time. Thus,
the serial parts of the algorithm reduce the parallel efficiency of the resampling
algorithm. It reaches only 65% with 12 processes which is consistent with Amdahl’s
law. The resampling phase dominates the execution time for the full update phase
of SEEK. The analysis phase requires only about 6% of the total execution time for
the update. Since the efficiency of the analysis algorithm is even minor than that
of the resampling algorithm, an efficiency of 63% is obtained for the update phase
of SEEK as was mentioned above.

The SEIK algorithm exhibits for N = 240 a parallel efficiency superior to the
SEEK algorithm. The resampling algorithm of SEIK shows an almost ideal speedup.
Its parallel efficiency reaches 95% with 12 processes. The efficiency is influenced by
the serial operations in lines 2 to 5 of algorithm 7.10. The efficiency of the full
update phase is reduced to 88% by the smaller efficiency of the analysis phase.
With a single process, the analysis takes about 15.5% of the total time for the
update phase. The efficiency of the analysis phase is limited by serial operations
and some communication operations. The most costly serial operation of the analysis
phase is the solver step in line 19 of algorithin 7.9. It requires about 6.5% of the
execution time for the analysis. There are some other serial and also communication
operations like the operation of the matrix T on some vector (line 20) or the allreduce
summadtion of the matrix Uinv in line 11. Together, the serial and communication
operations reduce the efficiency of the analysis phase to about 50% with 12 processes.

For models of larger dimension n, the influence of the serial operations in the

9.5 Parallel Efficiency of Filter Algorithms 151
Execution Time Speedup
120 12
- total
— lines 5-14
100 — ~ lines 15-20 10 .
----- line 21 4
-—- lines 22-28 e :
80 8 =
L, d
o 90 2 5 P
£ & a7
40PN i
v - 4 A <
Y TR em e e T e e = ../'.
2 ~ o
O, TR 2t B g g ——
o <
2 4 6 8 10 12 2 4 6 8 10 12
processors processors

Figure 9.14: Execution time and speedup for the groups of operations in the EnKF
analysis algorithm for N = 240 for domain-decomposition. Displayed are means and
standard deviations as in figure 9.10.The line numbers given in the legend of the diagrams
refer to those in algorithm 7.8. The dotted line shows the ideal speedup.

SEIK and SEEK algorithms will be minor. In addition, the amount of communica-
tion is independent of the dimension n. Hence, the speedup of the update phases of
SEEK an SEIK can be expected to be nearly ideal for larger state dimensions.

The speedup of the domain-decomposed EnKF filter algorithm is very similar to
that of the mode-decomposed algorithm. It stagnates at a value of 1.2 for N = 60
and 2.2 for N = 240.

The reasons for the small speedup are similar to those for the mode-decomposed
EnKF. The problem is again exemplified for an ensemble size of N = 240. Figure 9.14
shows the execution time and the speedup for operation groups of the domain-decom-
posed EnKF analogous to figure 9.11. In the domain-decomposed EnKF, the ensem-
ble update with its preparations (lines 22 to 27 in algorithm 7.8) shows a adequate
speedup without stagnation. With 12 processes a speedup of 9.1, corresponding to
an efficiency of 76%, is reached. The other parts of the algorithm exhibit, however,
a much worse speedup. The generation of the observation ensemble together with
the initialization of the residual matrix (lines 15-20) requires about 42% of the total
execution time if one process is used. For these operations, the speedup stagnates
at a value of approximately 2. The operations in lines 5 to 14 are dominated by
the computation of T3 in line 13. This operation is executed serially and requires
about 5% of the execution time in the serial case. The solver step for the representer
amplitudes B in line 21 is not parallelized either. With a single process, it requires
approximately 14% of the total execution time for the EnKF analysis. Overall, a
maximal speedup of about 2.2 is obtained for the EnKF analysis algorithm due
to the combination of the high amount of serial operations and the small speedup
displayed by the generation of the observation.

The speedup achieved for the domain-decomposed EnKF algorithm is even slightly
below that for the mode-decomposed algorithm. This is due to the fact that the

9.6 Summary 152

generation of the observation ensemble exhibits a smaller speedup in the case of
domain-decomposition. Additionally, the solver step for the representer amplitudes
is serial for domain-decomposition while it is parallelized for mode-decomposition.
The routine Enkf_Obs.Ensemble is supplied by the user. Case dependent, it might
be possible to implement this routine more efficiently. However, even if the time
for generating the observation ensemble could be neglected, the total speedup of
the EnKF algorithm is limited by the serial operations involving the matrix T3.
As for the mode-decomposed EnKF algorithm, the speedup will be major if the
dimension m of the observation vector relative to the state dimension 7 is smaller,
since the relevance of the serial operations with diminish. This will be, e.g. fulfilled
for models of larger state dimension if the amount of observational data remains
constant.

9.6 Summary

In this chapter, the parallel filtering framework developed in chapter 8 was imple-
mented and tested with an idealized configuration of the finite element ocean model
FEOM. The filtering framework includes the parallel filter algorithms developed in
chapter 7.

Data assimilation experiments using synthetic observations of the sea surface
height showed a good ability of the filter algorithms to estimate the velocity field.
The information provided by surface observations is successfully transported to the
lower levels of the model by the estimated covariances between the sea surface height
and the velocity field. In contrast to the velocity field, the temperature field is not
well estimated. While in the uppermost levels of the model the shape of the true
temperature field was accurately estimated, this was not the case for the lower levels.
In addition, the temperature was over-estimated in the model levels below a depth
of -500 meters.

Experiments assessing the parallel efficiency of the filter framework have been
performed with all three ESKF algorithms. The two different process configurations
of the framework have been tested. For this, the filter algorithms are either exe-
cuted by processes which evaluate also the model forecasts or the filter and model
parts of the parallel program are executed on disjoint process sets. Both configura-
tions exhibited statistically equal speedups. In addition, the speedup for all three
ESKF algorithm is identical within the accuracy of the measurements. The speedup
reached a value of about 15 with 18 processes. This corresponds to a parallel ef-
ficiency of approximately 83%. The deviation from an optimal parallel efficiency
resulted from the fact that different model tasks required slightly different execu-
tion times to evaluate the forecasts. This desynchronization yields an overhead in
the total execution time which reduces the parallel efficiency.

To assess the speedup of the parallelized filter algorithms, experiments have been
performed without time stepping. The experiments included the mode-decomposed
and the domain-decomposed filter algorithms. The experiments showed that the
model-decomposed SEEK and SEIK filters exhibit a much smaller parallel efficiency
than their domain-decomposed counterparts. This is due to a high amount of com-
munication which limits the speedup of the mode-decomposed algorithms. In the
experiments the speedup stagnates for the mode-decomposed filters for rather small

9.6 Summary 153

numbers of processes. The speedup of the domain-decomposed SEEK and SEIK
filters did not stagnate for the tested process numbers. For the smaller ensemble
size of N = 60, the speedup was even super-linear. For the larger ensemble size
of N = 240, the efficiency of the SEEK and SEIK filters was limited due to serial
operations on matrices involving the dimension r = N — 1 of the error subspace.
The EnKF algorithm exhibited an almost equal parallel efficiency for both paral-
lelization variants. The speedup stagnated at values which are significantly smaller
than the speedup obtained with the SEEK and SEIK filters. The limited speedup of
the EnKF algorithm is due to serial operations on matrices involving the dimension
of the observation vector.

