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ABSTRACT We compared lifetime and population energy budgets of the extraordinary long-lived ocean quahog Arctica

islandica from 6 different sites—the Norwegian coast, Kattegat, Kiel Bay, White Sea, German Bight, and off northeast

Iceland—covering a temperature and salinity gradient of 4–10�C (annualmean) and 25–34, respectively. Based on vonBertalanffy

growth models and size–mass relationships, we computed organic matter production of body (PSB) and of shell (PSS), whereas

gonad production (PG) was estimated from the seasonal cycle in mass. Respiration (R) was computed by a model driven by body

mass, temperature, and site.A. islandica populations differed distinctly inmaximum life span (40 y inKiel Bay to 197 y in Iceland),

but less in growth performance (f# ranged from 2.41 in theWhite Sea to 2.65 in Kattegat). Individual lifetime energy throughput,

as approximated by assimilation, was highest in Iceland (43,730 kJ) and lowest in the White Sea (313 kJ). Net growth efficiency

ranged between 0.251 and 0.348, whereas lifetime energy investment distinctly shifted from somatic to gonad production with

increasing life span;PS/PG decreased from 0.362 (Kiel Bay, 40 y) to 0.031 (Iceland, 197 y). Population annual energy budgets were

derived from individual budgets and estimates of population mortality rate (0.035/y in Iceland to 0.173/y in Kiel Bay).

Relationships between budget ratios were similar on the population level, albeit with more emphasis on somatic production; PS/

PG ranged from 0.196 (Iceland) to 2.728 (White Sea), andP/B ranged from 0.203–0.285/y. Life span is the principal determinant of

the relationship between budget parameters, whereas temperature affects net growth efficiency only. In theWhite Sea population,

both growth performance and net growth efficiency ofA. islandicawere lowest. We presume that low temperature combined with

low salinity represent a particularly stressful environment for this species.
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INTRODUCTION

The ocean quahog Arctica islandica is widely distributed on
the continental shelves on both sides of the North Atlantic
Ocean (Nicol 1951, Thompson et al. 1980a, Thompson et al.

1980b, Brey et al. 1990, Dahlgren et al. 2000). A. islandica is
a long-lived bivalve species with a maximum age ranging from
40 y in the Baltic Sea (Zettler et al. 2001, Begum et al. 2009) to
;400 y off Iceland (Schöne et al. 2005b; see also Thompson

et al. 1980b). A. islandica is a suitable archive of past environ-
mental conditions that can be reconstructed from morpholog-
ical and biogeochemical properties of the shell (e.g., Epple et al.

2006, Schöne et al. 2005b). Its wide geographical range of
occurrence combined with its longevity makes A. islandica a
prime candidate for monitoring and modeling long-term envi-

ronmental and ecological dynamics (Harding et al. 2008). To
understand better the ecological role of A. islandica in its
environment and to be able to link the dynamics of A. islandica

populations to environmental drivers, we need reliable models
of energy metabolism at both the individual and population
levels. Basic parameters of such models would be respiration,
somatic growth, reproduction, and mortality. An extensive

body of data on this species has already been published: Growth
and/or production were investigated by Thompson et al. (1980a,
1980b) and Kennish et al. (1994), whereas Rowell et al. (1990)

and Thorarinsdóttir (2000) provide information on maturation
and reproduction. Particular aspects ofA. islandica ecology (e.g.,
Appeldoorn 1983, Brey et al. 1990) and physiology (e.g., Taylor

& Brand 1975) have been described, but a systematic approach
toward individual and population energetics is still lacking.

Begum et al. (2009) made a first step by establishing a respiration
model for A. islandica.

In the current study, our objectives were (1) to establish
energy budget models for A. islandica populations from 6

different sites and (2) to evaluate the effects of temperature
and salinity on the A. islandica energy budget.

