An Overview on Data Assimilation

Lars Nerger

Alfred Wegener Institute for Polar and Marine Research Bremerhaven, Germany

and

Bremen Supercomputing Competence Center BremHLR

Lars.Nerger@awi.de

Concept of Data Assimilation

System Information: Chlorophyll in the ocean

Information: Model

- Generally correct, but has errors
- all fields, fluxes, ...

Information: Observation

- Generally correct, but has errors
- sparse information (only surface, data gaps, one field)

Combine both sources of information by data assimilation Lars Nerger - Overview on Data Assimilation

Overview

- Data assimilation
- Variational data assimilation
 - 3D-Var, 4D-Var, adjoint method
- Sequential data assimilation
 - Kalman filters
- Ensemble-based Kalman filters
 - SEIK and LSEIK filters

Lars Nerger - Overview on Data Assimilation

Data Assimilation

- Optimal estimation of system state:
 - initial conditions (for weather/ocean forecasts, ...)
 - trajectory (temperature, concentrations, ...)
 - parameters (growth of phytoplankton, ...)
 - fluxes (heat, primary production, ...)
 - boundary conditions and 'forcing' (wind stress, ...)
- Characteristics of system:
 - high-dimensional numerical model $\mathcal{O}(10^7)$
 - sparse observations
 - non-linear

Data Assimilation

Consider some physical system (ocean, atmosphere,...)

Optimal estimate basically by least-squares fitting

Variational Data Assimilation

3D-Var, 4D-Var, Adjoint method

Variational Data Assimilation - 4D-Var

- Formulate cost function J in terms of "control variable" Example: initial state x₀
- Problem:

Find trajectory (defined by x_0) that minimizes cost J while fulfilling model dynamics

- Use gradient-based algorithm:
 - ➢ e.g. quasi-Newton
 - Gradient for J[x₀] is computed using adjoint of tangent linear model operator
 - The art is to formulate the adjoint model and weights in J (No closed formulation of model operator)
 - Iterative procedure (local in control space)
- 3D-Var: optimize locally in time

Adjoint method - 4D-Var algorithm

Sequential Data Assimilation

Kalman filters

Sequential Data Assimilation

Consider some physical system (ocean, atmosphere,...)

Lars Nerger - Overview on Data Assimilation

Probabilistic view: Optimal estimation

Consider probability distribution of model and observations

Gaussianity

- Assumed by all KF-based filters (for optimal minimum-variance estimate)
 - ⇒ Gaussian forecast probability distribution
 - ⇒ Observation errors Gaussian distributed
- Analysis is combination of two Gaussian distributions
- Estimation problem can be formulated in terms of means and covariance matrices of probability distributions
- Cost function J is consistent with Gaussian assumptions

But: Nonlinearity will not conserve Gaussianity!

(Extended KF conserves Gaussianity by first-order approximation, but can be unstable)

More issues ... application side

- Storage of covariance matrix can be unfeasible
- Evolution of covariance matrix extremely costly
- Linearized evolution (like in Extended KF) can be unstable
- ⇒ Reduce cost
 - simplify dynamics
 - approximate state covariance matrix

Ensemble-based Kalman filters

Ensemble-based Kalman Filters

- Foundation: Kalman filter (Kalman, 1960)
 - optimal estimation problem
 - express problem in terms of state estimate x and error covariance matrix P (Gaussian distributions)
 - propagate matrix **P** by linear (linearized) model
 - variance-minimizing analysis
- Ensemble-based Kalman filter:
 - sample state x and covariance matrix P by ensemble of model states
 - propagate **x** and **P** by integration of ensemble states
 - Apply linear analysis of Kalman filter

First filter in oceanography: "Ensemble Kalman Filter" (Evensen, 1994), second: SEIK (Pham, 1998)

Ensemble-based Kalman Filter

Approximate probability distributions by ensembles

Error Subspace Algorithms

⇒ Approximate state covariance matrix by low-rank matrix
⇒ Keep matrix in decomposed form (XX^T, VUV^T)

Mathematical motivation:

