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Abstract. In preparation for the European Space Agency’s
(ESA) Soil Moisture and Ocean Salinity (SMOS) mission,
we investigated the potential of L-band (1.4 GHz) radiometry
to measure sea-ice thickness.

Sea-ice brightness temperature was measured at 1.4 GHz
and ice thickness was measured along nearly coincident
flight tracks during the SMOS Sea-Ice campaign in the Bay
of Bothnia in March 2007. A research aircraft was equipped
with the L-band Radiometer EMIRAD and coordinated with
helicopter based electromagnetic induction (EM) ice thick-
ness measurements.

We developed a three layer (ocean-ice-atmosphere) di-
electric slab model for the calculation of ice thickness from
brightness temperature. The dielectric properties depend on
the relative brine volume which is a function of the bulk ice
salinity and temperature.

The model calculations suggest a thickness sensitivity of
up to 1.5 m for low-salinity (multi-year or brackish) sea-ice.
For Arctic first year ice the modelled thickness sensitivity is
less than half a meter. It reduces to a few centimeters for
temperatures approaching the melting point.

The campaign was conducted under unfavorable melting
conditions and the spatial overlap between the L-band and
EM-measurements was relatively small. Despite these dis-
advantageous conditions we demonstrate the possibility to
measure the sea-ice thickness with the certain limitation up
to 1.5 m.
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The ice thickness derived from SMOS measurements
would be complementary to ESA’s CryoSat-2 mission in
terms of the error characteristics and the spatiotemporal cov-
erage. The relative error for the SMOS ice thickness retrieval
is expected to be not less than about 20%.

1 Introduction

Soil Moisture and Ocean Salinity (SMOS) is an earth ob-
servation mission developed by the European Space Agency
(ESA) launched on 2 November 2009. NASA’s Aquarius
mission is planned to follow in 2011. Their main objectives
are to provide global measurements of soil moisture over
land and sea surface salinity over ocean from L-band (fre-
quencyf =1.4 GHz; wavelengthλ=21 cm) radiometric obser-
vations.

An exciting spin-off is the retrieval of sea-ice thickness
which was expected to be possible due to the large penetra-
tion depth at L-band (Mätzler, 2001). These new L-band ra-
diometers could provide sea-ice thickness information com-
plementary to that from altimeters because of the expected
sensitivity to thin ice thickness variations. Moreover, they
would provide near real-time data with an almost global
coverage every second day which is important for opera-
tional applications such as weather prediction and ship rout-
ing. Thin ice up to 0.4 m dominates the ocean-atmosphere
heat exchange in the Arctic during the cold months (Maykut,
1978) and is important for the large-scale sea-ice rheology
(Feltham, 2008).
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Menashi et al.(1993) have demonstrated the possibility
of ice thickness retrieval for radiometric measurements at
0.6 GHz. In this article, we describe the adaption of their
model for the conditions encountered in the Baltic Sea. The
model will be used for the analysis of L-band radiometric
and EM ice thickness measurements which were obtained in
the Bothnian Bay in March 2007 as part of the first SMOS
sea-ice campaign.

The Microwave Imaging Radiometer using Aperture Syn-
thesis (MIRAS), the SMOS payload, is based on a novel
technique for passive microwave aperture synthesis inspired
from radio astronomy (Corbella et al., 2004). MIRAS does
not measure the brightness temperature of the scene, but
its Fourier spectrum by the correlation of 69 individual an-
tennas. The inversion of the spectrum leads to a field of
view with hexagon-like shape and a nadir resolution of about
35 km. The complex imaging geometry is different from pre-
vious satellite radiometers. The MIRAS priniciple allows
multi-angle observations within an alias-free field-of-view
(FOV), analogue to the swath width, of at the most 1000 km.
The resolution decrease to about 80 km in the far range (Kerr
et al., 2001).

The specific aim of this study is the investigation of the
thermal microwave radiation emitted by a homogeneous
closed ice cover at 1.4 GHz. We try to answer the follow-
ing questions: how can we measure ice thickness from the
observed brightness temperature, in which thickness range
and with what accuracy? How are the results influenced by
the ice temperature and salinity? Will there be an advantage
of SMOS compared to CryoSat-2 for sea-ice thickness mea-
surement?

To answer these questions only very limited data are avail-
able. The SMOS Sea-Ice field campaign in the Baltic Sea
during the mild March 2007, so far provided the only mea-
surements of 1.4 GHz brightness temperature together with
the ice thickness. Therefore, we restrict the discussion to
low salinity ice at high temperatures which was observed
during this particular field campaign. However, the model
presented in the following could be applied for the Arctic
and Antarctic as well. As the model is designed for retrieval,
we have to make a number of simplifications to reduce the
number of free parameters. A comparison with models of
higher complexity has been conducted in the framework of
the ESA SMOS-Ice project and is covered in the final report
(Heygster et al., 2009).