The results for the parallel efficiency obtained in this chapter are specific for the
computer system used for the experiments and for the experimental configurations.
However, some general conclusions can be drawn. The stagnation of the speedup
in the EnKF algorithm will occur independently from the used computing platform
if the observation dimension is sufficiently large compared with the ensemble size.
The obtained value of the speedup will vary from computer to computer and will
depend on the dimensions involved in the data assimilation problem. Similarly one
can expect always a decreasing parallel efficiency for the domain-decomposed SEEK
and SEIK filters when the ensemble size increases. This is due to serial operations
on matrices involving the dimension of the error subspace. The speedup which can
be obtained with the mode-decomposed SEEK and SEIK filters is controlled by the
ratio of floating point performance to communication performance depending on the
computing platform and the dimension of the data assimilation problem.

If the filter framework is used with models of larger state dimension n, a parallel
efficiency of the data assimilation system similar to the current experimental results
can be expected. In addition, the speedup of the domain-decomposed SEEK and
SEIK filters can be expected to be excellent. The speedup of the mode-decomposed
variants of these filters will be limited by the high amount of communication which is
performed in the algorithms. The speedup of the EnKF algorithms will be limited for
both parallelization variants. However, if the state dimension n increases while the
amount of observational data remains constant, the speedup of the EnKF algorithms
will increase, too.

Chapter 10

Summary and Conclusion

In the second part of this work the application of Error Subspace Kalman Fil-
ters (ESKF) on parallel computers was studied. The implementation of the parallel
data assimilation system using the ESKF algorithms was conducted in two steps.
First, the parallelization of the analysis and resampling phases was discussed. Sub-
sequently, the parallelization of the forecast phase was considered. The latter was
included in the development of a framework for parallel filtering. To assess the par-
allel efficiency of both the filter framework and the parallel filter algorithms, the
framework was used to implement a data assimilation system based on the finite
element ocean model FEOM. The obtained data assimilation system was tested in
experiments with an idealized configuration of FEOM.

With regard to the analysis and resampling phases, the filter algorithms allow
for two different parallelization strategies. On the one hand, the ensemble or mode
matrix can be decomposed over the processes such that each process holds several
columns, i.e. full ensemble states, of the matrix. This strategy is referred to as
mode-decomposition. On the other hand, the model domain can be decomposed
into sub-domains. Hence, each process holds only the part of a model state which
corresponds to its local sub-domain. Using domain-decomposition, the ensemble or
mode matrix is decomposed such that each process holds a full ensemble of local
sub-states.

The comparison of communication and memory requirements for both paral-
lelization variants showed that the domain-decomposed filters are preferable. The
size of communicated matrices is smaller in the case of domain-decomposition.
The difference is most significant for the SEEK and SEIK filters. With mode-
decomposition, several matrices involving the state dimension n or the dimen-
sion m of the observation vector are communicated. In contrast, only commu-
nications of matrices involving the typically much smaller dimension r of the er-
ror subspace are necessary when the domain-decomposition is applied. In addi-
tion, the memory requirements for the domain-decomposed filters are smaller than
for the mode-decomposed algorithms. The domain-decomposed variants allow for
a better distribution of the large matrices. The memory overhead due to addi-
tional matrices which are introduced for the parallelization is also smaller for the
domain-decomposed filters. The benefit of the smaller communication requirements
with domain-decomposition was confirmed by numerical experiments. In these,
the speedup of the mode-decomposed SEEK and SEIK filters stagnates already for

154

155

less than 12 processes. The obtained speedup values are below 5. In contrast, no
stagnation of the speedup was observed in the experiments applying the domain-
decomposed SEEK and SEIK filters.

The EnKF algorithm is problematic concerning communication and memory
requirements. With both parallelization strategies, it requires full allocation of ma-
trices involving the dimension m of the observation vector on each process. For
large observational data sets, this memory requirement can become critical. Addi-
tionally, the EnKF algorithm involves ensemble matrices on the observation space,
namely of dimension mN with N being the ensemble size, in communication opera-
tions even for the domain-decomposed variant. While for mode-decomposition, the
communication requirements of all three filters are of comparable size, the domain-
decomposed EnKF algorithms communicate much more data than the domain-
decomposed SEEK and SEIK filters. Besides the issue of communication and mem-
ory requirements, some operations on matrices involving the dimension m of the
observation space are performed serially in EnKF algorithm. In the numerical ex-
periments, the EnKF algorithm exhibited a comparable speedup for both paral-
lelization variants. The speedup stagnated at very small values between 1.2 and 2.4
which was mainly caused by the serial parts of the algorithm.

To obtain a more efficient EnKF algorithm a localized filter analysis was de-
rived. The localization neglects observations beyond some distance from a model
sub-domain motivated by the fact that the sampled long-range covariances are in
general very noisy. Since, in addition, the true long-range covariances are typically
very small, the information content of the sampled long-range covariance is negli-
gible. The localization is, however, an approximation which can cause the model
forecasts to become unstable. The localization reduces the effective observation di-
mension of the analysis algorithm. Hence, the memory as well as the communication
requirements of the analysis algorithms are reduced. Accordingly, the parallel effi-
ciency of the algorithm will increase.

A framework for parallel filtering was developed which includes the paralleliza-
tion of the forecast phase of the filter algorithms. This framework is designed to
permit the combination of an existing model with the parallel filter algorithms re-
quiring only minimal changes in the model source code. The framework includes an
application program interface. This interface defines the structure of the subroutine-
calls which have to be added to the model source code. In addition, the interface
to observation-related routines which are called from the filter routines is defined.
The organization of the framework uses a clear separation between model and filter
routines. In addition, operations related to observations are distributed into sep-
arate routines. With this structure, the core routines of the filter algorithms are
completely independent of both the model and the observations. For combining the
framework with an existing numerical model, the major work will consist in the
implementation of the observation-related routines. In addition, routines have to
be implemented which perform the model-dependent transition between the state
vector required for the filter part and the state fields used in the model.

The framework permits to execute multiple model tasks concurrently. Each of
these tasks can be individually parallelized. The required communication of data
between filter and model parts of the data assimilation program is performed by the

156

framework. Two different process configurations are supported by the framework.
Either the processes which execute the filter routines are also involved in the com-
putation of the model forecasts (denoted as joint process sets) or the filter part of
the program is executed on a set of processes which is disjoint from the processes
used to compute the model forecasts.

The theoretical examination of the different process configurations showed that
none of them is clearly preferable. The configuration with joint process sets permits,
on the one hand, to use all processes of the program to compute the model forecasts.
In addition, the amount of communication will be smaller than with disjoint process
sets. On the other hand, this configuration requires that a matrix holding a sub-
ensemble of model states is allocated on one process of each model task. This can
increase the memory requirements considerably.

The configuration with disjoint process sets requires only the allocation of a
single model state vector on one process of each model task. Further, the possible
configurations of the model tasks are more flexible than those for joint process
sets. While for joint process sets the sizes of the sub-ensembles which are evolved
by the model tasks are to be determined in advance, this is not required for the
case of disjoint process sets. Here, the framework sends an ensemble state vector
to each idle model task. This technique can be useful if the model tasks have
strongly different performances. The number of ensemble members evolved by each
model task is dynamically controlled by its performance. The automatic adaption
to different performances of the model tasks will, however, only work if ensemble
size and performance differences are sufficiently large.