MATERIALS AND METHODS

Sampling Sites

Ocean quahogs, Arctica islandica were collected in 2005 and
2006 from 6 sites: the Norwegian coast, Kattegat, Kiel Bay
(Baltic Sea),White Sea, German Bight (North Sea), and Iceland
(off northeast Iceland; Fig. 1 and Table 1). With the exception

of Iceland, all animals were transported alive to the Alfred
Wegener Institute for Polar and Marine Research (Bremer-
haven, Germany), where they were maintained in aquaria with

natural sediment at their respective annual mean habitat tem-
peratures until further use in physiological experiments (for
details see Begum et al. (2009)). Iceland animals were sacrificed

after 7 days of acclimation at the Sandgerdi Marine Station
(Iceland).

Morphometry

We measured shell height (H; greatest distance from umbo

to ventral shell margin) to the nearest 0.1 mm and determined*Corresponding author: E-mail: Thomas.Brey@awi.de
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shell dry mass (SDM; 48 h drying at 60�C), tissue wet mass (soft
tissue drained on paper), and tissue dry mass (48 h at 60�C) with
0.01-g precision. Tissue ash-free dry mass (AFDM¼DM– ash)

was calculated from tissue ash content (24 h incineration at
500�C (Brey & Hain 1992)), and shell ash free dry mass
(SAFDM) was determined accordingly after incineration for

36 h at 480�C (Shumway & Newell 1984, Goulletquer &
Wolowicz 1989). Shell ash after incineration was assumed to
represent shell carbonate.

Mass was related to shell height by allometric equations of

the type

M ¼ a3Hb

(measured in milligrams and millimeters), which were estab-

lished by linear regression of ln(M) on ln(H). We used analysis
of covariance (ANCOVA, ln(mass) versus ln(shell height) and
site) to determine whether specific relationships differed be-
tween sites, and established site-specific models when necessary.

Growth

Left shell valves were used to determine the individual age

following the protocol of Begum et al. (2009). A von Bertalanffy
growth function model was fitted to the resulting size-at-age

data pairs by means of the nonlinear iterative Newton algo-
rithm (Brey 2001)

Ht ¼ H‘ 3 ð1� e�kðt�toÞÞ
(measured in millimeters and years) where HN is asymptotic
shell height, k is the Brody growth coefficient, t is age, and t0 is
the theoretical age at which height equals 0. We tested the

residuals of the common growth model (data from all sites) for
between-site differences in growth by means of analysis of
variance (ANOVA) and established site-specific models when

necessary. Size at ageHt could be converted into mass at ageMt

by means of the size–mass relationships just described. The
growth performance index f#was calculated according to Pauly
and Munro (1984):

j9¼ logðkÞ + 23 logðH‘Þ

Individual Somatic Production

AFDM and SAFDMwere converted into energy content by

the factor 20.45 J/mg AFDM (Brey 2001). Individual somatic
body production (PSB) and somatic shell production (PSS) were
calculated from the increment in mass with age (measured in

Joules per time interval:

PSB;t ¼ MSB;t �MSB;t�x

where PSB is somatic body production, MSB,t and MSB,t –x are

body mass at age t and t – x, and x is the increment in age
(calculations for PSS accordingly).

Individual Calcium Carbonate Production

Individual calcium carbonate production (PCC) was calcu-
lated the same way:

PCC;t ¼ MCC;t �MCC;t�x

(measured in grams per time interval), where PCC is calcium
carbonate production, MCC,t and MCC,t –x are calcium carbon-

ate mass at age t and t – x, and x is the increment in age.

Individual Gonad Production

Individual gonad production was inferred from the differ-

ence between pre- and postspawning body mass in A. islandica.
Personal observations (K.B.) and unpublished data of G.

TABLE 1.

Geographical location, water depth, and mean annual habitat temperature of sampling sites, and number of animals used to

establish basic models.

Site Location Salinity (&) Depth (m) Temperature (�C)

Sample Size (N)

BM SDM Size at Age Respiration

Kattegat 56�10#N 11�48#E 31 33 8 45 44 130 45

White Sea 66�18#N 33�38#E 25 10 4 39 52 54 22

Kiel Bight 54�32#N 10�42#E 25 25 10 51 273 170 51

Iceland 66�02.6#N 14�48.8�W 35 14–22 5 96 239 229 96

Norwegian coast 69�39#N 18�57#E 33 10–30 4 58 68 153 57

German Bight 54�09#N 07�47#E 31 40 10 18 267 139 18

BM, body mass; SDM, shell dry mass.

