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Abstract. Marine isotope stage (MIS) 13 (∼500 000 years
ago) has been recognized as atypical in many paleoclimate
records and, in particular, it has been connected to an ex-
ceptionally strong summer monsoon throughout the North-
ern Hemisphere. Here, we present a multi-proxy study of
a sediment core taken from the Murray Ridge at an inter-
mediate water depth in the northern Arabian Sea that covers
the last 750 000 years. Our results indicate that primary pro-
ductivity conditions were anomalously high during MIS 13
in the Arabian Sea and led to extreme carbonate dissolution
and glauconitization in the deep-sea sediments. These ob-
servations could be explained by increased wind driven up-
welling of nutrient-rich deep waters and, hence, by the oc-
currence of an exceptionally strong summer monsoon event
during MIS 13, as it was suggested in earlier studies. How-
ever, ice core records from Antarctica demonstrate that atmo-
spheric methane concentrations, which are linked to the ex-
tent of tropical wetlands, were relatively low during this pe-
riod. This constitutes a strong argument against an extremely
enhanced global monsoon circulation during MIS 13 which,
moreover, is in contrast with results of transient climate mod-
elling experiments. As an alternative solution for the aber-
rant conditions in the Arabian Sea record, we propose that
the high primary productivity was probably related to the on-
set of an intensive meridional overturning circulation in the
Atlantic Ocean at the end of the Mid-Pleistocene transition.
This may have led to an increased supply of nutrient-rich
deep waters into the Indian Ocean euphotic zone, thereby
triggering the observed productivity maximum.
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1 Introduction

The Mid-Pleistocene transition (MPT) characterises a funda-
mental change in the climate state which allowed ice sheets
to expand and evolve from a dominant 41-kyr (obliquity) to
a quasi ∼100-kyr rhythm (Clark et al., 2006; Lisiecki and
Raymo, 2005; Raymo and Nisancioglu, 2003; Raymo et al.,
2006; Shackleton and Opdyke, 1976). The end of the MPT
between ca. 600 and 500 ka is described by a series of events
(Schmieder et al., 2000). First, the transition betweenMIS 14
and 13 (i.e. termination TVI) is the least pronounced termi-
nation of the past 640 ka. Ice volume has increased insignifi-
cantly during MIS 14, compared to the other late Pleistocene
glacial periods. A record from Lake Baikal indicates, for
instance, that mountain glaciations were reduced in central
Eurasia from 580 to 380 kyrs ago (Prokopenko et al., 2002).
In particular, the record documents a continuous forestation,
suggesting that mild winter conditions prevailed with rela-
tively little snow cover.
MIS 13 is, on the other hand, exceptional. It marks an ex-

treme δ13Cmax associated with a major reorganization in the
carbon reservoir of the global ocean (Wang et al., 2003). Sev-
eral peculiarities occured in the ocean during this time, such
as thick laminated layers of the giant diatom Ethmodiscus rex
in the Atlantic Ocean (Romero and Schmieder, 2006). Also,
the climate changed dramatically during this period with high
terrigenous influx at Ceara Rise (Harris et al., 1997), indi-
cating heavy precipitation in the Amazon Basin, or the ex-
ceptional thick soil horizon S5 found at the Chinese loess
plateau (CLP) (Guo et al., 2009; Sun et al., 2006b). More-
over, extreme African and Indian monsoon intensity, inferred
from the occurrence of the anomalous sapropel Sa in the
Mediterranean and a peak in planktic oxygen isotope records
from the equatorial Indian Ocean (Bassinot et al., 1994a;
Rossignol-Strick et al., 1998), is commonly linked to this
event (Guo et al., 2009; Yin and Guo, 2008).
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Fig. 1. (a) NASA’s Aqua satellite picture, using the Moderate Resolution Imaging Spectroradiometer (MODIS) on 3 March 2009 (http:
//earthobservatory.nasa.gov/NaturalHazards). The star indicates position of IMAGES Core MD04-2881 was recovered on 14 October 2004,
from a water depth of 2387m at the Murray Ridge (22◦12�.5 N – 63◦05�.5 E) in the northeastern Arabian Sea (b) Oxygen profile through the
northern Arabian Sea.

Furthermore, the transition between MIS 14 and 13 co-
incides with the onset of the Mid-Brunhes dissolution inter-
val (MBDI), which lasts until ∼280 ka (Barker et al., 2006;
Bassinot et al., 1994b; Droxler et al., 1988). This period of
extensive dissolution in the deep sea is probably not related
to enhanced greenhouse gas forcing, since Antarctic ice core
data and foraminiferal boron isotopes generally indicate low
atmospheric pCO2 levels, even within interglacial periods
during this time (Hönisch et al., 2009; Petit, 1999). An alter-
native explanation for the MBDI invokes an increase in low-
latitude shelf carbonate production (Droxler et al., 1997). To
add to that, it has been suggested that pelagic carbonate pro-
duction increased globally due to the proliferation of the coc-
colithophore Gephyrocapsa (Bollmann et al., 1998), thereby,
causing widespread dissolution in the deep sea (Barker et al.,
2006). The most severe dissolution occured during MIS 11,
which followed on from the so-called Mid-Brunhes event
at ca. 430 ka (i.e. termination TV), representing the largest-
amplitude change in δ18O of the global ocean over the past
6 million years (Wang et al., 2003).
In 2004, a long sediment core was recovered at the Mur-

