

Introduction

Gaseous inclusions in ice cores are essential for reconstruction of the palaeoatmosphere. However, the processes governing fractionation and diffusion during e.g. pore closeoff or bubble-clathrate transition are not fully understood yet.

- → Does gas content change during pore closeoff?
- → Does gas content change during bubble-clathrate transition?
- → Are gas mixing ratios influenced by fractionation or diffusion?
- → Are there systematic differences between clear bands and cloudy bands?

Raman spectroscopy

Confocal micro Raman spectroscopy allows for highresolution mapping of gas mixing ratios inside individual inclusions.

 N_2/O_2 ratios can be used as proxy for the evolution of trace gasses (CO_2 , CH_4 , $N_2O...$).

Information can be gained about fractionation and diffusion parameters.

 \rightarrow high resolution, high reproducability, non-destructive

Peaks of the N_2/O_2 - stretching as well as the OH-stretching and lattice vibrations of the ice matrix are indicated.

Raman spectroscopy of bubbles and microbubbles in EDML antarctic ice core

C. Weikusat, J. Freitag, S. Kipfstuhl

Examples of the possibilities of high-resolution gas measurements by Raman spectroscopy |a|: Several types of gaseous inclusions with corresponding N₂/O₂-ratios | *b* |: Secondary clathrates, mechanically disrupted

The different types of gaseous inclusions can be identified by characteristic changes of the Raman shift compared to the air signal.

Microfocus X-ray computer tomography enables the detection and analysis of all bubbles and microbubbles inside large volumes of ice.

This example shows the N₂-stretching.

Computer Tomography

For more details on this technique see also Poster XL204 (EGU2011-3390).

| *a* |: Line scanner image

b : Bubble distribution reconstructed from CT scans

Open Questions

- \rightarrow Which processes lead to the microbubbles' enrichment in O_2 ? (diffusion during storage and relaxation?)
- \rightarrow Do the same processes act in every depth?
- \rightarrow Plate-like inclusions (PLIs) contain only O₂. Is their generation linked to microbubbles?
- \rightarrow Can microbubbles be described as secondary relaxation features?
- \rightarrow Does fractionation between bubbles and clathrates influence the measured gas contents?