Figure 1. Sample locations of A. islandica. GB, German Bight; IL,

Iceland; KB, Kiel Bay; KG, Kattegat; NW, Norwegian coast; WS, White

Sea. Map redrawn from www.aquarius.geomar.de.
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Thorarinsdóttir (northwest Iceland) indicate a ±30% decrease
in body mass during spawning:

PG;t ¼ MSB;t 3 0:3

(measured in Joules per year), which is in the range of values
reported for other bivalves (e.g., Patinopecten yessoensis, 0.27
(Fuji & Hashizume 1974); Tellina tenuis, 0.39 (Trevallion

1971)). Ropes et al. (1984) and Rowell et al. (1990) indicate
that in A. islandica, minimum age at maturity is 6 y, whereas at
age 22 y all animals are mature. In the Iceland population, the

corresponding ages are 9 y and 32 y, respectively (Thorarinsdóttir
2000). We incorporated this pattern into the individual gonad
production calculation by assuming a linear increase in pro-
duction from 0 at minimum age to 100% (equal to one third the

body mass) at age at full maturity.

Individual Respiration

Respiration (R) was computed by a model driven by body
mass (M; AFDM) temperature (T) and site (derived from the
respiration model published by Begum et al. 2009):

InðRÞ ¼ 14:701 + 0:5523 InðMÞ � 3748:232=T

+ D3 ½InðMÞ � 0:418�
with N ¼ 193 and R2 ¼ 0.894 (measured in micromolecules of
oxygen per hour, grams AFDM, and degrees Kelvin), where

D¼ –0.211 for the White Sea andD¼ +0.211 for all other sites.
Note that ln(body mass) is centered to mean ¼ 0 in the
interaction term. Respiration was converted from mmol O2h

–1

to J d–1 by multiplying by 11.2320 (see Brey 2001).

Population Mortality Rate

Because our limited samples did not provide reliable in-

formation on population size or age structure, we inferred
mortality rate from maximum age, assuming that mortality
follows the single negative model, as is common in most bivalve

populations (e.g., Brey 1999):

Nt ¼ N0 3 e�Z3 t

whereN0 is the number of animals in an age class at recruitment,
Nt is the number at age t, and Z is the instantaneous rate of

mortality. If we setN0¼ 1 andNtmax¼X at tmax¼ age of oldest
animal, than mortality rate amounts to

Z ¼ �lnð1=XÞ=tmax
(measured in rate per year).

Kilada et al. (2007) computed mortality rates from age

frequency data ofA. islandica at 2 different sites at the Canadian
coast: St. Mary’s Bay (Z ¼ 0.10/y) and Sable Island (0.03/y).
Using their maximum age at both sites, 72 y and 210 y,

respectively, we find that the reported mortality rates are
approximated quite accurately with X ¼ 0.001 (Z ¼ 0.033/y
and 0.096/y, respectively). We applied this approach to our
populations using tmax ¼ average age of the 3 oldest animals

found.

Individual Lifetime Energy Budget Model

We computed the individual lifetime energy budget for A.
islandica at each site by combining the corresponding relation-

ships and models for growth, production, and respiration into
a numerical integration scheme. All calculations, except for
gonad production, were carried out incrementally with step size

x¼maximum age tmax/1,000. Thus, actual as well as cumulative
values of production (PSB, PSS, PG) and respiration (R) could be
computed for any age and age interval.

We computed the corresponding assimilation A by

A ¼ PT + R

(measured in Joules per individual per time interval) wherePT¼
PSB + PSS + PG, and estimated consumption C by

C ¼ A=0:4

(measured in Joules per individual per time interval), using an
average assimilation efficiency of 0.4 for suspension-feeding
bivalves (Bayne & Newell 1983, Crisp 1984, Shumway 1991).