ray Ridge, a submarine high in the northeastern Arabian Sea,
from a water depth of 2387m, well below the present-day ex-
tension of the oxygen minimum zone (OMZ). The main aim
of the investigation of this core was to investigate the pale-
oceanographic changes in the Arabian Sea during the MPT,
since numerous studies only document these in great detail
from the past 400 000 years (Almogi-Labin et al., 2000; Al-
tabet et al., 2002; Anderson et al., 2002; Budziak et al.,
2000; Clemens et al., 1991; Clemens and Prell, 1990, 2003;
Emeis et al., 1995; Gupta et al., 2003; Ishikawa and Mo-
toyoshi, 2007; Ivanova et al., 2003; Jaeschke et al., 2009;
Leuschner and Sirocko, 2000, 2003; Lückge et al., 2001;
Naidu and Malmgren, 1996; Naidu, 2006; Pattan et al.,
2003; Prabhu and Shankar, 2005; Prell et al., 1980; Prell
and Campo, 1986; Prell and Kutzbach, 1992; Reichart et al.,
1997, 1998, 2002, 2004; Rostek et al., 1993, 1997; Saher

et al., 2007; Sarkar et al., 1990; Schmiedl and Leuschner,
2005; Schulte et al., 1999; Schulz et al., 1998; Sirocko et
al., 1993, 1996; Wang et al., 2005a). Using a multi-proxy
approach, we will report on the complex interplay of sum-
mer monsoon upwelling-related productivity changes, OMZ
intensity, glacial-interglacial variability in intermediate wa-
ter contributions, supralysoclinal carbonate dissolution and
winter monsoon-related deep-mixing events. Special empha-
sis will be on the cause of the exceptional high productivity
conditions in the Arabian Sea during MIS 13.

2 Material and methods

2.1 Sediment core MD04-2881

The sedimentary sequence of the Murray Ridge provides
an excellent archive of past primary productivity and Indian
summer monsoon intensity (Pourmand et al., 2004; Reichart
et al., 1997, 1998, 2004; Schulz et al., 1998). IMAGES
Core MD04-2881 was recovered on 14 October 2004, from
a water depth of 2387m at the Murray Ridge (22◦12�.5 N –
63◦05�.5 E) (Fig. 1). The sediment consists of homogeneous,
dark brownish to olive greenish to light greenish/yellowish
grey hemipelagic mud. The upper 34m of the core have been
sub-sampled in 10 cm resolution. XRF and magnetic suscep-
tibility scans have been performed in 1 cm resolution.

2.2 Analytical methods

An Avaatech XRF core scanner at the Royal Netherlands
Institute of Sea Research (NIOZ, Texel, Netherlands) has
been used to measure the bulk elemental composition of
the sediment core in high-resolution. The split core sur-
face was cleaned and covered with a 4 µm thin SPEXCer-
tiPrep Ultralene foil to avoid contamination and prevent
desiccation. Each section was scanned four times at
0.1milliamps (mA)/5 kilovolts (kV) (no filter), 0.15mA and
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10 kV (no filter), 0.5mA and 30 kV (Pd-thick filter) and
1mA/50 kV (Cu-filter). A 1 cm2 area of the core surface
was irradiated with X-rays using 30 s count time (120 s for
the 50 kV setup). For further technical details on the XRF
scanning technique, see (Richter et al., 2006).
Reliability of XRF scanning counts has been tested by

comparing it to a lower-resolution sample set (10 cm) for
XRF measurements on discrete samples. 3–5 g of freeze-
dried sediment was thoroughly ground. Residual moisture,
organic matter and carbonates were removed using a Leco
TGA (Thermo-Gravimetric Analysis), 600mg of the residue
was mixed with 6 g flux (consisting of 66% lithium tetrab-
orate, Li2B4O7 and 34% lithium metaborate, LiBO2) and
0.500ml of a 30% lithium iodide solution and fused to glass
beads. Glass beads were measured using an ARL9400 X-ray
fluorescence spectrometer. Analytical precision, as checked
by parallel analysis of international reference material and
in-house standards, is better than 2% for Al, Ti better than
3% for Ba.
In general, XRF scanning is less suited for light elements

(Richter et al., 2006; Tjallingii et al., 2007). When compar-
ing the elemental scanning counts for Al with the absolute
measurements on discrete samples, we find a low correla-
tion (r2=0.38). This low correlation coefficient implies that
normalization to Aluminum (Al), which is commonly done
for elemental data, will lead to large uncertainties for the
XRF scanning dataset. We, therefore, rely only on the raw
counts for Barium (Ba), Calcium (Ca), Strontium (Sr), the
sum of the terrestrial elements and Bromine (Br). A com-
parison between depth profile of Ba scanning-counts with
the Ba/Al profile derived from conventional XRF measure-
ments on discrete samples shows a perfect match between
the two (Fig. 3d). This perfect match is why we conclude
that closed-sum issues did not influence our record, in this
particular case.
Magnetic susceptibility of discrete samples was measured

on a Kappabridge KLY-2. Susceptibility was divided by the
sample’s dry weight, giving the mass magnetic susceptibility
[m3/kg].
Stable isotope ratios were measured on the benthic

