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An Overview on Data Assimilation 



Combination of Information 
through Data Assimilation 

Improved analysis and forecast 
 of, for example, 

- water temperature 
- ice coverage 

SST: Satellite (AVHRR)!SST: Simulation (BSHcmod)!

Concept of Data Assimilation 



System Information: Chlorophyll in the ocean 

mg/m3 mg/m3 

Information: Model	
 Information: Observation	

•  Generally correct, but has errors 

•  all fields, fluxes, …	

•  Generally correct, but has errors 

•  sparse information  
  (only surface, data gaps, one field)	
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Combine both sources of information by data assimilation	




• Data assimilation 

• Variational data assimilation 

•  3D-Var, 4D-Var, adjoint method 

• Sequential data assimilation 
• Kalman filters 

• Ensemble-based Kalman filters 
• SEIK and LSEIK filters 

Overview 
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Data Assimilation 

  Optimal estimation of system state: 

•  initial conditions     (for weather/ocean forecasts, …) 

•  trajectory                (temperature, concentrations, …) 

•  parameters             (growth of phytoplankton, …)  

•  fluxes                      (heat, primary production, …) 

•  boundary conditions and ‘forcing’       (wind stress, …) 
! 

  Characteristics of system: 

•  high-dimensional numerical model - O(107) 

•  sparse observations 

•  non-linear 
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Data Assimilation 

Consider some physical system (ocean, atmosphere,…)	


time	


observation	


truth	


model	


state	

Variational assimilation 
	


Sequential assimilation 
	


Two main approaches: 
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Optimal estimate basically by least-squares fitting	




Variational Data Assimilation 
 

3D-Var, 4D-Var, Adjoint method 



  Formulate cost function J in terms of “control variable” 
   Example: initial state x0 

  Problem:  
   Find trajectory (defined by x0) that minimizes cost J while 
   fulfilling model dynamics 

  Use gradient-based algorithm: 
  e.g. quasi-Newton 
  Gradient for J[x0] is computed using adjoint  
    of tangent linear model operator 
  The art is to formulate the adjoint model and weights in J 
    (No closed formulation of model operator) 
  Iterative procedure (local in control space) 

  3D-Var: optimize locally in time 

Variational Data Assimilation - 4D-Var  
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Adjoint method - 4D-Var algorithm 

1. Initialization: Choose initial estimate of x0 

2. Forward: Integrate model 
start from x0; store trajectory 

3. Compute cost function; 
exit, if cost is below limit 

4. Backward: Integrate adjoint model backward in time  
start from final residual (y-x); use trajectory from 2. 

5. Optimizer: Update x0  
with optimization algorithm 
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Serial operation; difficult to parallelize	




Sequential Data Assimilation 
 

Kalman filters 



Sequential Data Assimilation 

Consider some physical system (ocean, atmosphere,…)	


time	


observation	


truth	


model	


Sequential assimilation: correct model state 
estimate when observations are available 
(analysis); propagate estimate (forecast)	
state	


Size of correction 
determined by 
error estimates	
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Probabilistic view: Optimal estimation 

Consider probability distribution of model and observations	


observation	


time 0	
 time 1	
 time 2	


analysis	


forecast	

Kalman Filter:  
Assume Gaussian distributions 
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Gaussianity 

  Assumed by all KF-based filters 
  (for optimal minimum-variance estimate) 

  Gaussian forecast probability distribution 

  Observation errors Gaussian distributed 

  Analysis is combination of two Gaussian distributions 

  Estimation problem can be formulated in terms of means  
   and covariance matrices of probability distributions 

  Cost function J is consistent with Gaussian assumptions 

But: Nonlinearity will not conserve Gaussianity! 
 

 (Extended KF conserves Gaussianity by first-order 
approximation, but can be unstable) 

Lars Nerger - Overview on Data Assimilation 



•  Storage of covariance matrix can be unfeasible 

•  Evolution of covariance matrix extremely costly 

•  Linearized evolution (like in Extended KF) can be 
  unstable 
 

  Reduce cost 

  simplify dynamics 

  approximate state covariance matrix 

More issues … application side 
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Ensemble-based Kalman filters 



Ensemble-based Kalman Filters 

  Foundation: Kalman filter (Kalman, 1960) 
•  optimal estimation problem 

•  express problem in terms of state estimate x and  
  error covariance matrix P (Gaussian distributions) 

•  propagate matrix P by linear (linearized) model 

•  variance-minimizing analysis 

  Ensemble-based Kalman filter: 

•  sample state x and covariance matrix P by ensemble of  
  model states 

•  propagate x and P by integration of ensemble states 

•  Apply linear analysis of Kalman filter 

First filter in oceanography: “Ensemble Kalman Filter”  
(Evensen, 1994), second: SEIK (Pham, 1998) 



Ensemble-based Kalman Filter 

Approximate probability distributions by ensembles	


observation	


time 0	
 time 1	
 time 2	


analysis	


ensemble 
forecast	


Questions: 

•  How to generate initial ensemble? 

