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Ophiura albida and Ophiura ophiura are widespread and highly abundant brittlestar species occurring
sympatrically on soft bottoms along the western European coasts. Laboratory choice experiments revealed
that O. albida preferred staying on fine rather than on coarse sediments, whereas O. ophiura did not
distinguish between these types of sediment. Sediment-specific burrowing behaviour of the two species was
investigated under different stress and food conditions in order to evaluate relations of predator avoidance
and feeding strategies with the observed sediment preference. In the presence of a predator, O. albida
burrowed preferentially in fine sediment while coarse sediment did not seem to support quick burrowing for
efficient escape. Conversely, O. ophiura tended to escape the predator by fleeing across the sediment surface
rather than by burrowing, reflecting its unselectivity towards different sediment types. For O. albida,
stationary burrowing behaviour suggests deposit feeding, predating and/or scavenging on infaunal
organisms to be the predominant feeding behaviour rather than hunting for epibenthic prey organisms;
more so, as this foraging strategy reduces the species' exposure to predators. In contrast, O. ophiura seems to
be a true hunter and predator for epibenthic prey which was reflected in the experiments by low burrowing
activities in presence of food enriched sediments. We suggest that in O. albida and O. ophiura the evolution of
different mechanisms of predator avoidance has been associated with the evolution of contrasting foraging
strategies, supporting the species' coexistence in broadly overlapping habitats and explaining their
distribution on different types of sediment in the German Bight (North Sea).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Particle size and organic content have been the most commonly
considered features for characterising sediment types and linking
them to distributional patterns of a number of different taxa
(Hagmeier, 1925; Stripp, 1969; Salzwedel et al., 1985; Quinn and
Hickey, 1990; Bourassa and Morin, 1995; Rees et al., 1999; Freeman
and Rogers, 2003). In ophiuroid echinoderms, studies on particle size
selection and sediment preference have mainly focused on infaunal
and cryptic species (Woodley, 1975; Clements and Stancyk, 1984;
Sides and Woodley, 1985; Hendler and Littman, 1986), considering
lifestyle, feeding mechanisms and protective strategies (Ursin, 1960;
Buchanan, 1964; Warner, 1971; Tyler and Banner, 1977; Summers
and Nybakken, 2000). Laboratory studies on the burrowing amphiurid
brittlestar Microphiopholis gracillima, for example, showed that this
species distinctly integrated both grain size and organic content into

its habitat choice as it is reflected in the species' distributional pattern
observed in the field (Zimmerman et al., 1988).

While the burrowing lifestyle of infaunal brittlestars is considered
an evolutionary adaptation to predator avoidance (Sköld, 1998),
epibenthic brittlestars, for example from the genus Ophiura, have
evolved other strategies to avoid predators, to temporarily hide
from them or even to endure encounters. These include autotomy,
rapid escape, deimatic behaviour and unwieldy shape, cryptic
colouring and seeking shelter in crevices or under rocks (Fell, 1966;
Hendler, 1984; Emson and Wilkie, 1980; Sköld and Rosenberg, 1996;
Sköld, 1998). Although leading an epibenthic lifestyle, burrowing –

referring to a position just slightly below the sediment surface mostly
with the arm tips still exposed above sediment level – has been
reported to be a common response to potential stressors (e.g.
predators or illumination) in Ophiura albida and Ophiura ophiura
(Moore and Cobb, 1985; Sköld and Rosenberg, 1996; Sköld, 1998).
MacGintie (1949) suggested that deposit feeding in O. sarsi may be
related to burrowing behaviour which is likely to apply to other
Ophiura species as well. Hereby the animals were observed dabbing
their tube-feet over an organically enriched sediment surface and
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raking through the sediment with their arms followed by the
subsequent burrowing of the entire body disc.

Experimental studies on sediment preference and burrowing
behaviour in epibenthic brittlestars of the genus Ophiura are scarce.
While Caspers (1979) reported that O. albida and O. ophiura selected
distinctly different sediment types during early larval settlement,
possible sediment preferences of adults so far could only be derived
from observational monitoring studies and field sampling and
have not revealed any clear patterns (Süßbach and Breckner,
1911; Gerdes, 1977; Salzwedel et al., 1985; Dahm, 1993; Kühne
and Rachor, 1996; Niermann, 1997; Volbehr and Rachor, 1997; Boos
and Franke, 2004).

