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During the recent years several ensemble-based Kalman
filter algorithms have been developed that have been
classified as ensemble square-root Kalman filters. Par-
allel to these developments, the SEIK (Singular ’Evolu-
tive’ Interpolated Kalman) filter [1] has been introduced.
Some publications note that the SEIK filter is an en-
semble Kalman filter or even an ensemble square-root
Kalman filter.

We discuss the relation of the SEIK filter to ensemble
square-root Kalman filters in more detail. For this, we
compare the SEIK filter with the Ensemble Transform
Kalman Filter (ETKF) [2]. The comparison is conducted
on the algorithmic formulations as well as in an applica-
tion to the nonlinear Lorenz96 [6] model.

The equations for the SEIK and ETKF algorithms
are displayed on the right hand side. Because the
equations are very similar, one has to be careful when
comparing the algorithms.

• ETKF uses the ensemble perturbation matrix Z to
represent the estimated error space. In contrast,
SEIK uses the basis of the error space in matrix L ,
which has one column less than Z.

• The ensemble transformation is computed in differ-
ent spaces. Matrix A of the SEIK filter is smaller than
Ã of ETKF by one row and one column. Nonethe-
less, both contain the same information on the error
space.

• The ensemble in the SEIK filter is reduced by one to
the basis of the error space. Thus, the last member
of the analysis ensemble has to be re-generated from
this information. This is performed by the matrix Ω.

• SEIK and ETKF compute the analysis state xa using
the same error space information. Due to this, the
analysis states are identical, if the same forecast en-
semble and the same set of observations is used.

• In addition, the analysis ensembles of both filter al-
gorithms will be equal when a particular choice for
the matrix Ω is used. It is obtained when the House-
holder reflection orthogonal to the vector (1, . . . ,1)T

is applied to the identity matrix.

• When Ω is chosen to be a random matrix, it serves
for the randomization of the analysis ensemble which
is sometimes suggested to avoid a loss of rank in the
analysis ensemble.

• The SEIK filter is an ensemble square-root filter like
the ETKF. ETKF uses all ensemble perturbations to
represent the error space, while SEIK directly uses a
basis of it.

• With deterministic transformations, SEIK and ETKF
become equivalent. Then, they result in the same
analysis ensemble. This is the case if both filters use
the symmetric square root of the transformation ma-
trix (A, Ã) and SEIK uses a matrix Ω that projects
from the error space to the ensemble space.

• An assimilation experiment with the Lorenz96 model
showed small differences in the estimated state for
both the SEIK and ETKF filters. They are caused by
the finite numerical precision of the computations, in
particular singular value decompositions.

• These findings unify the separate developments that
have been performed for the ensemble square-root
Kalman filters and the SEIK filter.

SEIK ETKF
(The equations mostly follow the notations of [4] and [5])

Some definitions
State vector xa ∈ R

n equal to SEIK

Ensemble of N members Xa =
[

xa(1), . . . ,xa(N)
]

, Xa ∈ R
n×N equal to SEIK

Perturbation matrix Za = Xa−Xa, Xa = [xa, . . . ,xa] equal to SEIK

Analysis covariance matrix Pa = 1
N−1Z

a(Za)T equal to SEIK

Error subspace basis L f = X f T, L f ∈ R
n×(N−1) not used in ETKF

T-matrix T =

(

I (N−1)×(N−1)

01×(N−1)

)

− 1
N

(

1N×(N−1)

)

not used in ETKF

Analysis covariance matrix Pa = L f A(L f )T Pa = Z f Ã(Z f )T

with transformation matrix A ∈ R
(N−1)×(N−1) Ã ∈ R

N×N

A−1 = (N −1)TTT +(HL f )TR−1HL f Ã−1 = (N −1)I +(HZ f )TR−1HZ f

State analysis
xa = x f +L f wSEIK xa = x f +Z f wET KF

with weight vector wSEIK = A(HL f )TR−1
(

yo−Hx f
)

wETKF = Ã(HZ f )TR−1
(

yo−Hx f
)

Square-root of analysis covariance matrix
Za = L f WSEIK Za = Z f WETKF

with weight matrix WSEIK =
√

N −1CΩT WETKF =
√

N −1C̃Γ

and square-roots C, C̃ CCT = A C̃C̃T = Ã

C, C̃ can be the symmetric square root C = US−1/2UT from
the singular value decomposition USV = A−1. Alternative
square-roots like a Cholesky factorization are possible.

Matrices Ω and Γ Ω can be an arbitrary N × (N −1) matrix with
orthogonal columns orthogonal to (1, . . . ,1)T .

Γ is a random rotation
matrix or the identity.

Ensemble transformation
Xa = Xa +L f WSEIK X̃a = Xa +Z f WETKF

Twin experiments were conducted using the nonlinear
Lorenz96 model [6]. Synthetic observations of the full
state were generated from a model run. The ETKF and
the SEIK filter were used to assimilate the observations
at each time step over 50000 time steps. For SEIK, the
configuration was used that makes it equivalent to the

ETKF (see “Comparison of Filters” on the left) as well as
a configuration with a square-root based on Cholesky de-
compostion. The global formulations of SEIK and ETKF
were used. These were sufficient for the Lorenz96 model,
but require larger ensembles than localized filters for com-
parable performance.
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The mean RMS errors over 10 experiments depending
on ensemble size and forgetting factor (covariance infla-
tion). The SEIK filter configured to be equivalent to ETKF
provides an almost identical result to the ETKF. The small
differences are statistically not significant and caused by
singular value decompositions of the matrices A and Ã,

which have different condition numbers. Errors from
the SEIK filter using a Cholesky decomposition of the
transformation matrix A are larger. This is caused by
an inferior ensemble quality in which a small number of
ensemble members carry most of the variance. With ran-
dom transformations, the error levels become equivalent.
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