- state error covariance matrix represents error space at location of state estimate
- directions of different uncertainty
- consider only directions with largest errors (error subspace)
- \Rightarrow degrees of freedom for state correction in analysis: rank(**P**)

Sampling Example

$$\mathbf{P}_{t} = \begin{pmatrix} 3.0 & 1.0 & 0.0 \\ 1.0 & 3.0 & 0.0 \\ 0.0 & 0.0 & 0.01 \end{pmatrix}; \ \mathbf{x}_{t} = \begin{pmatrix} 0.0 \\ 0.0 \end{pmatrix}$$

Lars Nerger - Overview on Data Assimilation

(Properties and differences are hardly understood)

Lars Nerger - Overview on Data Assimilation

Computational Aspects

- Ensemble integration can be easily parallelized
- Filter algorithms can be implemented independently from model
- Observations need information about the fields and the location of data
- Motivation for PDAF (Parallel Data Assimilation Framework)
 - Software framework (Fortran) to simplify implementation of data assimilation systems based on existing models
 - Provide parallelization support for ensemble forecasts
 - Provide parallelized and optimized filter algorithms
 - > Open source: http://pdaf.awi.de

The SEIK filter

The SEIK* filter (Pham, 1998)

- Use factorization of covariance matrix P = VUV^T (singular value decomposition)
- Approximate P by truncation to leading singular values (low rank r « state dimension n)
- Forecast: Use ensemble of minimum size N = r+1
- Analysis:
 - Regular KF update of state estimate x
 - Update **P** by updating **U**
- *Re-initialization*: Transform ensemble states to represent new x and P

*Singular "Evolutive" Interpolated Kalman

Lars Nerger - Overview on Data Assimilation

The SEIK filter (Pham, 1998) - differences from EnKF

Initialization: Approximate covariance matrix by lowrank matrix in the form **P=VUV**^T. Generate ensemble of minimum size exactly representing error statistics.

Forecast: Evolve each of the ensemble members with the full non-linear stochastic model.

Analysis: Apply EKF update step to ensemble mean and the "eigenvalue matrix" **U**. Covariance matrix approx. by ensemble statistics.

Re-Initialization: Transform state ensemble to exactly represent updated error statistics.

Overall: A more efficient ensemble-based Kalman filter

The SEIK filter - Properties

- Computational complexity
 - linear in dimension of state vector
 - approx. linear in dimension of observation vector
 - cubic with ensemble size
- Low complexity due to explicit consideration of error subspace:
 - ⇒ Degrees of freedom given by ensemble size -1
 - Analysis increment: combination of ensemble members with weight computed in error subspace
- Simple application to non-linear models due to ensemble forecasts (e.g. no linearized or adjoint models)
 but not "optimal"
- Equivalent of ETKF under particular conditions

Issues of ensemble-based/error-subspace KFs

- No filter works without tuning
 - ⇒ forgetting factor/covariance inflation
 - ⇒ localization
- Other issues
 - ⇒ Optimal initialization unknown (is it important?)
 - ⇒ ensemble integration still costly
 - ⇒ Simulating model error
 - ⇒ Nonlinearity
 - ⇒ Non-Gaussian fields or observations
 - ⇒ Bias (model and observations)

⇒ ...

Example:

Assimilation of pseudo sea surface height observations in the North Atlantic

Lars Nerger - Overview on Data Assimilation

FEOM – Mesh for North Atlantic

Configuration of twin experiments

- Generate true state trajectory for 12/1992 3/1993
- Assimilate synthetic observations of sea surface height (generated by adding uncorrelated Gaussian noise with std. deviation 5cm to true state)
- Covariance matrix estimated from variability of 9-year model trajectory (1991-1999) initialized from climatology
- Initial state estimate from perpetual 1990 model spin-up
- Monthly analysis updates (at initial time and after each month of model integration)
- No model error; forgetting factor 0.8 for both filters

Modeled Sea Surface Height (Dec. 1992)

- large-scale deviations of small amplitude
- small-scale deviations up to 40 cm

Improvement of Sea Surface Height (Dec. 1992)