O. albida and O. ophiura are common representatives of the boreo-
lusitanian fauna distributed from Norway and Iceland to the
Mediterranean and even as far as the Azores (Hyman, 1955; Ursin,
1960). Both species are considered omnivorous and have been
reported to exhibit a wide range of feeding mechanisms including
predation, scavenging as well as surface and sub-surface deposit
feeding (Feder, 1981; Warner, 1982; Sköld and Rosenberg, 1996). In
turn, they are predated upon by a number of demersal fishes such as
haddock, plaice, dab and other flatfish and by various echinoderms
and crustaceans making them important links in local food-webs and
faunal communities (Fenchel, 1965; Warner, 1971; Pihl, 1994; Sköld,
1998; Summers and Nybakken, 2000). O. albida and O. ophiura are
found sympatrically and in abundances of up to 700 ind. m−2

(Goldschmid, 1996) on a variety of different soft-bottom sediments in
the southern North Sea including all grades of mud, gravel, sand and
broken shell (Süßbach and Breckner, 1911; Salzwedel et al., 1985;
Dahm, 1993; Kühne and Rachor, 1996; Niermann, 1997; Boos and
Franke, 2004, 2006).

Common traits in O. albida and O. ophiura suggest that the two
species have similar ecological requirements and are therefore likely
to compete for shared resources. According to the classic ‘competitive
exclusion principle’, however, two species cannot realize the same
ecological niche (Hutchinson, 1957 in Soberón and Peterson, 2005;
Hardin, 1960). The co-occurrence of O. albida and O. ophiura on soft-
bottom sediments, therefore, indicates ecological differences between
the two species that allow for their coexistence. While niche
segregation among ecological equivalents is common in most
communities (Ross, 1986), the mechanisms and factors allowing for
the coexistence of species occupying the same habitat and utilizing
the same resources, are often unknown.

In order to give a mechanistic explanation for the coexistence of
O. albida and O. ophiura in the field, we studied possible sediment
preferences of the species in the laboratory. Building on these results,
we identified factors relating to sediment preferences. In detail we ask
the following questions: Do O. albida and O. ophiura have different
sediment preferences? If so, are the preferences related to burrowing
behaviour performed as predator avoidance and/or feeding strategy?
Can differences in these strategies explain for niche segregation and,
thus, the coexistence of O. albida and O. ophiura?

To answer these questions, we applied single- and mixed-species
sediment choice experiments with O. albida and O. ophiura at different
densities in the laboratory. Subsequently, we investigated the
burrowing behaviour of the two species on different sediment types
under different stress and food conditions.

2. Materials and methods

2.1. Sampling of animals and sediment treatment

From June to July 2003, O. albida and O. ophiura were collected by
dredging in the close vicinity of the island of Helgoland, German Bight
(North Sea). Cultures of the two species of approximately 70
individuals each were maintained separately in 60×45×40 cm
flow-through aquarium tanks at 16 °C and a light–dark cycle of

16:8 h in the seawater laboratory of the Helgoland Marine Station.
Sediment was collected with a van Veen grab (0.1 m²) and offered as
natural, untreated substratum. The ophiuroids were fed daily ad
libitumwith a mixed diet of commercial fish-food (TetraMin®), tissue
bits of bluemusselsMytilus edulis and small pieces of the isopod Idotea
baltica. Leftover food particles were removed daily.

In all experiments only undamaged, i.e. non-regenerating adult
individuals were used. All experiments were run at a constant
temperature of 16 °C. Sediment for experimental usage originated
from van Veen grab samples taken along with the sediment sampled
for maintenance purposes. Approximately 50 l of sediment was dried
and fractionated to different grain sizes by sieving through a cascade
of sieves with decreasing mesh sizes (3360, 1800, 1000, 500, 250 and
125 μm). Subsequently, sediment fractions of two specific grain sizes
were used throughout all experiments: 1000–1800 μm and 125–
250 μm. Theywill hereafter be referred to as coarse and fine sediment,
respectively. Because this procedure is labour intensive and yields
only relatively small quantities, the experimental sediments were
used repeatedly. Prior to any experimental procedure, the sediments
and basins were thoroughly washed with hot tap water in order to
remove organic remains and chemical cues from animals of preceding
experiments and to prevent microbial growth.