The numerical experiments with FEOM yielded equal speedup values for both
process configurations. The speedup was not ideal due to varying execution times
of the model forecast on different model tasks. The time required for the analysis
and resampling phases of the filters was negligible in these experiments.

Overall, the configuration of the framework with joint process sets should be pre-
ferred if the memory requirement of the sub-ensembles on processes which execute
also the model is not problematic with the used computer architecture. If memory
limitations are too strong, the configuration of the framework with disjoint process
sets should be used. This configuration should also be used if there are significant
performance differences of the model tasks or if one considers to execute the data
assimilation program such that model forecasts are computed concurrently on mul-
tiple computers.

Considering the framework and the parallel filters together, the parallelization
strategy for the filter routines is independent from the process configuration of the
framework. Thus, the framework supports a parallelization strategy on two levels.
First, the numerical model and the analysis and resampling phases of the filters
can be parallelized independently. Second, the framework permits to perform the
forecast with multiple model tasks which are executed concurrently. In this case,
one parallel filter task is coupled with several model tasks by the framework.

The parallelization strategy using mode-decomposition amounts to a paralleliza-
tion of the filter which is independent from a possible parallelization of the model.
In contrast, the strategy using domain-decomposition is most efficient for models

157

which are themselves domain-decomposed. In this case, the decompositions used
for the model and the filter should coincide to obtain optimal performance. Distinct
decompositions of the domains for model and filter are supported by the framework.
They will, however, result in an overhead due to the required reordering of the state
information.

Concluding, the study showed that the EnKF algorithm exhibits several prob-
lems. These are due to the communication and memory requirements of the filter. In
addition, the parallelized EnKF algorithms contain several serial operations on ma-
trices which involve the dimension of the observation vector. If the a large amount
of observational data is assimilated, these operations will strongly limit the parallel
efficiency of the algorithms. Thus the parallel efficiency of the EnKF algorithm is
limited in addition to the inferior serial numerical efficiency in comparison to the
SEEK and SEIK filters which has been discussed in part 1 of this work.

The SEEK and SEIK filters show a very good parallel efficiency for domain-
decomposed states if the rank r of the approximated state covariance matrix is
significantly smaller than the dimension of the observation vector and the state
dimension. In this situation, the SEIK filter is the algorithm with the highest
parallel efficiency. Using mode-decomposition, the parallel efficiency of both filter
algorithms is limited by a large amount of data which has to be communicated by
global MPI operations.

The differences between the parallel efficiencies of the analysis and resampling
phase of the three ESKF algorithms are less important if the computation time
for the forecast phase dominates the full execution time of the data assimilation
application. In this case a very good parallel efficiency of the data assimilation
system is obtained since the evolution of different model states can be performed
independently. The efficiency can be limited by varying execution times for different
model tasks. Furthermore serial parts of the program like the model initialization
or the output of fields to disk files can be limiting for efficiency.

The parallel filtering experiments showed that the filter framework introduced
in this work including the implemented parallel filter algorithms is well suited for
realistic large-scale data assimilation applications.

Appendix A

Parallel Computing

A.1 Introduction

This appendix provides an introduction to parallel computing. Section A.2 summa-
rizes the fundamental concepts of parallel computing. Subsequently, in section A.3,
quantities for the performance analysis of parallel programs are introduced. In
addition, an introduction to the Message Passing Interface (MPI) |27] is given in
section A.4. The descriptions summarized here follow those by Foster [22] and
Pacheco [59]. Some expressions have been taken from these books.

A.2 Fundamental Concepts

Parallel computing bases on several fundamental concepts and methods. We sum-
marize here the fundamental terms which are used in the main part of this work.

Process

A process can be, intuitively, considered as an instance of a program that is execut-
ing more or less autonomously on a physical processor. It is fundamental building
block of a parallel program which comprises multiple processes.

Parallelism

Parallelism is the possibility to distribute instructions of some operation over multi-
ple processes to perform the parts of the operation concurrently by the processes. An
example is the addition of two vectors a, b € R™. The additions of the components

are mutually independent. Hence, they can be performed concurrently by different
processes.

Communication

Communication is the operation to exchange data between different processors.
Communications will result in an overhead since the participating processor will
not perform productive work during the communication operation. Communication
can be performed either collective or point-to-point. Collective communication in-
volves a group of processes. It is, e.g., used for global summations or broadcast

158

A.3 Performance of Parallel Algorithms 159

operations. Point-to-point communication operations exchange data between pairs
of processes.

Synchronization

Synchronization of the execution of a parallel program is required if the following
operations of the program base on the results of previous operations performed by
parallel processes. Synchronization yields an overhead which is either due to the
required communication or due to processes which idle until the synchronization is
completed.

Overhead

The overhead describes the excess of execution time of a parallel program in com-
parison to a sequential program. The overhead is due to communication, synchro-
nization, and the start-up time of parallel processes.

Granularity

Granularity is the ratio of the time for productive work to the time spent for com-
munication or the start-up of parallel processes. Coarse granularity is obtained if
the distributed work consists of a large amount of instructions but only few com-
munications. In this case, the time during which the processors work independently
is much larger than the communication time.

Load balancing

To obtain an optimal parallel efficiency of a parallel program, the operational load
has to be distributed equally over all processes, denoted as load balancing. Depen-
dent on the problem, the distribution of the operations can either be statically (for
regular problems), or dynamically (for irregular or adaptive problems).

Program paradigms

A parallel program paradigm describes the general way in which a program is par-
allelized. Of the many existing paradigms we describe those two which are the most
widely used:

Shared-memory programming utilizes the possibility to use a global address space for
the memory of all processes of a parallel program. This can be either achieved by a
direct access to all memory locations by all processes or by a virtual global address
space of distributed memory. Shared-memory programs can be implemented using
the Open-MP standard [57].

Message Passing is used to implement parallel programs on computer systems with
distributed-memory. The processes of the parallel program share data by explicitly
sending and receiving messages. These communication operations are explicitly im-
plemented, e.g. by calling routines of the Message passing Interface (MPI) [27]. An
introduction to MPI is provided in section A.4.

A.3 Performance of Parallel Algorithms

The performance of parallel algorithms can be expressed by several measures which
are summarized here.

A.3 Performance of Parallel Algorithms 160

Performance

The performance of a program is defined as the number of operations performed
per time unit. In numerical applications, the performance is usually expressed by
floating point operations (flops) per second.

Execution Time

The time that elapses between the startup of the first processor executing a parallel
program and the time when the last processor completes execution defines the exe-
cution time T of the parallel program.

The execution time will generally depend on the computer being used. l.e., the
hardware (processors, memory, network, etc.) as well as the compiler used to gen-
erate the program executable will influence the execution time.

Speedup
The speedup S(p,n) of a program which is executed on p processors with some
problem size of n is defined by

T(1,n)
T(p,n)

The speedup describes the factor by which the execution time of a parallel program
is reduced with p processors, relative to the execution with a single processor.

S(p,n) = (A.2)

Parallel Efficiency
The parallel efficiency E(p,n) measures the process utilization in a parallel program
relative to a serial program. It is defined by

_ T(,n)
p-T(p,n)
A parallel efficiency of 1 (or 100%) shows an ideal parallelization. Since the parallel

program will not be free of overhead and will usually contain also serial phases, it
is E(p,n) < 1.