foraminifera Uvigerina peregrina (single specimen, size frac-
tion 150–600µm) and the planktic foraminifera Neoglobo-
quadrina dutertrei (∼20 specimen, 300–350 µm) and Glo-
bigerinoides ruber (∼50 specimen, 212–300 µm). A sin-
gle specimen of the benthic foraminifera and aliquots of
the homogenized G. ruber samples were loaded into indi-
vidual reaction vessels and each sample reacted with three
drops of H3PO4 (specific gravity = 1.92) using a Finnigan
MAT Kiel III carbonate preparation device at Utrecht Uni-
versity. Long-term analytical precision was estimated to be
±0.07 for δ18O and ±0.03 for δ13C by measuring eleven
standards (international NBS-19 and in house NAXOS) with
each set of 38 samples. The Neogloboquadrina samples were
analyzed in an ISOCARB common bath carbonate prepara-
tion device linked on-line to VG SIRA24 mass spectrometer

also at Utrecht University. Isotope Values were calibrated to
the PeeDeeBelemnite (PDB) scale. Analytical precision was
determined by replicate analyses and by comparison to the
international (IAEA-CO1) and in-house carbonate standard
(NAXOS). Replicate analyses showed standard deviations of
±0.06 and ±0.1 for δ13C and δ18O, respectively.
Size-normalized weights of the planktic foraminiferal

species G. ruber were measured to estimate the amount of
carbonate dissolution. These measurements were done on
the same relative narrow size fraction (212–300 µm) used for
stable isotope analysis. The shells were weighed using a mi-
crobalance (precision 0.1 µg) and the mean weight is taken to
represent that population.
Total numbers of the deep-dwelling planktic foraminiferal

species Globorotalia truncatulinoides and Globoratalia
crassaformis were counted on splits of the 150–600 µm size
fractions from the wet, sieved freeze-dried sediment. The
counts are expressed as number per gram dry sediment. Cer-
tain intervals of the core are characterised by high abun-
dances of “green grains”, which were counted on the same
sample splits and are expressed as number per gram dry sed-
iment.

3 Results

3.1 Chronology

Age constraints are based on correlating the benthic δ18O U.
peregrina record to the LR04 benthic oxygen isotope stack
(Lisiecki and Raymo, 2005) (Fig. 2). This correlation shows
that MD04-2881 covers the past ∼750 000 years, although
the oldest ∼100 000 years are less well confined. The ampli-
tude variations in the δ18O U. peregrina record are compara-
ble to the global benthic stack, except for the interval below
∼600 ka, which shows only minor variations. The planktic
δ18O records from N. dutertrei and G. ruber largely confirm
the benthic isotope chronology. We do not find exceptionally
light isotope values in any of the two planktic records during
MIS 13, thereby questioning a monsoon related basin-wide
flooding event in the northern Indian Ocean during MIS 13
(Rossignol-Strick et al., 1998). On the other hand, one could
argue that also today most of the large river runoff from India
is directed towards the Bay of Bengal and, therefore, the lo-
cal salinity in the northern Arabian Sea was potentially less
affected by an extreme increase in monsoon feed river dis-
charge in the past. Similar to the U. peregrina record, a
dampened δ18O signal is found in the record of N. dutertrei
beyond ∼650 ka. The resulting age model indicates that in-
terglacial periods are characterised by lower sedimentation
rates compared to glacial periods. Sedimentation rate is, in
particular, low during MIS 5 which may even suffer from a
hiatus.
The reason for the dampened isotopic signal in the lower

part of the core has not yet been solved, but it is well known
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Fig. 2. Stable isotope records from MD04-2881 versus the global benthic isotope stack LR04 (black stippled line) (Lisiecki and Raymo,
2005). (a) Benthic δ18O (Uvigerina perigrina). (b) Planktic δ18O of Neoglobigerina dutertrei. (c) Planktic δ18O of Globigerinoides ruber.
(d)Magnetic susceptibility. (e) Sedimentation rates of MD04-2881.

that the benthic isotope signal in the Arabian Sea has been
altered by OMZ variability through changes in carbonate
ion concentrations and supralysoclinal dissolution (Schmiedl
and Mackensen, 2006). Furthermore, changes in Arabian
Sea intermediate water masses between glacial and inter-
glacial periods potentially influence the isotope signal (Jung
et al., 2001; Zahn et al., 1991), although it is not clear why
this would affect both benthic and planktic δ18O records.
Perhaps an increased diagenetic alteration of the isotopic
signal with depth may have played a critical role. Clearly,
the magnetic susceptibility record of MD04-2881 shows a
decreasing down-core trend with flat values below ∼650 ka
(Fig. 2), indicating the diagenetic removal of the magnetic
properties in the sediment by the decomposition of organic
matter and associated changes in the redox conditions of the
pore waters within this interval (Reichart et al., 1997).