Gross production efficiency (Ivlev’s K1 (Ivlev 1961)) and net
production efficiency (Ivlev’s K2) were calculated by

K1 ¼ PT=C and K2 ¼ PT=A:

Population Energy Budget Model

The population annual energy budget is based on the same
data as the individual lifetime budget, but with mortality rate
included (i.e., the ‘‘number’’ of animals in the individual model

decreases exponentially with age from 1 to 0.001 according to
mortality rate Z). If we assume the population to be in steady
state, than individual lifetime production equals population

annual production (see Allen (1971), for example). Because we
do not know the true abundance of A. islandica at the different
sites, we only computed ratios between budget parameters
(growth efficiencies) and population biomass.

Statistical Analysis

Effects of habitat temperature, maximum age, and growth

performance on energy budget parameters and ratios were

TABLE 2.

Site-specific morphometric relationships of the type
ln(mass)$ a + b 3 ln(height) in A. islandica.

Model Site a b N R2

BM vs. size Kattegat –5.481 3.217 45 0.864

Norwegian coast

and German Bight

–5.290 3.228 76 0.987

White Sea and Kiel

Bay

–6.012 3.330 90 0.976

Iceland –4.123 3.091 96 0.988

SDM vs. size Kattegat and White

Sea

–1.464 2.819 96 0.987

Norwegian coast

and German Bight

–2.347 3.144 335 0.949

Kiel Bay 0.157 2.580 273 0.994

Iceland –2.780 3.121 239 0.995

Common models were fitted for sites that did not differ significantly (as

indicated by ANCOVA of ln(M) versus ln(H) and site). BM, body mass

(measured in milligrams ash-free dry mass); SDM, shell dry mass

(measured in milligrams dry mass).
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analyzed by nonparametric correlation (Spearman’s r) and by

multiple linear regressions.We used ANOVA andANCOVA to
explore the relationships between individual and annual budget
ratios.

RESULTS

Morphometry

The initial full factorial ANCOVA model of body and shell
mass ln(AFDM) and ln(SDM) versus ln(shell height) and site
indicated all sites differ significantly with the exceptions of the

Norwegian coast and German Bight, and White Sea and Kiel
Bay in AFDM, and Norwegian coast and the German Bight
and theWhite Sea and Kattegat in SDM, respectively (Table 2).

Growth and Mortality

We found growth to differ significantly between all sites
except between the Norwegian coast and the German Bight and

between Iceland and Kiel Bay (Fig. 2 and Table 3). Growth
performance (index f#) ranged between 2.41 in the White Sea
and 2.65 in Kattegat, and was found to be independent of

annual mean habitat temperature and salinity (Spearman’s
rank correlation, P > 0.050). Maximum age tmax in our samples
ranged from 40 y in Kiel Bay to 197 y in Iceland, and our

estimate of mortality rate varied accordingly between 0.035/y
(Iceland) and 0.173/y (Kiel Bay, Table 5).

Energy Budgets

Individual somatic production PS increases steadily until
a maximum is reached, and decreases again thereafter, whereas

gonad production PG, respirationR, and assimilationA continue
to increase over the lifetime, albeit at diminishing rates (Fig. 3).
The cumulative values (Table 4) indicate differences in the

individual lifetime budget between sites. Lifetime energy through-
put, as approximated by assimilation, is lowest at the White Sea
(313 kJ) and highest at Iceland (43,730 kJ). The fraction of energy

allocated to somatic production PS is lowest in the long-lived
Iceland animals (0.011) and increases with decreasing life span to
0.069 in Kiel Bay. The share of gonad production PG in
assimilation shows just the opposite trend, but is generally higher

(0.191–0.337). Accordingly, the PS-to-PG ratio decreases dis-
tinctly with increasing life span. Lifetime net growth efficiency is
rather similar at all sites; it ranges between 0.251 (White Sea) and

0.348 (Iceland), whereas the respiration-to-assimilation ratio
shows a corresponding inverse pattern. Lifetime shell carbonate
deposition is between 5 g (White Sea) and 107 g (Iceland).