2.2. Experimental setup

2.2.1. Sediment preference
Either half of a round basin (Ø=45 cm, height=15 cm) was laid

out with a 2-cm-thick layer of coarse and fine sediment, respectively,
and then carefully filled up with seawater. Randomly chosen
individuals of the respective species (mean disc diameter for
O. albida: 7.4±0.7 mm and for O. ophiura: 12.7±1.3 mm) were
placed on the sediment, where the two sediment types bordered on
each other. The numbers of individuals used in the experiments
were chosen according to similar experiments by Sköld (1998). The
maximum density of ophiuroids used in the present experiments
was still low enough to allow for the animals' unimpeded migration
in the basin throughout the experimental procedure (personal
observation). The following numbers of individuals were used
in single- and mixed-species trials; all trials were run with three
replicates each:

• 5 individuals of O. albida and O. ophiura, respectively, in single-
species treatments (for species-specific sediment preference)

• 10 individuals of O. albida and O. ophiura, respectively, in single-
species treatments (for intraspecific or ‘density’ effects)

• 5 individuals of either species in mixed-species treatments (for
interspecific or ‘species’ effects).

After a 2-h period of acclimatization to the artificial environment,
the sediment choice of the ophiuroids was monitored constantly over
a period of 8 h. Ophiuroids are known to react negatively to light by
seeking shelter under rocks, in crevices or by burrowing in sediments
when illuminated (Fell, 1966; Moore and Cobb, 1985; Hendler, 2004).
Moore and Cobb (1985) not only confirmed a negative phototaxis in
O. ophiura but also showed distinct behavioural reactions in
individuals that were exposed to different gradients of illumination.
In order to prevent effects of directional photic stimuli on the animals'
spatial distribution, the experiments were performed in the dark and
were videotaped under infra-red light. Later the position of each
individual at any given time was traced back on the screen. The
moments in time of a sediment boundary crossing, i.e. when at least
three legs of an individual had entirely crossed over to the respective
other sediment type, were recorded for the entire trial duration. In
this way, the total time spent on fine and coarse sediment was
calculated for each individual.
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2.3. Burrowing behaviour

The burrowing behaviour of O. albida and O. ophiura on coarse and
fine sediment was tested under different conditions of (i) a stressor
and (ii) food. An ophiuroid was determined ‘burrowed’, as soon as its
dorsal disc surface came equal with the sediment surface, indepen-
dent of parts of the disc or the arms still being visible.

2.3.1. Stress
The burrowing behaviour in presence and absence (control) of a

stressor, the edible crab Cancer pagurus, was studied using a round
aerated basin (Ø=45 cm, height=15 cm) with a 2-cm-thick layer of
coarse and fine sediment, respectively. C. pagurus was chosen as a
predatory stressor as it is known to cause mechanical disturbance
when browsing in dense epibenthic brittlestar populations (e.g.
Ophiothrix fragilis) (Warner, 1971). We used medium sized C. pagurus
with a mean carapax width of 8.4±1.2 cm. 10 conspecific ophiuroids
(mean disc diameter for O. albida: 7.6±0.9 mm and for O. ophiura:
12.8±1.5 mm) were transferred into the experimental basin and left
for 2 h to acclimatize. After the acclimatization period, one individual
of C. pagurus was introduced to the experiment. The number of
burrowed ophiuroids was recorded every 5 min for a total period of
30 min. Three replicates were run for each sediment type, treatment
(control and trial) and ophiuroid species.

2.3.2. Food
The burrowing behaviour was studied in presence and absence

(control) of food using 5 l (17×15×25 cm) flow-through aquaria
with a 2-cm-thick layer of the respective sediment. In each set of food
trials, the sediments in the aquaria were enriched by mixing them
with 2 g of commercial fish food (TetraMin®), bits of tissue of 5
medium sized mussels (M. edulis), approximately 15 g of isopod
pieces (I. baltica) and freshly hatched nauplii of the brine shrimp
Artemia salina, concentrated from 1 l (3.5 ml cysts/l seawater). After
sedimentation of the food enriched sediment, food particles were
available in the sediment as well as on the sediment surface meeting
the requirements of the main feeding mechanisms in the genus
Ophiura, i.e. epi- and endobenthic carnivory (scavenging and
predation) and surface and subsurface deposit feeding.