3.2 OMZ intensity and productivity changes

Marine organic carbon (MOC) content of Murray Ridge sed-
iment cores has previously been used as productivity and/or
OMZ intensity proxy (Reichart et al., 1998). It has recently
been shown that the Br counts from XRF scanning enabled
a fast and robust procedure to estimate the MOC content
of the sediment (Ziegler et al., 2008). The Br record of
MD04-2881 indicates that maximum MOC contents occur
during glacial periods, whereas the lowest values coincide
with glacial terminations (Fig. 3). These minimum values
are accompanied by peak occurrences ofG. crassaformis and
G. truncatulinoides (Fig. 3). G. crassaformis and G. trun-
catulinoides are deep-dwelling planktic foraminiferal species
that reached high abundances in the Arabian Sea during ex-
treme cold events in the North Atlantic (Reichart et al., 1998;
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Fig. 3. Proxy records from MD04-2881 versus the global benthic isotope stack LR04 (black stippled line) (Lisiecki and Raymo, 2005).
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Ziegler, 2009). Similar to the ice rafted debris layers in the
North Atlantic, peak occurrences of the Globorotalids usu-
ally do not last for more than a few thousand years and their
abundances always return to very low baseline values before
rising again. It has been suggested that their occurrences are
indicative for periods of intensified winter mixing due to ex-
treme cold winter monsoons, resulting in a breakdown of the
OMZ (Reichart et al., 1998). Others argued that evidence for
the required salinity and/or sea surface temperature changes
in such a mechanism are missing and that the winter mix-
ing theory is, therefore, hypothetical (Schulte et al., 1999).
These authors linked a break-down of the OMZ instead to
processes in the global oceanic circulation. The interval from
470 to 570 ka is remarkable, as it is the longest interval in
the record where no G. crassaformis or G. truncatulinoides
specimen occur.
Amongst others, Reichart et al. (1997, 1998) showed that

the MOC content of the Murray Ridge records co-varies with
other upwelling productivity indicators (e.g. Globigerina bul-
loides abundances and Ba/Al). Ba, for instance, has been
successfully applied as proxy for primary productivity (De-
hairs et al., 1980; Gingele et al., 1999; Jacot Des Combes et
al., 1999; Shimmield and Mowbray, 1991). Barite crystals
precipitate in microenvironments within decaying organic
matter (Dehairs et al., 1980). One problem in the interpre-
tation of Ba as productivity indicator lies in the distinction of
biogenic and detrital Ba. Normalization with Al is, there-
fore, commonly used to assess the detrital Ba component
(e.g. Gingele et al., 1999). The relative contribution of de-
trital Ba appears to be small at the Murray Ridge (Schenau
et al., 2001), so that the Ba records we obtained from MD04-
2881 by XRF scanning and discrete sampling will primarily
reflect changes in productivity. Note that we will primarily
use the raw counts for Barium in our discussion, because they
are highly correlated with the Ba/Al ratios derived from the
discrete samples of the last 462 ka (Fig. 3).
Evidently, the Ba record co-varies with the benthic oxygen

isotope record, indicating highest primary productivity con-
ditions during interglacial periods as was previously found
(Shimmield, 1992). This implies that the maximum MOC
contents during glacial periods, at the depth of our studied
core, are most likely related to other processes than increased
productivity conditions only, as has been suggested for other
Arabian SeaMOC records (Clemens and Prell, 2003; Murray
and Prell, 1992; Schmiedl and Leuschner, 2005).
A comparison of sediment cores from different water

depths at the Murray Ridge indicated that relatively shallow
cores fromwithin the modern OMZ contain the highest MOC
contents during interglacial periods and that they vary in-
phase with other productivity proxies, while the deeper sites
(i.e. well below the present-day OMZ) contain the highest
MOC contents during glacial periods (Ziegler, 2009). This
suggests that the oxygen content, of the bottom water at the
core depth, and thereby the extension of the OMZ, is an im-
portant factor in controlling the depth dependent preservation

of organic matter. Primary productivity is a second fac-
tor, which becomes dominant in records that are constantly
within the OMZ. Higher sedimentation rates during glacial
periods would have further facilitated the preservation of or-
ganic carbon (Clemens and Prell, 2003), but this process can-
not explain the differences in MOC content between various
water depths. On this basis, we may conclude that the Br
enrichments during glacial periods in MD04-2881 coincide
with an extreme downward extension of the OMZ. In turn,
the relative low Ba concentrations within the MOC max-
ima during glacial periods could be due to early diagenetic
processes. Arabian Sea sediments that are deposited well
within the modern OMZ are characterised by high Corg/Babio
ratios, because of a lower preservation of Barite upon de-
position through sulfate-reducing conditions (Schenau et al.,
2001).

3.3 Dissolution and dilution processes

Bulk elemental concentrations of Ca and Sr versus the sum
of Al, Si, Ti, Fe and K reflect the input and preservation
of biogenic carbonate versus the relative input of terrestrial
material (Fig. 3). Because of its elevated location, the site
is shielded from the input of turbidities and fan sedimenta-
tion of the Indus. The terrestrial material is, therefore, most
likely eaolian (Reichart et al., 1997). Changes in the Ti/Al
ratio of the sediments from the Murray Ridge have been ap-
plied in former studies as indicators for grain size and, thus,
wind speed, since Titanium is concentrated in heavy min-
erals in the coarser size fraction (Reichart et al., 1997). The
Ti/Al record of MD04-2881 (derived from conventional XRF
measurements on discrete samples, not from XRF scanning)
shows a close relationship with glacial-interglacial variabil-
ity (Fig. 3) as was previously found for the Oman Mar-
gin, with higher Ti/Al values corresponding to an increased
coarse-grained lithogenic flux into the Arabian Sea during
dry glacial periods (Clemens et al., 1996). The total concen-
tration of terrestrial elements in MD04-2881 shows, how-
ever, no clear glacial-interglacial variability. Several inter-
glacial periods are even characterised by increased terrestrial
element concentrations. This suggests that the bulk varia-
tions in terrestrial elements are dominated by the produc-
tion and preservation of biogenic carbonate rather than by
dilution.
Increased Ca and Sr contents and lower contents of ter-