E(p,n) (A.3)

Amdahl’s Law

Typically, not all operations in a program can be parallelized. Thus, there will be
some fraction o, (0 < o < 1) of serial operations. The total execution time of a
parallel program is then given by the sum of the execution times T, for the parallel
and T for the serial fractions of the program:

Tlpm) = T.(1,m) + D) = (a+ 252)) (A.4)

Serial parts of a parallel program will limit the speedup, since, according to equa-
tion (A.4),
T(1,n) 1

_Tn)
S(p,n) = Tlpn) ~ as L= (A.5)

Thus, the asymptotic speedup is

S(p,n) — é for p — o0 . (A.6)

A.4 The Message Passing Interface (MPI) 161

Scalability

A parallel program is scalable if its execution time is inversely proportional to the
number of processors used to execute the program. This behavior is denoted as
scalability with fixed problem size. Scalability with scaled problem size describes
the property of an algorithm to allow for an increase rate of the problem size which
keeps the efficiency constant when increasing the number of processors.

A.4 The Message Passing Interface (MPI)

Using the message-passing library MPI the parallel program is written by augment-
ing standard Fortran or C/C++ source code with calls to library functions for
sending and receiving messages.

The MPI-1 standard [27] comprises 129 functions. We describe here fundamental
concepts of MPL. In the course of this, we describe the functions which are used for
the parallelization of the filter algorithms and for the implementation of the parallel
filter framework.

Message Passing
MPI is based on message passing. That is, communication is performed by the ex-
plicit sending and receiving of messages which contain the data to be exchanged.

Message

A message consists of the data to be exchanged and an envelope enclosing the mes-
sage. The envelope contains the information which is necessary to identify a message
and to send it to the right process. The identifying information are the rank of the
receiving process, the rank of the sending process, a tag, and a communicator. The
tag identifies a message if several messages of the same type are sent by the same
process.

Initialization of a MPI Program

Before any other MPI functions can be called, the library must be initialized by
calling the function MPI_Init. After a program has finished using the MPI library,
each process must call MPI_Finalize. This function ensures a clean termination of
MPI, e.g. by freeing memory allocated by the MPT library.

Communicator

A communicator defines a set of processes which can send messages to each other.
All communication operations in MPI are performed within a communicator. Ac-
cordingly, a communicator must be specified in the calling interface of all MPI
functions which are related to communication or the communicator itself.

The communicator is useful to define subgroups of processes which participate in col-
lective communication operations. After the initialization of a program which is par-
allelized using MPI, the communicator MPI_COMM.WQORLD exists which contains
all processes of the program. Other communicators can be defined, e.g., by splitting
the set of processes in an existing communicator with the function MPI_Comm._split.

Rank of a Process
The rank of a process in a communicator is provided by the function MPI_Comm_rank.

A.4 The Message Passing Interface (MPI) 162

The total size of a communicator in terms of processes is provided by the function
MPI_Comm._size.

Point-to-Point Communication

The basic point-to-point communication operations of MPI are given by the func-
tions MPI_Send and MPI_Recv. These operations are blocking, i.e., a process which
calls e.g. MPI_Recv remains idle until the message it has to receive is available.
The MPI library provides also non-blocking operations. These are, e.g., the func-
tions MPI_ISend and MPI_IRecv, which are the non-blocking counterparts of the
basic send and receive operations. When a non-blocking function is called, the pro-
cess posts the communication operation and returns immediately from the function
without waiting for the completion of the communication operation. To query the
completion of a non-blocking operation, the function MPI_Test is called.

Broadcast

A broadcast is a collective operation in which a single process sends the same data
to every process of a communicator. The broadcast is conducted by calling the
function MPI_Bcast.

Reduction

A reduction operation is a collective communication operation in which all processes
of a communicator contribute data that is combined using a binary operation. Typi-
cal operations are addition or the determination of the maximum value of a variable.
The combined result is provided to a single process if the function MPI_Reduce is
called. If the result of the reduction operation is required by all processes of a com-
municator, the function MPI_Allreduce is called.

Gather

To gather an array which is distributed over the processes of a communicator on
a single processor, the function MPI_Gather is called. The function MPI_Allgather
provides the gathered array to all processes.

Barrier
To synchronize the processes, the function MPI_Barrier can be called. This function
causes each process to block until every process of the communicator has called it.

Appendix B

Documentation of Framework
Routines

In this appendix, those routines of the filter framework are documented which have
not been shown in the main part of this work. The interfaces of these routines are
identical for mode and domain-decomposition The description refers to the variant
using mode-decomposition.

Subroutine Next_Observation(step,nsteps,time)
int step {Current time step, input}
int nsteps {Number of time steps to be computed, output}
real time {Current model time, output}

... Initialize nsteps and time . ..

Algorithm B.1: Initialize the number of time steps for the next forecast phase and the
current model time. Called from the Get_State for joint process sets or the filter main
routine for disjoint process sets.

Subroutine Distribute_State(n,x)
int » {State dimension, input}
int x(n) {State vector to be distributed, input}

... Initialize and distribute model fields ...

Algorithm B.2: Initialize the model fields for a model task from a state vector. Called
by Get.State.

Subroutine Collect_State(n,x)
int n {State dimension, input}
int x(n) {State vector to be initialized, output}

... Initialize state vector from model fields ...

Algorithm B.3: Initialize the state vector from the model fields of a model task after a
state has been forecasted. Called by Put.State.

163

164

Subroutine Get.Dim_Obs(step, m)
int step {current time step, input}
int m {dimension of observation vector, output}

... Initialize m . ..
Algorithm B.4: Provide dimension of the observation vector. Called from the filter
analysis routines.

Subroutine Measurement(step, m,y)
int step {current time step, input}
int m {dimension of observation vector, input}
real y(m) {observation vector, output}

... Initialize y ...

Algorithm B.5: Provide the observation vector. Called from the filter analysis routines.

Subroutine Measurement.Ensemble(step, m, N,, Y, y)
int step {current time step, input}
int m {dimension of observation vector, input}
int N, {local ensemble size, input}
real Yp(m, N,) {matrix holding local observation ensemble, output}
real y(m) {observation vector, output}

... Initialize y and Y, ...

Algorithm B.6: Provide an ensemble of observations. Called from the EnKF analysis
routine.

Subroutine Measurement_Operator(step, n, m,X,y)
int step {current time step, input}
int n {state dimension, input}
int m {dimension of observation vector, input}
real x(n) {state vector, input}
real y(m) {state vector projected on observation space, output}

... operate with H on x to obtain y ...

Algorithm B.7: Implementation of the measurement operator. Called from the filter
analysis routines.

165

Subroutine RinvA(step,m,r,A,B)
int step {Current time step, input}
int . {Dimension of observation vector, input}
int » {Rank of approx. covariance matrix, input}
real A(m,r) {Matrix to be multiplied by R, input}
real B{m,r) {Computed product matrix, output}

...B+—R1A ...

Algorithm B.8: Multiply the inverse of the observation error covariance matrix R with
some matrix. Called form the analysis routines of SEEK and SEIK. Since the matrix A
is still required in the algorithms, it must not be modified in the routine.

Subroutine RplusA(step,m,A)
int step {Cwrrent time step, input}
int m {Dimension of observation vector, input}
real A(m,m) {Input matrix and result of addition, input/output}

AR+ A

Algorithm B.9: Add the observation error covariance matrix R to some matrix. Called
by the analysis routine of the EnKF. Since the input matrix A is not further used in the
algorithm, it is overwritten by the sum.