- Improvement: red deterioration: blue
- \Rightarrow For N=8 rather coarse-scale corrections
- \Rightarrow Increased ensemble size adds finer scales (systematically)

Localization - LSEIK

Global SEIK filter - filtering behavior

- SEIK performs global optimization
- Degrees of freedom is small (ensemble size 1)

Implications:

- Global averaging in analysis can lead to local increase in estimation error
- Small-scale errors can be corrected, but error reduction is small
- True errors are underestimated (Due to inconsistency between true and estimated errors)

Local SEIK filter

- Analysis:
 - Update small regions (e.g. single water columns)
 - Consider only observations within cut-off distance
 - neglects long-range correlations
- Re-Initialization:
 - Transform local ensemble
 - Use same transformation matrix in each local domain

Localizing weight

- reduce weight for remote observations by increasing variance estimates
- use e.g. exponential decrease or polynomial representing correlation function of compact support
- similar, sometimes equivalent, to covariance localization used in other ensemble-based KFs

Global vs. Local SEIK, N=32 (Mar. 1993)

- Improvement regions of global SEIK also improved by local SEIK
- localization provides improvements in regions not improved by global SEIK
- regions with error increase diminished for local SEIK

Relative rms errors for SSH

- global filter: significant improvement for larger ensemble
- global filter with N=100: relative rms error 0.74
- localization strongly improves estimate
 - larger error-reduction at each analysis update
 - but: stronger error increase during forecast
- very small radius results in over-fitting to noise

Effect of assimilation on non-observed fields

- velocity field updated via cross-correlations
- localization improves estimates
- minimum errors for 100km (N=8), 200km (N=32)
- special behavor for total localization (I=0km): overfitting

Local SEIK filter - findings

- LSEIK performs series of local optimizations
- Degrees of freedom given by ensemble size 1 for each analysis domain

Implications:

- Localization can strongly improve filtering performance over the global SEIK
- Localization can lead to faster error-increase during forecast (imbalance problem)
- ⇒ possible trade off between improved analysis update and forecast error-increase
- LSEIK is more costly than global SEIK, but computationally still efficient

Bias Estimation

Bias Estimation

- un-biased system: fluctuation around true state
- biased system: systematic over- and underestimation (common situation with real data)
- 2-stage bias online bias correction
 - 1. Estimate bias (using fraction of covariance matrix used in 2.)
 - 2. Estimate de-biased state
- Forecast
 - 1. forecast ensemble of biased states
 - 2. no propagation of bias vector

Satellite Ocean Color (Chlorophyll) Observations

Natural Color 3/16/2004

Ocean Chlorophyll Concentration (mg/m³)

Chlorophyll Concentrations

Source: NASA "Visible Earth", Image courtesy the SeaWiFS Project, NASA/GSFC, and Orbimage

Lars Nerger - Overview on Data Assimilation

Assimilated Observations

- Daily gridded SeaWiFS chlorophyll data
 - > gaps: satellite track, clouds, polar nights
 - ~13,000-18,000 data points daily (of 41,000 wet grid points)
 - irregular data availability

Estimated Chlorophyll - April 15, 2004

- strongly improved surface Chlorophyll estimate
- intended deviations (Arabian Sea, Congo, Amazon)
- other deviations in high-Chlorophyll regions

Comparison with independent data

- In situ data from SeaBASS/NODC over 1998-2004 (shown basins include about 87% of data)
- Independent from SeaWiFS data (only used for verification of algorithms)
- Compare daily co-located data points
- ⇒ Assimilation in most regions below SeaWiFS error
- \Rightarrow Bias correction improves almost all basins

Summary

- Data assimilation combines information from models and observations to generate improve estimates of the system.
- Ensemble-based Kalman filters are efficient assimilation methods. To some extent they can handle nonlinearity.
- Current assimilation algorithms require tuning
- There are various open issues regarding optimal application of assimilation algorithms.

Thank you!

Lars Nerger - Overview on Data Assimilation