restrial elements characterise the MBDI from 280 to 480 ka,
with the exception of MIS 11 (Fig. 3). Similar to MD04-
2881, this carbonate plateau has been found in other Indian
Ocean cores and was related to long-term eccentricity-driven
cycles in the production of coccolithopores (Rickaby et al.,
2007). Extreme minimum Ca and Sr contents coincide with
MIS 5 and 13. These interglacial periods are characterised by
the lowest sedimentation rates and, hence, point to periods of
severe carbonate dissolution (Fig. 3).
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Calcite dissolution may occur above the lysocline when
the metabolic release of CO2 during organic matter
remineralization leads to carbonate under-saturation in the
pore waters (Adler et al., 2001; Jahnke et al., 1994). This
supralysocline dissolution process typically occurs below the
OMZ in the Arabian Sea, where a high flux of organic ma-
terial is accompanied by oxygen availability (Klöcker et al.,
2007; Schulte and Bard, 2003; Tachikawa et al., 2008). The
water depth of the studied core at around 2400m was appar-
ently strongly influenced by supralysoclinal dissolution dur-
ing interglacial periods, when productivity conditions were
significantly enhanced.
Size normalized weights (SNW) of planktic foraminifera

have been used as an indicator for surface (Barker and El-
derfield, 2002) and bottom water carbonate ion concentra-
tion [CO2−3 ] (Broecker and Clark, 2001; Lohmann, 1995).
The SNW of G. ruber shows a good correlation with the
Ba record, but also with the extensive OMZ intensities dur-
ing the glacial periods (Fig. 3). This suggests that the SNW
records may represent an even better picture of productivity
variations in the Arabian Sea than the Ba record, which could
have been altered during extended OMZ conditions. Anoma-
lous low SNW values are found during MIS 13. Due to the
complete dissolution of foraminifers during MIS 5, no SNW
data could be obtained from this interval.
Furthermore, MIS 5 and 13 are characterised by large

numbers of light green to dark green grains in the sand
size fraction (Fig. 3). Green grains commonly occur at the
edges of oxygen-minimum zones and are composed of au-
thigenic minerals, most commonly Glauconite (Kelly and
Webb, 1999; Mullins et al., 1985). They often form within
granular substrates such as faecal pellets or foraminiferal
chambers. Glauconite forms at or near the sediment surface
and requires low sedimentation rates, so that enough time
is available for biological alteration of detrital clay miner-
als (Worden and Morad, 2003). The process of glauconiza-
tion is often associated with relatively shallow water depths
(<1000m). The core depth of 2347m is, to our knowledge,
one of the deepest water depth where in-situ Glauconite for-
mation has been found yet (see also Wiewiora et al., 2001).

4 Discussion

4.1 Intensity of the Indian-Asian monsoon

The atmospheric methane record from Antarctic ice cores
largely reflects the strength of tropical monsoon with a sec-
ondary input from boreal sources (Loulergue et al., 2008;
Ruddiman and Raymo, 2003). Widespread wetlands, dur-
ing periods of increased summer monsoon precipitation, are
an important source of methane production when organic
material decays under reducing conditions. Therefore, the
atmospheric methane record provides important constraints
for the interpretation of productivity changes and associated

supralysoclinal dissolution intervals in our studied core from
the Arabian Sea in terms of monsoon variability.
Currently, the longest methane record is derived from

EPICADome C, which covers the last 800 000 years (Fig. 4).
Changes in methane concentrations are dominated by the
∼100-kyr glacial rhythm superimposed on the 23-kyr pre-
cession component (Loulergue et al., 2008; Spahni et al.,
2005). The strong imprint of the precession cycle is con-
sistent with the outcome of climate model experiments,
which indicate that tropical monsoons respond primarily
to changes in Northern Hemisphere summer insolation on
orbital timescales (Kutzbach, 1981). The link between
monsoon variations and methane concentrations is sup-
ported by East Asian summer monsoon records from Chi-
nese speleothem records, which show the same precession
phase for maximum summer monsoon intensity (Wang et
al., 2008). Recently, we carried out a transient simulation
with the intermediate complexity model CLIMBER-2 that
included both insolation and ice volume variations (Weber
and Tuenter, 2010; Ziegler, 2009). Indeed, this simula-
tion reveals that the intensity of Indian-Asian summer mon-
soon precipitation responds to both forcing parameters, in
accordance with the Antarctic methane record over the past
650 kyr (Fig. 4). However, the methane record shows much
stronger 100 000 year glacial-interglacial component, which
is probably introduced by methane contribution from boreal
wetlands (Loulergue et al., 2008).
Overall, the variations in Ba and SNW records of MD04-

2881 and, thus, productivity changes in the Arabian Sea and
associated changes in the carbonate ion concentration of the
water, share features with the methane record and model sim-
ulation (Fig. 4). However, a detailed comparison of the two
records shows an almost anti-phase relationship at the pre-
cession scale. A further marked difference, is the anomalous
high productivity peak and carbonate dissolution event asso-
ciated with MIS 13. During this time, methane concentra-
tions are lower than in every other interglacial period of the
last 500 000 years (Fig. 4). Also from a modelling perspec-
tive, the extreme summer monsoon maximum in MIS 13 is
unexpected, because (1) benthic isotope records indicate that
MIS 13 is a relatively cool interglacial (Lisiecki and Raymo,
2005), with remnant ice sheets in the Northern Hemisphere,
and (2) Northern Hemisphere summer insolation maxima are
not particularly strong in this period, although the earth’s
eccentricity was at a maximum around 500 ka (Laskar et
al., 1993).
We note that high productivity conditions in the Arabian