Subroutine Init.Ensemble SEEK(n,r,x, Uinv, V| status)
int n {state dimension, input}
int r {rank of approximated covariance matrix, input}
real x(n) {state estimate, output}
real Uinv(r,r) {inverse eigenvalue matrix, output}
real V(n,7) {mode matrix, output}
int status {status flag, input/output}

... Initialize x, Uinv, and 'V ...

Algorithm B.10: Initialize filter fields for SEEK. Called from filter initialization routines.

Subroutine Init_Ensemble SEIK(n, N, x, X, status)
int n {state dimension, input}
int N {ensemble size, input}
real x(n) {state estimate, output}
real X(n, N) {ensemble matrix, output}
int status {status flag, input/output}

... Initialize x and X ...

Algorithm B.11: Initialize filter fields for SEIK. Called from filter initialization routines.

166

Subroutine Init_Ensemble EnKF(n, N, x,X, status)
int n {state dimension, input}
int N {ensemble size, input}
real x(n) {state estimate, output}
real X(n, N) {ensemble matrix, output}
int status {status flag, input/output}

... Initialize x and X ...
Algorithm B.12: Initialize filter fields for EnKF. Called from filter initialization routines.

Subroutine User_Analysis SEEK(step,n,r,rp, m,x, Uinv, V)
int step {current time step, input}
int n {state dimension, input}
int 7 {rank of approximated covariance matrix, input}
int 7, {local rank of approx. covariance matrix, input}
int m {dimension of observation vector, input}
real x(n) {state estimate, input}
real Uinv(r,r) {inverse eigenvalue matrix, input}
real Vp(n,7,) {mode matrix, input}

... User treatment of filter fields ...

Algorithm B.13: User analysis routine for SEEK. Called from filter main routines. The
provided input fields should not be changed.

Subroutine User. Analysis SEIK(step,n, N, N,, m, Xp, X)
int step {current time step, input}
int n {state dimension, input}
int N {ensemble size, input}
int N, {local ensemble size, input}
int m {dimension of observation vector, input}
real x(n) {state estimate, input}
real X,(n, N,) {ensemble matrix, input}

... User treatment of filter fields ...

Algorithm B.14: User analysis routine for SEIK. Called from filter main routines. The
provided input fields should not be changed.

167

Subroutine User_Analysis EnKF(step, n, N, Ny, m, Xp, %)
int step {current time step, input}
int n {state dimension, input}
int N {ensemble size, input}
int N, {local ensemble size, input}
int m {dimension of observation vector, input}
real x(n) {state estimate, input}
real X,(n, N,) {ensemble matrix, input}

... User treatment of filter fields ...

Algorithm B.15: User analysis routine for EnKF. Called from filter main routines. The
provided input fields should not be changed.

Bibliography

[

2]

[10]

[11]

[12]

J. L. Anderson. An Ensemble Adjustment Kalman Filter for data assimilation.
Mon. Wea. Rev., 129:2884-2903, 2001.

J. L. Anderson and S. L. Anderson. A Monte Carlo implementation of the
nonlinear filtering problem to produce ensemble assimilations and forecasts.
Mon. Wea. Rev., 127:2741-2758, 1999.

A. Bennett. Inverse Methods in Physical Oceanography. Cambridge University
Press, New York, 1992.

L. Bertino, G. Evensen, and H. Wackernagel. Sequential data assimilation
techniques in oceanography. Int. Stat. Rev., 71:223-242, 2003.

C. H. Bishop, B. J. Etherton, and S. J. Majumdar. Adaptive sampling with the
Ensemble Transform Kalman Filter. Part [: Theoretical aspects. Mon. Wea.
Rev., 129:420-436, 2001.

J.-M. Brankart, C.-E. Testut, P. Brasseur, and J. Verron. Implementation of
a multivariate data assimilation scheme for isopycnic coordinate ocean models:
Application to a 1993-1996 hindcast of the North Atlantic ocean circulation.
J. Geophys. Res., 108(C3):3074, 2003. doi:10.1029/2001JC001198.

K. Brusdal, J. M. Brankart, G. Halberstadt, G. Evensen, P. Brasseur, P. J. van
Leeuwen, E. Dombrowsky, and J. Verron. A demonstration of ensemble based
assimilation methods with a layered OGCM from the perspective of operational
ocean forecasting systems. J. Mar. Syst., 40-41:253-289, 2003.

G. Burgers, P. J. van Leeuwen, and G. Evensen. On the analysis scheme in the
Ensemble Kalman Filter. Mon. Wea. Rev., 126:1719-1724, 1998.

V. Carmillet, J.-M. Brankart, P. Brasseur, H. Drange, G. Evensen, and J. Ver-
ron. A singular evolutive Extended Kalman filter to assimilate ocean color data
in a coupled physical-biochemical model of the North Atlantic ocean. Ocean
Modeling, 3:167-192, 2001.

B. S. Chua and A. F. Bennett. An inverse ocean modeling system. Ocean
Modeling, 3:137-165, 2001.

S. E. Cohn. An introduction to estimation theory. J. Met. Soc. Jpn.,
75(1B):257-288, 1997.

S. Danilov, G. Kivman, and J. Schréter. A finite-element ocean model: Princi-
ples and evaluation. Ocean Modeling, 6:125-150, 2004.

168

BIBLIOGRAPHY 169

(13]

[14]

24
25
[26]
27

[28]

Project DIADEM. Development of advanced data assimilation systems for
operational monitoring and forecasting of the North Atlantic and nordic seas.
URL http://diadem.nersc.no/index.html.

F.-X. Le Dimet and O. Talagrand. Variational algorithms for analysis and assi-
milation of meteorological observations: Theoretical aspects. Tellus, 38A:97—
110, 1986.

G. Evensen. Open boundary conditions for the Extended Kalman filter with a
quasi-geostrophic ocean model. J. Geophys. Res., 98(C9):16529-16546, 1993.

G. Evensen. Inverse methods and data assimilation in nonlinear ocean models.
Physica D, 77:108-129, 1994.

G. Evensen. Sequential data assimilation with a nonlinear quasi-geostrophic
model using Monte Carlo methods to forecast error statistics. J. Geophys.
Res., 99(C5):10143-10162, 1994.

G. Evensen. The Ensemble Kalman Filter: Theoretical formulation and prac-
tical implementation. Ocean Dynamics, 53:343-367, 2003.

G. Evensen and P. J. van Leeuwen. Assimilation of geosat altimeter data for
the Agulhas current using the Ensemble Kalman Filter with a quasi-geostrophic
model. Mon. Wea. Rev., 124:85-96, 1996.

M. Fisher. Development of a simplified Kalman filter. Technical Memorandum
260, BEuropean Centre for Medium-Range Weather Forecasts, 1998.

M. Fisher and E. Andersson. Developments in 4D-Var and Kalman filter-
ing. Technical Memorandum 347, European Centre for Medium-Range Weather
Forecasts, 2001.

1. T. Foster. Designing and Building Parallel Programs. Addison-Wesley, New
York, 1995.

S. Frickenhaus, W. Hiller, and M. Best. FoSSI: Family of simplified solver inter-
faces for parallel sparse solvers in numerical atmosphere and ocean modeling.
Ocean Modelling, 2003. submitted.