•  How to resample after analysis?	


resampling	

initial 

sampling	
 Please note: 

In general, this is  
not an approximation 
of the Kalman filter!	
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„The“ Ensemble Kalman Filter - EnKF (Evensen, 1994) 

Initialization: Sample state x and covariance matrix P 
by Monte-Carlo ensemble of model states 

Forecast: Evolve each of the ensemble members with 
the full non-linear stochastic model 

Analysis: Apply EKF update step to each ensemble 
member with observation from an observation 

ensemble. Covariance matrix approx. by ensemble 
statistics, state estimate by ensemble mean. 
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  Approximate state covariance matrix by low-rank matrix 

  Keep matrix in decomposed form (XXT, VUVT) 

Error Subspace Algorithms 

Mathematical motivation: 
•  state error covariance matrix represents  
  error space at location of state estimate 

•  directions of different uncertainty 

•  consider only directions with largest  
  errors (error subspace) 
⇒  degrees of freedom for state correction 
in analysis: rank(P) 

 = span(v1,v2,…) 

x 

P = VUVT 

v2 v1 

Error space: 
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Sampling Example 
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More ensemble-based/error-subspace Kalman filters 

  A little “zoo” (not complete): 

EAKF ETKF 

EnKF(94/98) 

SEIK 

EnSQRTKF 

SEEK RRSQRT ROEK 

MLEF 

(Properties and differences are hardly understood)  
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EnKF(2003) 

EnKF(2004) 

SPKF ESSE 



Computational Aspects 

  Ensemble integration can be easily parallelized 

  Filter algorithms can be implemented independently  
    from model 

  Observations need information about the fields and the  
    location of data 

•  Motivation for PDAF (Parallel Data Assimilation Framework) 
  Software framework (Fortran) to simplify implementation of  
    data assimilation systems based on existing models 

  Provide parallelization support for ensemble forecasts 

  Provide parallelized and optimized filter algorithms 

  Open source: http://pdaf.awi.de 
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The SEIK filter 
 



The SEIK* filter (Pham, 1998) 

  Use factorization of covariance matrix P = VUVT 

    (singular value decomposition) 

  Approximate P by truncation to leading singular values 
  (low rank r « state dimension n) 

  Forecast: Use ensemble of minimum size N = r+1  

  Analysis: 
•  Regular KF update of state estimate x  

•  Update P by updating U 

  Re-initialization: Transform ensemble states to  
   represent new x and P 

*Singular “Evolutive” Interpolated Kalman 
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The SEIK filter (Pham, 1998) - differences from EnKF 

Initialization: Approximate covariance matrix by low-
rank matrix in the form P=VUVT. Generate ensemble 
of minimum size exactly representing error statistics. 

Forecast: Evolve each of the ensemble members with 
the full non-linear stochastic model. 

Analysis: Apply EKF update step to ensemble mean 
and the „eigenvalue matrix“ U. Covariance matrix 

approx. by ensemble statistics. 

Re-Initialization: Transform state ensemble to exactly 
represent updated error statistics.  
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Overall: A more efficient ensemble-based Kalman filter	




The SEIK filter - Properties 

  Computational complexity 
•  linear in dimension of state vector 
•  approx. linear in dimension of observation vector 
•  cubic with ensemble size 

  Low complexity due to explicit consideration of  
   error subspace: 

  Degrees of freedom given by ensemble size -1 

  Analysis increment: combination of ensemble members  
    with weight computed in error subspace 

  Simple application to non-linear models due to  
   ensemble forecasts (e.g. no linearized or adjoint models) 
   but not “optimal” 

  Equivalent of ETKF under particular conditions 
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Issues of ensemble-based/error-subspace KFs 

  No filter works without tuning 

  forgetting factor/covariance inflation 

  localization 

  Other issues 

  Optimal initialization unknown (is it important?) 

  ensemble integration still costly 

  Simulating model error 

  Nonlinearity 

  Non-Gaussian fields or observations 

  Bias (model and observations) 

  … 
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Example: 
 

Assimilation of pseudo sea surface height  
observations in the North Atlantic 
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FEOM – Mesh for North Atlantic 

finite-element discretization 

surface nodes: 16000  
3D nodes: 220000 
z-levels: 23 
eddy-permitting 



Configuration of twin experiments 

  Generate true state trajectory for 12/1992 - 3/1993  

  Assimilate synthetic observations of sea surface height 
   (generated by adding uncorrelated Gaussian  
   noise with std. deviation 5cm to true state) 

  Covariance matrix estimated from variability of 9-year       
   model trajectory (1991-1999) initialized from climatology 

  Initial state estimate from perpetual 1990 model spin-up 

  Monthly analysis updates 
  (at initial time and after each month of model integration) 

  No model error; forgetting factor 0.8 for both filters 
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•  Not aimed at oceanographic  
  relevance!	