In the experimental trials, three individuals of the same species
(mean disc diameter for O. albida: 6.7±1.5 mm and for O. ophiura:
13.7±1.5 mm), which had been starved for 2 days, were each
transferred into a tank. After 2 h of acclimatization to the artificial
environment, the number of burrowed individuals was recorded
every 30 min for a total period of 8 h. Five replicates with three
individuals each were run for each sediment type, treatment (control
and trial) and ophiuroid species.

2.4. Statistical analysis

All calculations were performed at the 95% confidence level using
computer software GraphPad Prism (3.0), STATISTIKA (7.1) or SPSS
(15.0.0).

Ophiuroid sediment preference in single-species trials was
analysed with a nested ANOVA with species and density as crossed
fixed effects factors and experiment (with individuals as replicates) as
random effects factor being nested in combinations of species and
density. According to Zar (1999), we tested the two fixed effects
factors and their interaction against the experiment mean square. In
mixed-species comparisons, we used a crossed two-way ANOVA with
species as fixed and experiment as random effects factor. Here we
tested species against the interaction between the two factors and
treatment as well as the interaction itself against the error mean
square. In both analyses, we used the proportion of time spent on the
coarse sediment as the response variable. Although Levene's test of
homogeneity of error variances indicated clear deviations from this

assumption (both Pb0.01), we chose these analyses because inspec-
tions of plots of residuals against predicted values indicated no
obvious deviations from normality and homogeneity of error
variances (neither arcsin nor rank transformations improved fit to
assumptions). To increase power and since no other factor than
species nor any interaction revealed significance, we finally tested the
data of both experiments pooled using a nested ANOVA with
treatment as nested random effects factor and species as well as
experimental condition (single vs. both species) as fixed effects
factors. Both factors and their interaction were tested against the
treatment mean square.

The burrowing behaviour of ophiuroids in both the stress and the
food trials was analysed with repeated measures ANOVAs. Species
(with levels: O. albida and O. ophiura) and sediment (with levels:
coarse and fine) were treated as between subject factors having fixed
effects, and experimental treatment (with levels: control and trial
run) was included as a within subjects factor having fixed effects.
Data +1 were log-transformed to meet the assumptions of normal
distribution and homogeneous error variances (checked by visual
inspection of the plot of the residuals against the predicted values and
Levene's test: all except one PN0.31).

3. Results

3.1. Sediment preference

In the single-species treatments, the sediment choice of O. albida
and O. ophiura tended to differ at low densities (nested ANOVA:
F1,8=4.99, P=0.056) but not at high densities (F1,8=0.09, P=0.77).
However, the interaction between density and species was statistically
not significant (F1,8=0.69, P=0.43; Fig. 1). In fact, O. albida tended to
spend more time on fine sediment (mean±SD=284.9±120.6 min)
than on coarse sediment (mean±SD=195.0±120.7 min), whereas
O. ophiura did not do so (222.4±210.8 and 257.7±210.8 min,
respectively). In mixed-species experiments, we found no difference
in sediment choice of the two species (ANOVA: F1,2=1.61, P=0.33).
Neither the treatment (F1,2=0.036, P=0.96) nor the interaction
between treatment and species had a significant effect on the sediment
choice of the two species (F1,2=0.43, P=0.66). Pooling all data sets of
each species revealed that O. albida spent more time on the fine
sediment than did O. ophiura (F1,14=6.44, P=0.024). The number of
conspecifics and heterospecifics had no effect on sediment choice
(F1,14=1.26, P=0.28) and the interaction between density and
sediment was, again, not significant (F1,14=0.06, P=0.80).