At the population level (i.e., accounting for the effect of
mortality), the ranking of sites according to production and net
growth efficiency remains about the same, but the balance

between somatic production, gonad production, and respira-
tion shifts (Table 5). In the annual population budget, the share
of somatic production in assimilation increases to values
between 0.054 (Iceland) and 0.167 (White Sea). The share of

gonad production decreases accordingly, to values between
0.061 (White Sea) and 0.277 (Iceland). Matched-pair tests
indicate that PS/A is significantly higher (average 0.104 com-

pared with 0.034, P < 0.001) and PG/A is significantly lower
(0.184 comparedwith 0.263,P < 0.001) in the population budget
compared with the individual budget. Population production-

to-biomass ratio is estimated between 0.203 (German Bight)
and 0.285 (Kiel Bay).

Spearman’s rank correlation indicates significant (a ¼ 0.10)
effects of maximum age tmax on the budget parameter ratios R/

A, PT/A, PS/A, PG/A, and PS/PG on both the individual and the
population levels, whereas temperature and growth perfor-
mance had no significant effects. When age effects are

accounted for (2-way analysis) and the outlier White Sea is
excluded, however, net growth efficiency PT/A decreases andR/
A increases significantly (P < 0.05) with temperature in both

lifetime and population budget (Fig. 4, Tables 4 and 5).

Figure 2. von Bertalanffy growth curves and corresponding size-at-age

data in A. islandica from the 6 sites. ANOVA of the residuals of the

common growth model indicated a significant difference between sites

except for the Norwegian coast and the German Bight, and for Iceland and

Kiel Bay. 4, White Sea; e, Kiel Bay; s, Kattegat; d, Norwegian coast;

h, German Bight; 3 , Iceland.

TABLE 3.

von Bertalanffy growth parameters and corresponding growth performance index (f#) of A. islandica.

Site Age tmax (y) HN (mm) K (/y) t0 (y) N R2 f#

Kattegat 58 89.544 0.055 –0.254 130 0.530 2.65

Norwegian coast

and German Bight

90 and 125 79.837 0.066 –3.858 292 0.870 2.62

Iceland and Kiel Bay 197 and 40 86.150 0.045 –2.556 399 0.900 2.53

White Sea 44 35.637 0.200 0.234 54 0.410 2.41

ANOVA of the residuals of the common growth models indicate that all sites differ significantly except for the Norwegian coast and the German

Bight, and Iceland and Kiel Bay. HN, asymptotic height; K, Brody growth coefficient; N, number of data; t0, age at which height would equal 0.
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DISCUSSION

Methodology

Our energy budget model of A. islandica comprises ap-

proaches with different levels of reliability. The determination
of individual age from shell growth bands is a proven standard
procedure in A. islandica (Thompson et al. 1980a, Turekian
et al. 1982, Schöne et al. 2005a). Modeling of individual growth

and computation of somatic production use established stan-
dard routines in population dynamics (Brey 2001). Individual
respiration is estimated from a tested multifactorial model

(Begum et al. 2009). Our estimates of gonad production and
of consumption, however, may be less reliable. Gonad pro-

duction is of particular concern, because there are several
sources of potential bias. We inferred PG from the annual cycle
in total soft bodymass, which indicates a spawning-related 30%
loss in body mass (own observations, Kiel Bay; G. Thorar-

insdóttir, unpublished, northwest Iceland). It remains unknown
whether this ratio is valid for all populations and throughout
lifetime beyond maturity. Estimates of (somatic) body mass are

reliable, because they are based on animals collected in pre-
sumably spent condition (February and October). Our defini-
tion of size at maturity suffers from similar shortcomings. We

use an average value with uncertain validity for all populations.
This is of less concern, however, because gonad production is
comparatively low in small clams. To estimate consumption, we
use an average assimilation efficiency of 0.4. Measured values

for filter-feeding bivalves range between 0.25 and 0.70 (Hibbert
1977, Warwick et al. 1979, Bayne & Newell 1983). In other
words, we can expect that the ‘‘true’’ assimilation efficiency of

A. islandica is (1) anywhere within this range and (2) not
necessarily the same at all 6 sites, because it might be affected
by differing food composition (MacDonald & Thompson

1985a, MacDonald & Thompson 1985b, MacDonald &
Thompson 1986, Vakily 1992). Our approach toward mortality
rate requires that the single negativemodel describe the decrease

in numbers with time appropriately, which may not hold true
for all populations (see Brey et al. (1990), for example).