Modeled Sea Surface Height (Dec. 1992) 

-  large-scale deviations of small amplitude  

-  small-scale deviations up to 40 cm 



 Improvement of  Sea Surface Height (Dec. 1992) 

•  Improvement: red - deterioration: blue 

⇒  For N=8 rather coarse-scale corrections 

⇒  Increased ensemble size adds finer scales (systematically)  

N=8	
 N=32	
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Localization - LSEIK 



Global SEIK filter - filtering behavior 

•  SEIK performs global optimization 

•  Degrees of freedom is small (ensemble size - 1) 

Implications: 

•  Global averaging in analysis can lead to local  
  increase in estimation error 

•  Small-scale errors can be corrected, but error  
  reduction is small 

•  True errors are underestimated  
  (Due to inconsistency between true  
   and estimated errors)  
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Local SEIK filter 

•  Analysis: 
•  Update small regions  
   (e.g. single water columns) 

•   Consider only observations  
  within cut-off distance 

  neglects long-range  
    correlations 
 

•  Re-Initialization: 
•  Transform local ensemble 

•  Use same transformation matrix  
  in each local domain 

Nerger, L., S. Danilov, W. Hiller, and J. Schröter. Ocean Dynamics 56 (2006) 634 



Local SEIK filter II 

Localizing weight 

  reduce weight for remote  
    observations by increasing  
    variance estimates 

  use e.g. exponential decrease  
    or polynomial representing  
    correlation function of compact  
    support 

  similar, sometimes equivalent,  
    to covariance localization used  
    in other ensemble-based KFs 
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 Global vs. Local SEIK, N=32 (Mar. 1993) 

-  Improvement regions of global SEIK also improved  
   by local SEIK  

-  localization provides improvements in regions not  
  improved by global SEIK 

-  regions with error increase diminished for local SEIK 

rrms = 83.6% rrms = 31.7% 
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Relative rms errors for SSH 

-  global filter: significant improvement for larger ensemble 

-  global filter with N=100: relative rms error 0.74 

-  localization strongly improves estimate 
    - larger error-reduction at each analysis update 
    - but: stronger error increase during forecast 

-  very small radius results in over-fitting to noise  



Effect of assimilation on non-observed fields 

-  velocity field updated via cross-correlations 

-  localization improves estimates  

-  minimum errors for 100km (N=8), 200km (N=32) 

-  special behavor for total localization (l=0km): overfitting 
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Local SEIK filter - findings 

•  LSEIK performs series of local optimizations 

•  Degrees of freedom given by ensemble size - 1 
  for each analysis domain 

Implications: 
•  Localization can strongly improve filtering  
  performance over the global SEIK  

•  Localization can lead to faster error-increase  
  during forecast (imbalance problem) 

⇒  possible trade off between improved analysis  
    update and forecast error-increase 

•  LSEIK is more costly than global SEIK, but  
  computationally still efficient 
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Bias Estimation 



Bias Estimation 

  un-biased system:  
   fluctuation around true state  

  biased system:  
  systematic over- and underestimation 
  (common situation with real data) 

  2-stage bias online bias correction 
1. Estimate bias 
 (using fraction of covariance matrix used in 2.) 

2. Estimate de-biased state 

  Forecast 

1. forecast ensemble of biased states 

2. no propagation of bias vector 
 Nerger, L., and W.W. Gregg. J. Marine Systems, 73 (2008) 87-102 



Satellite Ocean Color (Chlorophyll) Observations 

Natural Color 3/16/2004 Chlorophyll Concentrations 

Source: NASA “Visible Earth”, Image courtesy the SeaWiFS Project, 
NASA/GSFC, and Orbimage 
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•  Daily gridded SeaWiFS chlorophyll data 

  gaps: satellite track, clouds, polar nights 

  ~13,000-18,000 data points daily  
    (of 41,000 wet grid points) 
  irregular data availability 

Assimilated Observations 
mg/m3 

Nerger, L., and W.W. Gregg. J. Marine Systems 68 (2007) 237 



Estimated Chlorophyll - April 15, 2004 

•  strongly improved surface  
  Chlorophyll estimate 

•  intended deviations (Arabian  
  Sea, Congo, Amazon) 

•  other deviations in high- 
  Chlorophyll regions 

mg/m3 mg/m3 

mg/m3 



Comparison with independent data  

•  In situ data from SeaBASS/NODC over 1998-2004 
   (shown basins include about 87% of data) 

•  Independent from SeaWiFS data  
  (only used for verification of algorithms) 

•  Compare daily co-located data points 

⇒  Assimilation in most regions below SeaWiFS error 

⇒  Bias correction improves almost all basins 
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Summary 

•  Data assimilation combines information from models and  
  observations to generate improve estimates of the system. 

•  Ensemble-based Kalman filters are efficient assimilation  
  methods. To some extent they can handle nonlinearity. 

•  Current assimilation algorithms require tuning 

•  There are various open issues regarding optimal  
  application of assimilation algorithms. 
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Thank you! 
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