Fig. 1. Total time spent on coarse and fine sediment by Ophiura albida and Ophiura
ophiura in different densities and species compositions; white bars=single-species
treatments (5 animals), light grey bars = single-species treatments (10 animals) and
dark grey bars=mixed-species treatments (5+5 animals); mean±SD (N=15 and 30,
respectively).
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3.2. Burrowing behaviour

3.2.1. Stress
The presence of the predator C. pagurus differentially influenced

the burrowing behaviour of O. albida and O. ophiura on different
sediment types (repeated measures ANOVA, species×condition×se-
diment type interaction: F1,8=6.32, P=0.04; Fig. 2). O. albida showed
higher burrowing activity in stress treatments than in stress-free
conditions, whereas it was the opposite for O. ophiura. In both species,
more animals were burrowed in fine than in coarse sediment
(F1,8=6.08, P=0.04). Accordingly, the interaction between species
and sediment was not significant (F1,8=0.20, P=0.67). O. albida
generally showed higher burrowing activity than did O. ophiura
(F1,8=7.90, P=0.023). Further interactions were not detected.

3.2.2. Food
Food availability in the sediment differentially influenced the

burrowing behaviour of O. albida and O. ophiura (interaction
species×feeding condition: F1,16=7.92, P=0.012; Fig. 3). Burrowing
activity of O. albida was enhanced in the presence of food whereas
food enrichment of the sediment had no effect on the burrowing
behaviour of O. ophiura. The two species also differed in their response
to the sediment type (repeated measures ANOVA interaction,
species×sediment: F1,16=13.92, P=0.002). More individuals of
O. albida were found burrowed in fine than in coarse sediment. The
burrowing behaviour of O. ophiura was similar on both sediment
types. Further interactions were not detected.

4. Discussion

When given a choice between the two sediment types, O. albida in
all treatments, spent more time on fine sediment than on coarse
sediment. The addition of conspecifics or heterospecifics did not alter
this tendency making, intra- and interspecific effects on substrate
selection negligible within the tested range of densities. O. ophiura, in
contrast, showed no preference for any of the sediment types under
study and was always found randomly distributed. It also did not
respond to the addition of conspecifics or heterospecifics.

In both, the stress and the food trials, O. albida and O. ophiura
generally showed higher burrowing activity on fine than on coarse
sediment. On fine sediment, O. albida burrowed more often when
the predator C. pagurus was present compared to when it was
absent, while the opposite was found for O. ophiura. In the food
trials, O. albida burrowed more often in fine sediment when it was
enriched with food as when food was lacking. In contrast, O. ophiura
generally remained on top of the sediment, independent of food
enrichment.

Our results suggest that burrowing plays a greater role in the
behavioural strategies (predator avoidance, foraging) of O. albida than
in those of its congener O. ophiura. O. albida exhibited burrowing
behaviour as a protective mechanism when encountering a potential
predator. These findings are in accordance with earlier studies by
Sköld (1998), where O. albida showed very little effort in fleeing, but
remained still or covered itself slightly with sediment when exposed
to a predator.

Burrowing in O. albida was observed more often on fine than on
coarse sediment. Coarse sediments might present mechanical pro-
blems to burrowing (Stancyk, 1970 in Zimmerman et al., 1988;
Woodley, 1967, 1975), thus not allowing for a quick escape in case of
danger. Alternatively, being burrowed in coarse sediments may not
provide an efficient protection from predators. Ehrenhauss et al.
(2004) showed that due to enhanced water flow through larger pore
sizes, transport rates of particles and dissolved chemical cues were
higher in medium and coarse sands than in fine sands. Thus,
burrowing as a protective mechanism against chemically orientated
predators may be less efficient in coarse sediments as opposed to fine
sediments. This effect may offer an explanation for the observed
preference for fine sediments in O. albida.

In contrast to O. albida, O. ophiura does not seem to make use of
burrowing as a protective mechanism against potential predators. In
the present experiments O. ophiura tended to escape rapidly across
the sediment surface on both fine and coarse sediment. This
behaviour makes O. ophiura rather unselective towards sediment
types as it does not seem to depend on a particular grain size to seek
shelter from predators. These findings may explain for the lack of a
clear preference in the sediment choice experiments.