Growth and Longevity of A. islandica

A. islandica is the longest lived mollusc species known to
science, with a reported maximum age close to 400 y (Schöne
et al. 2005b). Phases of metabolic rate depression combined

with extraordinarily high antioxidant capacities may be one key
factor for this extended life span (Taylor & Brand 1975, Abele
et al. 2008). Our study indicates distinct differences in life span

between populations (Table 2). We can confirm the extraordi-
nary high ages attained in populations around Iceland, where
animals close to 200 y old are regularly encountered (Schöne
et al. 2004, Schöne et al. 2005a, Strahl et al. 2007). In the southern

North Sea, maximum age appears to be about 150 y (Witbaard
et al. 1994, Witbaard et al. 1999, Epple et al. 2006), and our
value of 125 y for the German Bight fits well in this picture. No

information on age of A. islandica form the Norwegian coast or
Kattegat has been available so far, but our estimate for the

TABLE 4.

A. islandica individual lifetime energy budget parameters.

Site

Life Span

(y) PS (kJ) PG (kJ) PT (kJ) R (kJ) A (kJ) PCC (g) PS/A PG/A PT/A R/A

Kattegat 58 224 1,251 1,475 3,626 5,101 61 0.044 0.245 0.289 0.711

Norwegian coast 90 255 2,552 2,807 5,917 8,724 85 0.029 0.292 0.322 0.678

German Bight 125 257 4,087 4,344 12,139 16,483 86 0.016 0.248 0.264 0.736

White Sea 44 14 64 79 234 313 5 0.045 0.206 0.251 0.749

Kiel Bay 40 126 347 472 1,341 1,814 37 0.069 0.191 0.261 0.739

Iceland 197 462 14,754 15,215 28,514 43,730 108 0.011 0.337 0.348 0.652

A, assimilation (A¼ PS + PG + R); PCC, calcium carbonate production; PG, gonad production; PS, somatic production; PT, total production (PT ¼
PS + PG); R, respiration.

Figure 3. Actual individual somatic production PS (body + shell), gonad

production PG, respiration R, and assimilation A (A$ PS + PG + R) as

a function of age in A. islandica from 6 different sites (measured in

kilojoules per year). Please note that all values are adjusted to a time

interval of 1 y. GB, German Bight; IL, Iceland; KB, Kiel Bay; KG,

Kattegat; NW, Norwegian coast; WS, White Sea.

GROWTH AND ENERGY BUDGET MODELS OF ARCTICA ISLANDICA 111



Kattegat population (58 y) already points toward a decrease in
longevity with decreasing salinity. This becomes clearly evident

at the low-salinity sites of theWhite Sea andKiel Bay, where life
span is less than 50 y (compare also Brey et al. (1990) and Zettler
et al. (2001)). Low salinity can act as a stress factor for marine
bivalves that increases the energetic ‘‘costs’’ for physiological

functioning under conditions close to the tolerance limits and
thus limits maximum attainable age and size (Davis & Calabrese
1964, Shurova 2001, Sukhotin et al. 2007), depending on how

well a species is adapted to low and/or fluctuating salinity regimes
(e.g., Gilbert 1973).

When comparing the overall size–growth pattern between
sites, the most striking observation is the distinctly different
growth pattern inWhite Sea animals (Fig. 2). The early phase of
rapid growth takes about 10 y only, and subsequently growth

levels out at comparatively small size (HN ¼ 35.6 mm). We
presume that low temperature combined with low salinity
represent a particularly stressful environment for A. islandica,

as observed in other marine bivalve species (e.g., Davis &
Calabrese 1964, Saxby 2002, Arun 2009). The growth curves for
Kattegat, the German Bight, and the Norwegian coast, and

Iceland and Kiel Bay, albeit significantly different (Fig. 2), are
similarly shaped. During the first 25 y of life the animals attain
more than two thirds of infinite height, whereas growth slows
down rapidly during the remaining lifetime (Fig. 2). We are

uncertain, however, how to interpret the significant differences
in growth between these site groups, because the unequal
distribution of size-at-age data may have introduced some

undetectable bias (Fig. 2). Nevertheless, quite the same growth
pattern has been observed in other populations of A. islandica
(see, for example, Thompson et al. (1980a), Thompson et al