In Sect.2 of this paper, a model for the partly sea-ice cov-
ered ocean emissivity is introduced. A simplified retrieval
version is presented in Sect.3. In Sect.4 the data from the
SMOS Sea-Ice field campaign are described. In Sect.5 the
results from sensitivity studies and from the validation are
shown. The retrieval uncertainties are discussed and gener-
alized for SMOS and CryoSat-2 in Sect.6. Finally, Sect.7
concludes this paper.

2 Emissivity model for 1.4 GHz

In our model, we assume only two surface types, open water
and ice with the fractional area coverage (total ice concen-
tration) 1−C andC, respectively. The observed brightness
temperature at the surface depends on the temperatures of
waterTwaterand iceTice and their emissivitiesewaterandeice.
Furthermore,Tobs is a function of the incidence angles and
the polarisation. Without loss of generality, we will restrict
our discussion to the nadir case

Tobs= (1−C)ewaterTwater+CeiceTice. (1)

Here, we neglect the atmospheric contribution, ionospheric
effects, cosmic and solar radiation (Reul et al., 2008;
Tenerelli et al., 2008). The latter terms are important for
sea surface salinity retrieval with demanding requirements on
the radiometer’s accuracy. However, all terms are relatively
small compared to the large brightness contrast between wa-
ter and thick ice which cover a 150 K range from 90 K to
240 K. For sea surface salinity retrieval, one has to utilize a
much narrower range covering only a few K or even tenths
of a K.

For a specular reflecting surface the horizontal and vertical
nadir components are equal. It is not possible to derive two
parameters, thickness and concentration, from only one nadir
measurement of the brightness temperature. Thus, it is nec-
essary to prescribe the ice concentration. In the following,
we limit the discussion to a closed ice cover withC≈1.

2.1 Open water

The emissivity of the water surfaceewater is calculated from
the Fresnel equations (Swift, 1980). We apply the model of
Klein and Swift(1976) for the permittivity of sea water. The
nadir brightness temperature of the ocean surface close to
the freezing point is 92± 1 K for salinities between 33 and
35, e.g., in the Arctic marginal ice zone, and 96± 1 K in the
northern Baltic Sea where surface salinities range between
2 and 7 (Lepp̈aranta and Myrberg, 2009). Following the
recommendations ofUNESCO (1985), the salinity is ref-
erenced with no units.

At L-band the sensitivity of wind-induced surface rough-
ness is as small as 0.2 K per 1 m/s (Dinnat and Boutin, 2003).
Thus, the wind influence can certainly be neglected for the
aim of sea-ice thickness retrieval.

2.2 Sea-ice emissivity

Brine pockets and air bubbles are much smaller than the L-
band wavelength of 21 cm. Therefore, the sea-ice can be con-
sidered as a homogeneous medium which greatly simplifies
the set-up of an emissivity model at 1.4 GHz. The emissivity
of ice eice follows from considering reflection at a dielectric
slab of ice over water. The reflection coefficient of an ice slab
over an infinite half plane can be expressed as a function of
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the reflection coefficientsR1 andR2, describing reflection at
the upper and lower boundary of the slab (Ulaby et al., 1981):

R =
R1+R2e

−2iki,zd

1+R1R2e
−2iki,zd

, (2)

whered is ice thickness andki,z is the z-component of the
propagation vector in iceki , with the z-axis perpendicular
to the slab. The expression forki,z can be separated into its
real partβ, which is called the phase constant, and its imagi-
nary partα, which is referred to as the attenuation coefficient:
ki,z = β − iα. The expressions forα andβ are

α =
ω
c0

cosθi |Im
√

εi | (3)

β =
ω
c0

cosθiRe
√

εi, (4)

with the angle of refractionθi in the ice, the relative permit-
tivity of ice εi , the angular frequencyω = 2πf and the speed
of light c0 in vacuum. The ice emissivity is calculated from
eice = 1− r = 1−RR, wherer is reflectivity andR is the
conjugate-complex of the reflection coefficientR. Assuming
real power reflection coefficients the following expression for
ice emissivity was derived (Menashi et al., 1993):

eice=
(1−ri)(1−Arw)

1+Arirw +2
√

Arirwcos(2βd)
, (5)

whereA = e−4αd. The reflectivity of air to iceri and the
reflectivity of ice to waterrw are calculated from the Fresnel
equations with the permittivity of ice provided in the next
section.