Fig. 2. Number of burrowed individuals of Ophiura albida (▲Δ) in coarse (A) and fine (B) and Ophiura ophiura (●○) in coarse (C) and fine (D) sediment in presence (black symbols)
and absence (white symbols) of predator stress over time; mean±SD (N=3).
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The tendency in O. ophiura of rather digging itself out of the
sediment and presenting itself when under threat is in accordance
with the defence or escape mechanisms of epibenthic ophiuroids
described by Sköld (1998). Horizontal locomotion in brittlestars
typically takes place by using the entire arms instead of individual
tube feet (Lawrence, 1987). By alternately moving two arms in the
desired direction, the animals generally lift up their body over the
surface dragging behind the other three arms (Lawrence, 1987). With
amaximumdisc diameter of approximately 30 mm and an arm length
of four times the disc diameter (Mortensen, 1927),O. ophiura is able to
cover a larger distance much faster than O. albida, which is only about
half the size of O. ophiura. This may explain the efficacy of a rapid
escape in O. ophiura when under threat, whereas burrowing may be
the better alternative for the smaller and slower moving O. albida.
More so, as burrowing in slowmoving species, like in most amphiurid
ophiuroids, seems to be the predominant mechanism to seek
shelter from predators such as demersal fishes (i.e. the dab Limanda
limanda) or star fish (Fenchel, 1965; Summers and Nybakken, 2000;
Saborowski and Buchholz, 1996). In addition, disc autotomy is also
considered a very commonmechanism of predator avoidance (Emson
and Wilkie, 1980). With regard to autotomy, Stancyk (in Emson and
Wilkie, 1980) suggested that not only does it enhance the chance of
surviving predatory attacks, but, because of a smaller body size after
autotomy, it may also allow for less resistance when burrowing in case
of threat.

Being less active, slower and smaller than its congener, burrowing
may make O. albida not only less prone to visually and/or chemically
orientated predators. It may also reflect the species' stationary
foraging behaviour, which includes subsurface deposit feeding as
well as preying or scavenging on smaller infaunal organisms in the top
layers of fine grained sediments, rather than hunting and actively
searching for prey. Support is given by Eichelbaum (1910) and
Jangoux and Lawrence (1982) who found comparably high amounts
of sediment in stomach content analyses of O. albida in comparison to
remains of small benthic organisms. Eichelbaum (1910) related more

than 75% of ingested material to sediment (‘bottom material’) and
designated O. albida as a deposit feeder. As fine grain sized sediments
contain enhanced organic content and thus offer surface and
subsurface deposit feeders substantial nutriment (Summers and
Nybakken, 2000), they may also provide better feeding grounds for
other infaunal organisms and potential prey objects, than do coarse
grain sized sediments (Salzwedel et al., 1985). In turn, this may offer
another explanation for the preference for fine sediment in O. albida
observed in the present experiments.

Studying the stomach content and feeding behaviour of O. ophiura,
Feder (1981) identified 41 prey organisms from different endo- and
epibenthic taxa, including specimens of the congener O. albida.
Because of the species' fairly unselective feeding behaviour (Tyler,
1977) and broad food spectrum, Feder (1981) designated O. ophiura
as a predominant predator of small benthic organisms from a variety
of different habitats, which, again, makes this species rather unspecific
towards a certain sediment type.

Based on our results, we suggest that predator avoidance may play
a primary role in explaining the differences between O. albida and
O. ophiura with respect to substrate choice (preference for fine over
coarse sediment in O. albida; no such preference in O. ophiura). The
two species have evolved different strategies to escape or avoid
potential predators and these differences are related to differences in
the species' predominant foraging strategies. Differences in feeding
habits, thus, may be considered the main factor allowing for the
species' broad overlap in habitat use and coexistence observed in the
field. In both species, increasing numbers of conspecifics as well as the
presence of heterospecifics did not affect the outcome of sediment
choice experiments within the small range of densities studied. While
both species under study are known to perform a wide variety of
predator avoidance strategies and feeding mechanisms, we were able
to focus on some predominant behavioural responses to explain for an
observed distribution of brittlestar populations in the German Bight
(North Sea). Performances of additional feeding habits may play a role
when looking into possible effects of competitive interactions on

Fig. 3. Number of burrowed individuals of Ophiura albida (▲Δ) in coarse (A) and fine (B) sediment and Ophiura ophiura (●○) in coarse (C) and fine (D) sediment in presence (black
symbols) and absence (white symbols) of food over time; mean±SD (N=5).
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both, the intra- and interspecific level. These, however, have not been
investigated in the present study.
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