Sea during MIS 13 linked to enhanced summer monsoon
activity would to some extend match with earlier interpre-
tations. The anomalous sapropel (Sa) in the Mediterranean
at 528–525 ka and a synchronous peak in planktic oxygen
isotope records from the equatorial Indian Ocean have been
interpreted as indicators of an unusually heavy monsoon
event over Africa and Asia at the start of MIS 13 (Bassinot
et al., 1994a; Rossignol-Strick et al., 1998). However,
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MIS 13

Figure 4
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Fig. 4. Comparison between the Ba record of MD04-2881 and other paleoclimate-records. (a) Comparison with LR04 benthic isotope
stack (b) Comparison with magnetic susceptibility stack from the Chinese Loess Plateau (Clemens et al., 2008). (c) Atmospheric methane
concentration from EPICA Dome C (Loulergue et al., 2008) compared with modelled Indian monsoon precipitation (CLIMBER-2) (Ziegler,
2009; Weber and Tuenter, 2010).

more recently, the timing of the Sa sapropel was evaluated
by Lourens (2004), showing that it occurs within MIS 14,
∼20 000 years earlier as originally proposed, thus, ques-
tioning the correlation with the isotope excursion in the
equatorial Indian Ocean. In addition to that, the Eastern
Mediterranean planktic oxygen isotope records presented by
Lourens (2004) indicate no extreme freshwater signal in con-
nection with the sapropel Sa.
In the following, we argue, based on the evidence from

the methane record, that MIS 13 was most likely not charac-
terised by an extreme, global summer monsoon event. This
line of reasoning is further substantiated by new results from
the Sanbao Cave speleothems. The extended cave record
shows no anomalous isotope signature during MIS 13, ar-
guing against abnormally high rates of precipitation during
MIS 13 (H. Cheng, personal communication, 2009). We
also note that the equatorial Indian Ocean isotope peak is a
relatively short-lived event which contrasts the Arabian Sea
productivity maximum, which appears to cover the whole
MIS 13. This might indicate that different mechanisms are
responsible for the observed events. As a consequence of our
argumentation here, the equatorial Indian Ocean oxygen iso-
tope excursion in MIS 13 requires a new explanation. Future
research on new, long sedimentary records from the Bay of
Bengal will provide additional information, which is neces-
sary to solve this open question.

4.2 Inferences from the Chinese loess plateau

The Chinese loess plateau (CLP) is considered another im-
portant climate archive for the reconstruction of the Asian
summer and winter monsoon as far back as 22 million years
ago (Ding et al., 1995; Guo et al., 2002; Kukla et al., 1988;
Porter and An, 1995). The winter monsoon transports dust
from the Asian inlands to the CLP, while the summer mon-
soon brings precipitation (Porter and An, 1995). Successive
loess and soil layers are, therefore, interpreted as alternating
periods of strengthened winter (cold and dry) and summer
monsoon (wet and warm), respectively. Recently it has been
suggested that it is actually the breakdown of the Siberian
High during spring that produces windstorms and associated
dust deposition (Roe, 2009). Most proxies that have been
used to unravel the history of the loess sequence (e.g. mag-
netic susceptibility) reflect the degree of chemical weather-
ing and, thus, soil formation (Liu and Ding, 1998). Many
loess records are dominated by glacial-interglacial variability
superimposed by millennial scale events, which correlate to
Heinrich events (Ding et al., 1995; Liu and Ding, 1998;
Porter and An, 1995).
The Ba and, to a lesser degree, SNW records of MD04-

2881 show a high similarity with a magnetic susceptibility
stack from the CLP (Clemens et al., 2008). In contrast to
the Antarctic methane record and model simulation, the ex-
ceptional high productivity conditions reached during MIS
13 coincided with an exceptional thick soil horizon S5 in
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some loess records of the central CLP (Guo et al., 2000;
Sun et al., 2006b), and with an extreme event in a mon-
soon record from the Tibetan plateau (Chen et al., 1999).
There are, however, noticeable regional differences in the ex-
pression of the S5 soil horizon (Sun et al., 2006a). While
records from the central CLP expose a thick well-developed
soil horizon, the S5 is hardly detected in the northwestern
area. It was suggested that maximum intensities of summer
monsoon precipitation did not reach this region until MIS 11
(Sun et al., 2006a). The latter observation is in much better
agreement with the Antarctic methane record, which shows
that methane concentrations were significantly lower during
MIS 13 than during the interglacial periods after the Mid-
Brunhes event, MBE, at ∼430 ka (Loulergue et al., 2008;
Spahni et al., 2005).
Another major difference between the loess records of

the central and northwestern site of the CLP is that in the
central region soil occurrences are determined by glacial-
interglacial variability, while they exhibit a strong preces-
sion imprint in the northwest (Sun et al., 2006a). The
latter observation is not only in good agreement with the
Antarctic methane record, but also with the Indian-Asian
summer monsoon reconstructions derived from the Chinese
speleothem oxygen isotope records of the Sanbao and Hulu
caves, which indicate primarily 23-kyr precession cycles
over the last 225 000 years (Wang et al., 2008). Similar to
the loess records, the speleothem-derived monsoon record is
overprinted by rapid events, which occur synchronously with
climate variations in the North Atlantic region (Wang et al.,
2005b; Wang et al., 2001).