A. Gelb, editor. Applied Optimal Estimation. The MIT Press, Cambridge,
1974.

M. Ghil and P. Malanotte-Rizzoli. Data assimilation in meteorology and
oceanography. Adv. Geophy., 33:141-266, 1991.

G. H. Golub and C. F. van Loan. Matriz Computations. John Hopkins Univer-
sity Press, Baltimore, 1989.

W. Gropp, E. Lusk, and A. Skjellum. Using MPI - Portable Parallel Program-
ming with the Message-Passing Interface. The MIT Press, Cambridge, 1994.

T. M. Hamill, C. Snyder, and R. E. Morss. A comparison of probabilistic fore-
casts from bred, singular-vector, and perturbed observation ensembles. Mon.
Wea. Rev., 128:1835-1851, 2000.

BIBLIOGRAPHY 170

[29]

1]
[42]

(43]

T. M. Hamill, C. Snyder, and J. S. Whitaker. Ensemble forecasts and the
properties of flow-dependent analysis-error covariance singular vectors. Mon.
Wea. Rev., 131:1741-1758, 2003.

T. M. Hamill and J. S. Whitaker. Distance-dependent filtering of background
error covariance estimates in an Ensemble Kalman Filter. Mon. Wea. Reuv.,
129:2776-1790, 2001.

A. W. Heemink, M. Verlaan, and A. J. Segers. Variance reduced ensemble
Kalman filtering. Mon. Wea. Rev., (129):1718-1728, 2001.

I. Hoteit. Filires de Kalman Réduits et Efficaces pour I’Assimilation de Données
en QOcéanographie. PhD thesis, 1'Université de Joseph Fourier, Grenoble,
France, 2001.

I. Hoteit, D.-T. Pham, and J. Blum. A simplified reduced order Kalman filtering
and application to altimetric data assimilation in tropical Pacific. J. Mar. Syst.,
36:101-127, 2002.

P. L. Houtekamer and H. L. Mitchell. Data assimilation using an Ensemble
Kalman Filter technique. Mon. Wea. Rev., 126:796-811, 1998.

P. L. Houtekamer and H. L. Mitchell. Reply. Mon. Wea. Rev., 127:1378-1379,
1999.

P. L. Houtekamer and H. L. Mitchell. A sequential Ensemble Kalman Filter for
atmospheric data assimilation. Mon. Wea. Rev., 129:123-137, 2001.

K. Ide, P. Courtier, M. Ghil, and A. C. Lorenc. Unified notation for data
assimilation: Operational, sequential and variational. J. Meteorol. Soc. Jpn.,
75(1B):181-189, 1997.

A. H. Jazwinski. Stochastic Processes and Filtering Theory. Academic Press,
New York, 1970.

S. J. Julier and J. K. Uhlmann. A new extension of the Kalman filter to nonlin-
ear systems. In Proceedings of AeroSense: The 11th International Symposium
on Aerospace/Defense Sensing, Simulation and Controls, Orlando, Florida,
1997.

S. J. Julier, J. K. Uhlmann, and H. F. Durrant-Whyte. A new approach for
filtering nonlinear systems. In Proceedings of the American Control Conference,
Seattle, Washington, pages 1628-1632, 1995.

R. E. Kalman. A new approach to linear filtering and prediction problems.
Trans. ASME, J. Basic Eng., 82:35-45, 1960.

R. E. Kalman and R. S. Bucy. New results in linear filtering and prediction
theory. Trans. ASME, J. Basic Eng., 83:95-108, 1961.

G. Karypis and V. Kumar. Parallel threshold-based ILU factorization. Techni-
cal Report 96-061, Department of Computer Science, University of Minnesota,
1996.

BIBLIOGRAPHY 171

[44] C. L. Keppenne. Data assimilation into a primitive-equation model with a
parallel Ensemble Kalman Filter. Mon. Wea. Rev., 128:1971-1981, 2000.

[45] C. L. Keppenne and M. M. Rienecker. Initial testing of a massively parallel
Ensemble Kalman Filter with the Poseidon isopycnal ocean circulation model.
Mon. Wea. Rev., 130:2951-2965, 2002.

[46] C. L. Keppenne and M. M. Rienecker. Assimilation of temperature into an
isopycnal ocean general circulation model using a parallel Ensemble Kalman
Filter. J. Mar. Syst., 40-41:363-380, 2003.

[47] G. A. Kivman. Sequential parameter estimation for stochastic systems. Nonlin.
Proc. Geophys., 10:253-259, 2003.

[48] Th. Lagarde, A. Piacentini, and O. Thual. A new representation of data assi-
milation methods: The PALM flow charting approach. Q. J. R. Meteorol. Soc.,
127:189-207, 2001.

[49] P. F. J. Lermusiaux and A. R. Robinson. Data assimilation via Error Subspace
Statistical Estimation. part 1: Theory and schemes. Mon. Wea. Rev., 127:1385-
1407, 1999.

[50] P. F. J. Lermusiaux and A. R. Robinson. Data assimilation via Error Sub-
space Statistical Estimation. Part 2: Middle Atlantic bight shelfbreak front
simulations and ESSE validation. Mon. Wea. Rev., 127:1408-1432, 1999.

[51] A. C. Lorenc. A global three-dimensional multivariate statistical interpolation
scheme. Mon. Wea. Rev., 109:701-721, 1981.

[52] P. M. Lyster, S. E. Cohn, R. Ménard, L.-P. Chang, S.-J. Lin, and R. G. Olsen.
Parallel implementation of a Kalman filter for constituent data assimilation.
Mon. Wea. Rev., 125(7):1674-1686, 1997.

[53] J. Marotzke, R. Giering, K. Q. Zhang, D. Stammer, C. Hill, and T. Lee. Con-
struction of the adjoint MIT ocean general circulation model and application
to Atlantic heat transport sensitivity. J. Geophys. Res., 104(C12):29529-29547,
1999.

[54] Project MERCATOR. URL http://www.mercator-ocean.fr/.

[55] R. N. Miller, E. F. Carter Jr., and S. T. Blue. Data assimilation into nonlinear
stochastic models. Tellus, 51A:167-194, 1999.

[56] H. L. Mitchell, P. L. Houtekamer, and G. Pellerin. Ensemble size, balance, and
model-error representation in an Ensemble Kalman Filter. Mon. Wea. Rev.,
130:2791-2808, 2002.

[57] OpenMP. URL http://www.openmp.org/.

[58] E. Ott, B.R. Hunt, 1. Szunyogh, M. Corazza, E. Kalnay, D. J. Patil, and J. A.
Yorke. Exploiting local low dimensionality of the atmospheric dynamics for
efficient ensemble Kalman filtering. arXiv:physics/0203058,2002, 2002.

BIBLIOGRAPHY 172

59]
/60]

[61]

(62]
[63]

P. S. Pacheco. Parallel Programming with MPI. Morgan Kaufmann, Inc., 1997.

Project PALM. Projet d’assimilation par logiciel multi-methodes. URL
http://www.cerfacs.fr/ palm/.

D. J. Patil, B. R. Hunt, E. Kalnay, J. A. Yorke, and E. Ott. Local low dimen-
sionality of atmospheric dynamics. Phys. Rev. Lett., 86(26):5878-5881, 2001.

J. Pedlosky. Geophysical Fluid Dynamics. Springer, 1979.

T. Penduff, P. Brasseur, C.-E. Testut, B. Barnier, and J. Verron. A four-year
eddy-permitting assimilation of sea~-surface temperature and altimetric data in
the South Atlantic ocean. J. Mar. Res., 60:805-833, 2002.