(1980b), Lewis et al. (2001), Thorarinsdóttir and Jacobson
(2005), and Kilada et al. (2007)). Accordingly, our growth
model parameters (except for the White Sea) fall well into the

range of published values: k ¼ 0.022–0.060/y and HN ¼ 80.00–
101.23 mm. So far, we cannot identify the likely temperature
effect on growth rate; a geographically more extensive data set
might be required here (described later).

The current growth rate measurements confirmed our pre-
vious observation (Strahl et al. 2007) that, compared with other
bivalve species, growth rate of A. islandica is very low. The

growth constant of k less than 0.06/y (Fig. 5) is among the
lowest values observed in bivalves (Vakily 1992). Growth
performance, on the other hand, is about average for bivalves.

The average f# of 2.5 (n ¼ 12, all published growth models) for
A. islandica does not differ significantly from the average f# of
157 bivalve populations (Fig. 5, ANOVA, P ¼ 0.060, un-
published data collection).

Characteristics and Constraints of the A. islandica Energy Budget

OurA. islandica energy budget model combines the standard

features of bivalve biology—in other words, asymptotic in-
dividual growth, gonad production directly proportional to

TABLE 5.

A. islandica population annual energy budget ratios from 6 different geographical sites.

Site

Life Span

(y) Z(/y) PS/A PG/A PT/A R/A PT/C PT/BT

Kattegat 58 0.119 0.132 0.146 0.277 0.723 0.111 0.251

Norwegian coast 90 0.077 0.117 0.210 0.327 0.673 0.131 0.214

German Bight 125 0.055 0.073 0.194 0.267 0.733 0.107 0.203

White Sea 44 0.157 0.167 0.061 0.229 0.771 0.092 0.213

Kiel Bay 40 0.173 0.146 0.092 0.238 0.762 0.095 0.285

Iceland 197 0.035 0.054 0.277 0.331 0.669 0.132 0.214

A, assimilation (A¼ PS + PG + R); BT, annual average total biomass; C, consumption (C¼ A/0.4); PG, gonad production; PS, somatic production;

PT, total production (PT ¼ PS + PG); R, respiration; Z, total mortality.

Figure 4. Relationship between population net growth efficiency (PT/A)

and mean annual habitat temperature in A. islandica. (A) Plot of PT/A

versus temperature. (B) Partial leverage plot of the corresponding multiple

linear model PT/A$ 0.3547 + 0.0002 3 tmax – 0.0117 3 temperature.

n$ 5 (White Sea excluded), P$ 0.018. This plot shows the residual of

each data point both with (distance from solid line) and without (distance

from horizontal stippled line) the temperature effect in the model. 4,

White Sea; r, Kiel Bay; s, Kattegat; d, Norwegian coast; h, German

Bight; 3 , Iceland.
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body mass, and respiration related to body mass by a power
function (see, for example, Vakily (1992), Mathieu and Lubet

(1993) Brey (1999), and Begum et al. (2009)). Hence, with
increasing age the relationships between different parts of the
individual energy budget change in a predictable way—for

example, PS/A will decrease, whereas PG/A will increase (see
Table 4 and Fig. 3).

Consequently, life span (measured as maximum age tmax)

exerts a distinct effect on budget parameters and their relation-
ships (Fig. 3 and Tables 4 and 5). A 5-fold increase in maximum
age (44 y (White Sea) to 197 y (Iceland)) translates into a 100-
fold increase in lifetime energy throughput (313–43,730-kJ

assimilation). This effect is even more pronounced in those
parts of the energy budget that increase in relative significance
with age, such as gonad production PG. The Q10 forA. islandica

respiration is about 2.5 (Begum et al. 2009), and thus temper-
ature should exert a corresponding effect on somatic pro-
duction (i.e., growth). We cannot detect this effect within the

6�C range (4–10�C) in ambient temperature of the populations
studied here, most likely because of methodological shortcom-
ings. Apparently the high variability in individual size-at-age

data together with other site-specific effects (e.g., salinity)
obscure the temperature effects on growth and thus on somatic
production. This problem may be overcome either with a more
thorough analysis of growth (more samples, analysis of in-

dividual growth history) or with the direct measurement of
somatic production in controlled experiments.