4.3 Cause of the extensive productivity conditions
during MIS13

Comparison of the Chinese loess records with temperature
records from Antarctica have led to the suggestion that the
climates of both hemispheres are unusually asymmetric dur-
ing MIS 13 (Guo et al., 2009). Accordingly, Northern Hemi-
sphere mean annual temperatures, evidenced by extreme soil
formation in the Loess Plateau record, weakest Asian winter
monsoon and lowest Asian dust and iron fluxes, were much
warmer than at the Southern Hemisphere, because the global
oxygen isotope record is characterised by relatively positive
values (Guo et al., 2009). Moreover, the Deuterium (δD)
record of the EPICA Dome C ice core showed relatively cold
interglacial temperatures during MIS 13, indicating that at
least Antarctic temperatures were cold with respect to the
successive interglacial periods (Jouzel et al., 2007). On the
other hand, data from a glaciomarine sedimentary sequence
from the West Antarctic continental margin suggest that the
interval spanning MIS 15–13 was one single, prolonged in-
terglacial period, which potentially experienced a collapse of
the West Antarctic Ice sheet (Hillenbrand et al., 2009).
Warm Northern Hemisphere annual temperatures are con-

sistent with the continuous forestation and inferred reduced

mountain glaciations in central Eurasia throughout MIS 15
to 11 (Prokopenko et al., 2002). Tree growth is particu-
larly sensitive to wintertime climate. Therefore, this period
was probably characterised by mild winters, with relatively
little snow cover. Such mild winter conditions would ex-
plain the absence of G. crassaformis or G. truncatulinoides
in our Arabian Sea record in this interval. In addition, the
higher winter temperatures may explain the thick soil hori-
zon S5 in the central CLP. First it may facilitate pedogene-
sis through enhanced chemical weathering, and secondly a
less intense winter monsoon may lead to a reduction of dust
flux to the loess sites. As an alternative explanation from a
modelling study, it was suggested that a precipitation maxi-
mum during MIS 13 could have occurred because of a rein-
forcement of the summer monsoon by an intermediate sized
Eurasian ice-sheet (Yin et al., 2008). Such a scenario, how-
ever, does not explain the regional differences between the
loess records and absence of a distinct monsoon event in the
EPICA methane record during MIS 13. We, therefore, sug-
gest that the anomalous climate patterns observed worldwide
during MIS 13 are not primarily linked to changes in the in-
tensity of the monsoon, but reflect an important turnover in
the Atlantic circulation.
During the interim state of the MPT, the formation of

North Atlantic deep water (NADW) was decreased and deep
waters were influenced by a large Southern Hemisphere
component (Raymo et al., 1997; Schmieder et al., 2000).
Around TVI, a series of events occurred in the South At-
lantic, which point to a significant increase in NADW forma-
tion during that time (Gingele and Schmieder, 2001; Romero
and Schmieder, 2006; Schmieder et al., 2000): (1) A very
high production of NADW has been inferred from glob-
ally distributed benthic carbon isotope records (Raymo et
al., 1997). (2) During MIS 13 an extreme δ13Cmax occurs,
which has been interpreted as a major reorganization in the
carbon reservoir of the global ocean (Wang et al., 2001).
(3) A certain group of benthic foraminifera became extinct
(Gupta et al., 2006; Kawagata et al., 2006). (4) An increased
poleward heat transport in the Atlantic Ocean has been evi-
denced by pollen records offshore Greenland (de Vernal and
Hillaire-Marcel, 2008). These records suggest that the size
of the Greenland ice-sheet was much more reduced than to-
day, even though the benthic isotope record indicates a larger
global ice volume during MIS 13.
A modelling study showed that increased NADW forma-

tion affects primary productivity and OMZ intensity in the
Arabian Sea through increased nutrient availability on mil-
lennial time scales (Schmittner et al., 2007). In a separate
study, we argued that the orbitally-induced primary produc-
tivity changes in the Arabian Sea are also very sensitive to the
global ocean circulation rather than only summer monsoon
intensity, therefore, causing a much longer precession phase-
lag (Ziegler, 2009). Similarly, we propose that the productiv-
ity peak and associated anomalous dissolution event during
MIS 13 relates to increased Atlantic overturning circulation
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around TVI. At the same time, increased heat transport to
high northern latitudes might have caused the exceptionally
mild winter conditions in Eurasia. Denton et al. (2005) sug-
gested that the winter climate was much more sensitive to
past changes in Atlantic meridional overturning, due to sea-
ice related feedback mechanisms. Accordingly, intensified
AMO may have resulted in mild winter conditions, facilitat-
ing soil formation on the central CLP. This implies that both
Arabian Sea productivity and CLP soil formation was effec-
tively decoupled from Asian summer monsoon intensity dur-
ing MIS 13.