PETSc. Portable, extensible toolkit for scientific computation. URL
http://www-unix.mcs.anl.gov/petsc/petsc-2/.

D. T. Pham. A singular evolutive interpolated Kalman filter for data assimi-
lation in oceanography. Technical Report 163, Project IDOPT CNRS-INRIA,
1996.

D. T. Pham. Stochastic methods for sequential data assimilation in strongly
nonlinear systems. Mon. Wea. Rev., 129:1194-1207, 2001.

D. T. Pham, J. Verron, and L. Gourdeau. Singular evolutive Kalman filters for
data assimilation in oceanography. C. R. Acad. Sci., Ser. II, 326(4):255-260,
1998.

D. T. Pham, Jacques Verron, and Marie Christine Roubaud. A singular evo-
lutive extended Kalman filter for data assimilation in oceanography. J. Mar.
Syst., 16:323-340, 1998.

F. Rabier, H. Jarvinen, E. Klinker, J.-F. Mahfouf, and A. Simmons. The
ECMWF operational implementation of four-dimensional variational assimila-
tion. 1: Experimental results with simplified physics. Quart. J. Roy. Meteor.
Soc., 126:1143-1170, 2000.

M. Roest and E. Vollebregt. Parallel Kalman filtering for a shallow water flow
model. In P. Wilders, A. Ecer, J. Periaux, N. Satofuka, and P. Fox, editors,
Parallel Computational Fluid Dynamics: Practice and Theory, Proceedings of
the Parallel CFD 2001 Conference, Egmond ann Zee, Netherlands, 2002.

R. Sadourny. The dynamics of finite-difference models of the shallow-water
equations. J. Atm. Sci., 120:680-689, 1975.

R. Salmon. Geophysical Fluid Dynamics. Oxford University Press, 1998,

A. Segers. Data assimilation in atmospheric chemistry models using Kalman
filtering. PhD thesis, Delft University of Technology, 2002.

A. J. Segers and A. W. Heemink. Parallelization of a large scale Kalman fil-
ter: comparison between mode and domain decomposition. In P. Wilders,
A. Ecer, J. Periaux, N. Satofuka, and P. Fox, editors, Parallel Computational

BIBLIOGRAPHY 173

[75

et

Fluid Dynamics: Practice and Theory, Proceedings of the Parallel CFD 2001
Conference, Egmond ann Zee, Netherlands, 2002.

SESAM. An integrated system of sequential assimilation modules. URL
http://meol715 . hmg. inpg.fr/Web/Assimilation/SESAM/.

D. Stammer, C. Wunsch, R. Giering, C. Eckerts, P. Heimbach, J. Marortzke,
A. Adcroft, C.N. Hill, and J. Marshall. The global ocean circulation during
1992-1997, estimated from ocean observations and a general circulation model.
J. Geophys. Res., 107(C9):3001, 2002. doi:10.1029/2001JC000888.

Robert F. Stengel. Optimal Control and Estimation. Wiley, New York, 1986.

0. Talagrand and P. Courtier. Variational assimilation of meteorological obser-
vations with the adjoint vorticity equations: Theory. . J. R. Meteorol. Soc.,
113:1311-1328, 1987.

M. K. Tippett, J. L. Anderson, C. H. Bishop, T. M. Hamill, and J. S. Whitaker.
Ensemble square root filters. Mon. Wea. Rev., 131:1485-1490, 2003.

R. Todling and S. E. Cohn. Suboptimal schemes for atmospheric data assimi-
lation based on the Kalman filter. Mon. Wea. Rev., 122:2530-2557, 1994.

Y. Trémolet and F.-X. Le Dimet. Parallel algorithms for variational data assi-
milation and coupling models. Par. Comp., 22:657-674, 1996.

Y. Trémolet, F.-X. Le Dimet, and D. Trystram. Parallelization of scientific ap-
plications: Data assimilation in meteorology. In High Performance Computing
and Networking, Lecture Notes in Computer Science in Meteorology. Springer,
1994.

G. Triantafyllou, I. Hoteit, and G. Petihakis. A singular evolutive interpo-
lated Kalman filter for efficient data assimilation in a 3-D complex physical-
biogeochemical model of the Cretan sea. J. Mar. Syst., 40-41:213-231, 2003.

P. J. van Leeuwen. Comment on ”data assimilation using an Ensemble Kalman
Filter technique”. Mon. Wea. Rev., 127:1374-1377, 1999.

P. J. van Leeuwen. A variance-minimizing filter for large-scale applications.
Mon. Wea. Rev., 131:2071-2084, 2003.

P. J. van Leeuwen and G. Evensen. Data assimilation and inverse methods in
terms of a probabilistic formulation. Mon. Wea. Rev., 124:2898-2913, 1996.

M. Verlaan. Efficient Kalman Filtering Algorithms for Hydrodynamic Models.
PhD thesis, Delft University of Technology, 1998.

M. Verlaan and A. W. Heemink. Reduced rank square root filters for large
scale data assimilation problems. In International Symposium on Assimilation
in Meteorology and Oceanography, pages 247-252. WMO, 1995.

M. Verlaan and A. W. Heemink. Nonlinearity in data assimilation applications:
A practical method for analysis. Mon. Wea. Rev., 129:1578-1589, 2001.

BIBLIOGRAPHY 174

[90]

[92]

(93]

[94]

[95]

J. Verron, L. Gourdeau, D. T. Pham, R. Murtugudde, and A. J. Busalacchi.
An extended Kalman filter to assimilate satellite altimeter data into a nonlin-
ear numerical model of the tropical Pacific ocean: Method and validation. J.
Geophys. Res., 104(C3):5441-5458, 1999.

A. C. Voorrips, A. W. Heemink, and G. J. Komen. Wave data assimilation
with the Kalman filter. J. Mar. Syst., 19:267-291, 1999.

X. Wang and C. H. Bishop. A comparison of breeding and Ensemble Transform
Kalman Filter ensemble forecast schemes. J. Atm. Sci., 60:1140-1158, 2003.

M. Wenzel, J. Schréter, and D. Olbers. The annual cycle of the global ocean
circulation as determined by 4D VAR data assimilation. Prog. Ocean., 48:73~
119, 2001.

J. S. Whitaker and T. M. Hamill. Ensemble data assimilation without perturbed
observations. Mon. Wea. Rev., 130:1913-1927, 2002.

A. 1. Yaremchuk, M. Yaremchuk, J. Schroter, and M. Losch. Local stability
and estimation of uncertainty for inverse problem solvers. Ocean Dynamics,
52:71-78, 2001.

Acknowledgments

This work has been prepared and written at the Alfred Wegener Institute for Polar
and Marine Research (AWI) advised by Prof. Dr. Wolfgang Hiller and Dr. Jens
Schréter. I am grateful for having worked at this institute which provides such
superior working conditions for PhD students.

I would like to thank Prof. Dr. Wolfgang Hiller for his guidance and support
throughout this work. I am also grateful to Dr. Jens Schréter. We had various
stimulating discussions which widely influenced this work. He helped me to keep
also an eye on the physical aspects of data assimilation.

During the work, I received support by many persons. In particular, I want to thank
Stephan Frickenhaus for his help on parallelization and solver issues. Sergey Danilov
supported me finding useful initial conditions for the experiments. He also prepared
the idealized configuration of FEOM which I were using.