The mortality rates estimated for A. islandica (Z ¼ 0.035–
0.175/y) are at the lower end of the range observed in bivalves

from cold–temperate regions (Brey 1999), but still they cause
a distinct shift of energy throughput from gonad to somatic
production (Tables 4 and 5). This is particularly visible in the
average (over all populations) PS-to-PG ratio that increases

from 0.147–0.743 with increasing Z.
We can interpret maximum age and mortality as interacting

endogenous (physiological) and exogenous (ecological) deter-

minants of population age and size structure, which in turn
determines population reproductive output. Apparently, A.
islandica is capable of maintaining persistent populations across

a wide range of population age structures. This may be one key
to the wide distribution of this species throughout the North
Atlantic shelf areas. Nevertheless,A. islandicamight be prone to
recent environmental change. Apparently, abundances de-

creased substantially in the southern North Sea, where the clam
became rare in once densely populated areas such as the Oyster
Ground (Witbaard & Bergman 2003) and the German Bight

(own observations). This might be a consequence of enhanced
temperature in the southern North Sea (e.g., Wiltshire &Manly
2004), but also of the extraordinary high intensity of bottom

trawling in this area (e.g., Rijnsdorp et al. 1998).
Population productivity ofA. islandica is low compared with

other bivalves. Both somatic (PS/B) and total (PT/B) pro-

duction-to-biomass ratios are significantly below average for
bivalve populations when the effect of average body mass on P/
B is taken into account (ANCOVA, Fig. 6), whereas in PG/B,A.

Figure 5. (A, B) Distribution of growth constant k (A) and growth

performance index f# (B) of the von Bertalanffy growth function of 157

different bivalve populations, including 12 populations of A. islandica

(gray bars, current study; Thompson et al. 1980a, Thompson et al. 1980b,

Anonymous 1995, Lewis et al. 2001, Thorarinsdóttir & Jacobson 2005,

Kilada et al. 2007). Other data collected by Brey (1999, 2001). Growth

constant k is significantly (P < 0.001) lower in A. islandica.

Figure 6. (A, B) Relationship between average body mass and (A) annual

somatic production-to-biomass ratio PS/B and (B) annual total pro-

duction-to-biomass ratio PT/B in 279 (PS/B) and 55 (PT/B) different

bivalve populations, including the 6 A. islandica populations of this study

(d). Data collected by Brey (1999, 2001). Both PS/B and PT/B are

significantly lower in A. islandica (ANCOVA, P < 0.001 and P$ 0.006,

respectively).
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islandica is just indistinctive of other bivalves (P ¼ 0.051). The
low somatic productivity comes to no surprise, because PS/B

equals mortality rate Z in steady-state populations. Judging
from the extraordinary life span of A. islandica, we would have
expected a more pronounced difference in gonad productivity.
As a result of our more empirical approach toward gonad

production, however, this finding should be interpreted with
some caution.

Our estimates of net growth efficiency PT/A (average, 0.11)

and of gross growth efficiency PT/C (average, 0.28) fall well in
the range of published values for bivalve populations (e.g.,
Trevallion 1971, Fuji & Hashizume 1974, Thompson 1974,

Bayne & Newell 1983). Thus, we are confident that our budget
models are valid representatives of A. islandica individual and
population energy flow dynamics, and that they will be of use in
further studies of A. islandica population dynamics under

changing environmental conditions. There is, however, always

room for improvement, particularly regarding measurements of
site-specific growth rates, of gonad production, and of assim-

ilation efficiency. This will help to understand better the
observed differences in life span and populations dynamics of
A. islandica, especially regarding the White Sea population,
which cannot yet be explained by environmental differences.

Further investigations of intrinsic and extrinsic factors influ-
encing animals physiology and performance should show to
what extent the environment and population genetics control

life span.
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