The above equation is a coherent solution describing ice
emissivity as a periodic function of ice thickness. If the rms
thickness variation of the ice slab is sufficiently large, i.e.,
more than a quarter of the used electromagnetic wavelength
over the illumination footprint, the periodicity averages out
and an incoherent solution can be introduced instead. The
emissivity of ice averaged over a variety of ice thicknesses
was derived byMenashi et al.(1993) and can be expressed
as follows:

eice=
(1−ri)(1−Arw)

1−Arirw

[
1−

√
Arirwe−βσd

1+
√

Arirwe−βσd

]
, (6)

whereσd is rms thickness variation (roughness). The equa-
tions presented inMenashi et al.(1993) contain the optical
pathlengthl and its variationσl instead of ice thicknessd
and thickness variationσd in Eq. (6). This is a small mistake
of Menashi et al.(1993) and contradictory toUlaby et al.
(1981). The expressions for the attenuation coefficientα

and the phase coefficientβ used byMenashi et al.(1993) do
not take into account the cosine term, which originates from
considering the z-component of the propagation vector only
(Eqs.3, 4). However, this mistake has only a minor effect
and the scientific results obtained byMenashi et al.(1993)
remain unquestioned.

The transition of open water to a very thin ice cover falls
outside the assumptions for the incoherent solution. How-
ever, we assume that a smooth connection of the open water
emissivity and the valid part of the model is reasonable.

Table 1. Coefficients for the calculation of the sea-ice dielectric
constant (Hallikainen and Winebrenner, 1992). The 1.4 GHz coef-
ficients are linearly interpolated.

Frequency [GHz] a1 a2 a3 a4

First year ice
1.0 3.12 0.0090 0.039 0.00504
1.4 3.10 0.0084 0.037 0.00445
2.0 3.07 0.0076 0.034 0.00356

Multi year ice
1.0 3.12 0.0090 −0.004 0.00436
1.4 3.10 0.0084 0.003 0.00435
2.0 3.07 0.0076 0.013 0.00435

Table 2. Polynomial coefficients for the calculation of the brine
volume (Lepp̈aranta and Manninen, 1988).

α0 α1 α2 α3

F1 −0.041221 −18.407 0.58402 0.21454
F2 0.090312 −0.016111 0.00012291 0.00013603

2.2.1 Sea-ice permittivity

Vant et al.(1978) proposed an empirical relationship for the
permittivity of ice depending on the relative brine volume (in
‰; valid for Vb < 70‰):

εice= a1+a2Vb + i(a3+a4Vb), (7)

A linear combination of the coefficients derived at 1 and
2 GHz (Table1) is used as an approximate value for 1.4 GHz.
Lepp̈aranta and Manninen(1988) derived equations for de-
termining the relative brine volume of low-salinity ice for
temperatures between−2◦C and 0◦C

Vb =
ρiSice

F1(T )−ρiSiceF2(T )
. (8)

Table 2 gives the coefficients of the polynomialsF =∑3
j=0αjT

j . The pure ice densityρi is 917 kg/m3. Win-
ter bulk ice salinity averaged over samples collected at land-
fast sea-ice in the Gulf of Finland in 1999–2001 isSice =

0.65± 0.3 (Granskog et al., 2004). For more saline ice and
lower temperatures, the equations ofCox and Weeks(1983)
andFrankenstein and Garner(1967) are applied instead.

3 A semi-empiric retrieval model

Several relatively simple empiric or semi-empiric models
have been successfully applied for the retrieval of sea-ice
concentration from passive microwave sensors (Andersen
et al., 2007). The inverse retrieval problem is, in general,
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ill-posed. The following simplifications are a way to con-
strain the inverse problem with a priori knowledge, namely
the assumption about sea-ice concentration, temperature and
salinity. In the following, we describe a semi-empiric formu-
lation that could later be used for the satellite retrieval.

An approximation of the emissivity model (Eqs.1, 6) is
given by the following expression

Tobs= Tm −(Tm −T0)exp(−γ d), (9)

with the brightness temperature of open waterT0 and an at-
tenuation factorγ . The mixture brightness temperatureTm

is defined as

Tm = CT1+(1−C)T0, (10)

with the brightness temperature of infinitely thick iceT1 and
ice concentrationC.

Equation (9) can directly be inverted for the retrieval of ice
thickness

d = −
1

γ
ln(

Tm −Tobs

Tm −T0
). (11)

The most important error characteristic is defined by the
condition Tobs+ δ > T1 which defines the maximum ice
thicknessdmax that can be retrieved for a given observational
errorδ. Towards this limit the errors become infinitely large
and asymmetric. The resulting maximum ice thickness is
given in Sect.5.1.4.