I wish to thank all members of working group “Scientific Computing”, Bernadette,
Stephan, Natalja, Meike, and Christian for the friendly working atmosphere. Also
Manfred, Dima, Sven, Joana, Verena, Markus, Sergey, and Gennardy deserve thanks
for the nice atmosphere during group meetings and other occasions with the inverse-
modeling group.

A special thank-you is directed to Gennardy Kivman, Stephan Frickenhaus, and
Meike Best for proofreading this thesis. In particular Meike went through the whole
text and provided me with numerous remarks.

Thanks to Anja for her understanding and encouragement.

175

~Berichte zur Polarforschung”

Eine Titellbersicht der Hefte 1 bis 376 (1981 - 2000) erschien zuletzt im Heft 413 der nachfolgenden Reihe
,Berichte zur Polar- und Meeresforschung®. Ein Verzeichnis aller Hefte beider Reihen sowie eine
Zusammenstellung der Abstracts in englischer Sprache finden Sie im Internet unter der Adresse:
hitp://www.awi-bremerhaven.de/Resources/publications.htmi

Ab dem Heft-Nr. 377 erscheint die Reihe unter dem Namen:
»Berichte zur Polar- und Meeresforschung”

Heft-Nr. 377/2000 ~ ,,Rekrutierungsmuster ausgewahiter Wattfauna nach unterschiedlich sirengen Wintern”

von Matthias Strasser

Heft-Nr. 378/2001 ~ ,Der Transport von Warme, Wasser und Salz in den Arktischen Ozean"”, von Boris Cisewski

Heft-Nr. 379/2001 ~ ,Analyse hydrographischer Schnitte mit Satellitenaltimetrie”, von Martin Losch

Heft-Nr. 380/2001 — Die Expeditionen ANTARKTIS XI/1-2 des Forschungsschiffes POLARSTERN 1998/1999"
herausgegeben von Eberhard Fahrbach und Saad El Naggar.

Heft-Nr. 381/2001 ~ ,UV-Schutz- und Reparaturmechanismen bei antarktischen Diatomeen und Phaeocystis antarctica”,
von Lieselotte Riegger.

Heft-Nr. 382/2001 ~ ,Age determination in polar Crustacea using the autofluorescent pigment lipofuscin®, by Bodil Bluhm.
Heft-Nr. 383/2001 ~ , Zeitliche und riumliche Verteilung, Habitatspraferenzen und Populationsdynamik benthischer Copepoda
Harpacticoida in der Potter Cove (King George Istand, Antarktis)®, von Gritta Veit-Kéhler.

Heft-Nr. 384/2001 ~ ,Beitrdge aus geophysikalischen Messungen in Dronning Maud Land, Antarktis, zur Auffindung eines
optimalen Bohrpunktes fiir eine Eiskerntiefbohrung®, von Daniel Steinhage.

Heft-Nr. 385/2001 — , Actinium-227 als Tracer fir Advektion und Mischung in der Tiefsee®, von Walter Geibert.

Heft-Nr. 386/2001 - ,Messung von optischen Eigenschaften tropospharischer Aerosole in der Arktis“ von Rolf Schumacher.
Heft-Nr. 387/2001 — ,Bestimmung des Ozonabbaus in der arktischen und subarktischen Stratosphére®, von Astrid Schulz.
Heft-Nr. 388/2001 — ,Russian-German Cooperation SYSTEM LAPTEV SEA 2000: The Expedition LENA 2000,

edited by Volker Rachold and Mikhaif N. Grigoriev.

Heft-Nr. 389/2001 — ,The Expeditions ARKTIS XVI/1 and ARKTIS XVi/2 of the Research Vessel ‘Polarstern’ in 2000,
edited by Gunther Krause and Ursula Schauer.

Heft-Nr. 390/2001 ~ ,Late Quaternary climate variations recorded in North Atlantic deep-sea ostracodes", by Claudia Didié.
Heft-Nr. 391/2001 ~ ,The polar and subpolar North Atlantic during the fast five glacial-interglacial cycles”, by Jan. P. Helmke.
Heft-Nr. 392/2000 — ,Geochemische Untersuchungen an hydrothermal beeinfluBten Sedimenten der Bransfield StraBe
{Antarktis}“, von Anke Dahimann.

Heft-Nr, 393/2001 ~ ,The German-Russian Project on Siberian River Run-off (SIRRO): Scientific Cruise Report of the Kara-
Sea Expedition 'SIRRO 2000’ of RV ‘Boris Petrov’ and first results®, edited by Ruediger Stein and Oleg Stepanets.

Heft-Nr. 394/2001 ~ Untersuchung der Photooxidantien Wasserstoffperoxid, Methylhydroperoxid und Formaldehyd in der
Troposphare der Antarktis®, von Katja Riedel.

Heft-Nr. 395/2001 - Role of benthic cnidarians in the energy transfer processes in the Southern Ocean marine ecosystem
(Antarctica)", by Govadonga Orejas Saco del Valle.

Heft-Nr. 396/2001 - Biogeochemistry of Dissolved Carbohydrates in the Arctic”, by Ralph Engbrodt.

Heft-Nr. 397/2001 — ,Seasonalily of marine algae and grazers of an Antarctic rocky intertidal, with emphasis on the role of the
limpet Nacilla concinna Strebel {Gastropoda: Patellidae)”, by Dohong Kim.

Heft-Nr. 398/2001 ~ ,Polare Straiospharenwolken und mesoskalige Dynamik am Polarwirbelrand®, von Marion Miiller.
Heft-Nr. 399/2001 ~ North Atlantic Deep Water and Antarctic Bottom Water: Their Interaction and Influence on Modes of the
Globat Ocean Circulation®, by Holger Brix.

Heft-Nr. 400/2001 — , The Expeditions ANTARKTIS XVi1I/1-2 of the Research Vessel ‘Polarstern” in 2000

edited by Victor Smetacek, Ulrich Bathmann, Saad E| Naggar.

Heft-Nr. 401/2001 ~ Variabilitat von CH,O (Formaldehyd) - untersucht mit Hilfe der solaren Absorptionsspekiroskopie

und Modellen“ von Torsten Albrecht.

Heft-Nr. 402/2001 — . The Expedition ANTARKTIS XVII/3 (EASIZ Hi) of RV ‘Polarstern’ in 2000, edited by Wolf E. Arntz

and Thomas Brey.

Heft-Nr. 403/2001 - Mikrohabitatanspriiche benthischer Foraminiferen in Sedimenten des Siidatlantiks”,

von Stefanie Schumacher.

Heft-Nr. 404/2002 — ,Die Expedition ANTARKTIS XVII/2 des Forschungsschiffes 'Polarstern’ 2000,

herausgegeben von Jérn Thiede und Hans Oerter.

Heft-Nr. 405/2002 - Feeding Ecology of the Arctic Ice-Amphipod Gammarus wilkitzkii. Physiological, Morphological and
Ecological Studies®, by Carolin E. Arndt.

Heft-Nr. 406/2002 — Radiotarienfauna im Ochotskischen Meer - eine aktuopaléontologische Charakterisierung der Biozénose
und Taphozénose®, von Anja Nimmergut.

Heft-Nr. 407/2002 — ,The Expedition ANTARKTIS XVHI/5b of the Research Vessel ‘Polarstern’ in 2001,

edited by Ulrich Bathmann.

Heft-Nr. 408/2002 — Siedlungsmuster und Wechselbeziehungen von Seepocken (Cirripedia) auf Muschetbédnken

{Mytilus edulis L.) im Wattenmeer®, von Christian Buschbaum.