5 Conclusions

A high-resolution multi-proxy record from the north-eastern
Arabian Sea of the past 750 ka reveals productivity changes,
which oscillate primarily in concert with the ∼100 kyr
glacial-interglacial rhythm. Highest productivity peaks are
associated with interglacial periods. In contrast, the base of
the OMZ deepens during glacial periods, suggesting that in-
termediate water ventilation played an important role. Termi-
nation TVI differs from the other major late Pleistocene ter-
minations (TI−V and TVII) by the absence of a strong winter
monsoon-related event in the Arabian Sea. During MIS 13,
primary productivity conditions were anomalously high and
led to extreme carbonate dissolution and glauconitization in
the deep-sea sediments. An intensive Atlantic overturning
circulation during this time may have triggered mild win-
ter conditions found in large parts of the Northern Hemi-
sphere and, thereby, weakened the Asian winter monsoon.
In turn, enhanced NADW production during TVI may have
increased the supply of nutrients to the Arabian Sea, thereby,
setting the stage for the anomalously high productivity con-
ditions and the carbonate dissolution event during MIS 13.
The presented interpretation constitutes an alternative view
on MIS 13, which has been linked to an extreme boreal sum-
mer monsoon event in earlier studies. Future research, espe-
cially on long sedimentary records from the Bay of Bengal
will potentially provide crucial information, which is neces-
sary to finally answer the isotope stage 13 monsoon question.
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Tjallingii, R., Röhl, U., Kolling, M., and Bickert, T.: Influence of
the water content on X-ray fluorescence core-scanning measure-
ments in soft marine sediments, Geochem. Geophy. Geosy., 8,
Q02004, doi:10.1029/2006GC001393, 2007.

Wang, P., Clemens, S. C., Beaufort, L., Braconnot, P., Ganssen, G.,
Jian, Z., Kershaw, P., and Sarnthein, M.: Evolution and variabil-
ity of the Asian monsoon system: State of the art and outstanding
issues, Quaternary Sci. Rev., 24(5–6), 595–629, 2005.

www.clim-past.net/6/63/2010/ Clim. Past, 6, 63–76, 2010



76 M. Ziegler et al.: High Arabian Sea productivity conditions during MIS 13

Wang, P., Tian, J., Cheng, X., Liu, X., and Xu, J.: Carbon reservoir
changes preceded major ice-sheet expansion at the mid-Brunhes
event, Geology, 31(3), 239–242, 2003.

Wang, Y. J., Cheng, H., Edwards, R. L., He, Y., Kong, X., An, Z.,
Wu, J., Kelly, M. J., Dykoski, C. A., and Li, X.: The Holocene
Asian Monsoon: Links to Solar Changes and North Atlantic Cli-
mate, Science, 308(5723), 854–857, 2005.

Wang, Y. J., Cheng, H., Edwards, R. L., Kong, X., Xiaohua,
S., Chen, S., Wu, J., Jiang, X., Wang, X., and Zhisheng, A.:
Millenial- and orbital-scale changes in the East Asian monsoon
over the past 224000 years, Nature, 28, 1090–1093, 2008.

Wang, Y. J., Cheng, H., Edwards, R. L., An, Z. S., Wu, J. Y., Shen,
C. C., and Dorale, J. A.: A high-resolution absolute-dated Late
Pleistocene monsoon record from Hulu Cave, China, Science,
294(5550), 2345–2348, 2001.

Weber, S. L. and Tuenter, E.: The impact of varying ice sheets and
greenhouse gases on the intensity and timing of boreal summer
monsoons, Quaternary Sci. Rev., in review, 2010.

Wiewiora, A., Giresse, P., Petit, S., and Wilamowski, A.: A
deep-water glauconitization process on the ivory coast-Ghana
marginal ridge (ODP Site 959): Determination of Fe3+-rich
Montmorillonite in Green Grains, Clay. Clay Miner., 49, 540–
558, 2001

Worden, R. H. andMorad, S.: Clay minerals in sandstones: controls
on formation, distribution and evolution. Clay-mineral cements
in sandstones, Blackwell Publishing, Oxford, 3–41, 2003.

Qiuzhen Yin, Berger, A., Driesschaert, E., Goosse, H., Loutre, M.
F., and Crucifix, M.: The Eurasian ice sheet reinforces the East
Asian summer monsoon during the interglacial 500 000 years
ago, Clim. Past, 4, 79–90, 2008,
http://www.clim-past.net/4/79/2008/.

Yin, Q. Z. and Guo, Z. T.: Strong summer monsoon during the cool
MIS-13, Clim. Past, 4, 29–34, 2008,
http://www.clim-past.net/4/29/2008/.

Zahn, R. and Pedersen, T. F.: Late Pleistocene evolution of surface
and mid-depth hydrography at the Oman Margin: planktonic and
benthic isotope records at Site 724, Proc. Oc Drill., Sci. Res.,
117, 291–308, 1991.

Ziegler, M.: Orbital forcing of the late Pleistocene boreal summer
monsoon: Links to North Atlantic cold events and the El Niño –
Southern Oscillation, Geologica Ultraiectina, 313, 141 pp., 2009.

Ziegler, M., Jilbert, T., de Lange, G. J., Lourens, L. J., and Reichart,
G.-J.: Bromine counts from XRF scanning as an estimate of
the marine organic carbon content of sediment cores, Geochem.
Geophy. Geosy., 9, Q05009, doi:10.1029/2007GC001932, 2008.

Clim. Past, 6, 63–76, 2010 www.clim-past.net/6/63/2010/

http://www.clim-past.net/4/79/2008/
http://www.clim-past.net/4/29/2008/