The three parametersT0, T1 andγ can be obtained either
from an emissivity model as described in the previous Sect.2
or from brightness temperatures and corresponding ice thick-
ness measurements as outlined in Sect.6.

4 Measurements

Measurements of the brightness temperature at 1.4 GHz and
the sea-ice thickness were conducted nearly simultaneously
in the Bothnian Bay on 12 and 13 March 2007. The Helsinki
University of Technology (HUT) SkyVan research aircraft
was equipped with the Technical University of Denmark
(DTU) National Space Institute Radiometer (EMIRAD). The
non-imaging EMIRAD measurements were coordinated with
helicopter EM ice thickness measurements. The air tem-
perature measured at Hailuoto increased from an average of
−6◦C on the 5 March to an average above 0◦C on 12 and
13 March. Photographs taken during the flights show fea-
tures that look like a very wet surface or even like ponded ice
(Fig. 4).

4.1 L-band radiometer EMIRAD

EMIRAD measures the fully polarimetric state of the elec-
tromagnetic emission (Rotbøll et al., 2003). The radiation
was measured with two antennas, one with a nadir beam and
the other with an aft looking beam with an angle of inci-
dence of 40◦. The footprint of the nadir measurement at a

Fig. 1. Nadir 1.4 GHz emissivity of a slab of Baltic sea-ice (S =

0.65, T = −2◦C). The coherent and two incoherent solutions are
shown for two different parameterizations of the thickness rough-
nessσd . The open water emissivity is indicated with the filled cir-
cle.

flight level of 1000 m is about 680 m. The radiometer data
were provided with a sampling rate of 125 Hz. The signal
was integrated over 200 samples leading to an oversampled
footprint spacing of approximately 90–100 m.

The EMIRAD data were found to be occasionally de-
graded due to unstable behaviour of the power converter.
This caused deviations from the nominal performance of
the radiometer and introduced spikes and jumps in the data.
The brightness temperature signals were carefully investi-
gated and obviously degraded sections were removed from
the analysis.

4.2 Electromagnetic induction system

A system of a transmitter and receiver coil operating at
3.68 kHz is towed by helicopter and is used to estimate sea-
ice thickness (Haas et al., 2009). The footprint of a single
measurement is about 40 m, while the recording frequency of
10 Hz results in a point spacing of 3–4 m at typical speeds of
a helicopter. The general accuracy over level ice is± 10 cm.
Over ridged areas the error can increase to about 50% of ice
thickness. Additional errors can arise in shallow brackish
waters (Haas, 2004; Hendricks and Haas, 2009).

5 Results

5.1 Model sensitivity study

The modelled brightness temperature mainly depends on
polarisation, incidence angle, ice concentration, ice thick-
ness, ice and water salinities, ice and water temperatures and
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Fig. 2. Nadir 1.4 GHz brightness temperature of Baltic sea-ice
(S = 0.65, roughnessσd = 0.1d) for different ice temperatures. The
results of the semi-empiric model (Eq.9) are indicated with the red
lines.

sea-ice roughness. Here, we restrict the investigation to the
nadir ice thickness retrieval for ice concentration near 100%.
The most important free parameters are the ice and the water
salinity and temperature, as well as the ice roughness. In the
following, we keep the water salinity and temperature fixed
at Swater= 2 andTwater= 0◦C and vary the ice roughness,
temperature and salinity.

5.1.1 Sea-ice roughness

The sea-ice roughnessσd influences the asymptotic be-
haviour of the emissivity model towards zero ice thickness.
The resulting emissivities for two different parameterizations
of σd are shown together with the coherent solution (Eq.5)
in Fig. 1. The coherent solution for the emissivity of a plane-
parallel ice slab over an infinite half plane reduces to the
emissivity of open water for a vanishing ice thickness as ex-
pected.

The incoherent solution for a constant positiveσd does not
converge to the emissivity of open water, which reveals this
choice as not admissible. To circumvent this problem, we
introduce a parameterization ofσd as a fixed percentage of
ice thickness. This is a reasonable assumption because the
thickness variability, in general, increases with the thickness.
The incoherent form (Eq.6) with this parameterization ap-
proaches the emissivity of open water. In the following, the
ad hoc assumptionσd = 0.1d is applied with the incoherent
model.

5.1.2 Sea-ice temperature and salinity

The resulting brightness temperatures for different sea-ice
bulk temperatures and salinities are shown in Fig.2. For
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Fig. 3. Model inversion for the retrieval of the ice thickness from the
brightness temperature. The error bars indicate± 3.5 K variations
of the brightness temperature which corresponds to a 5% error of
ice concentration.

Baltic sea-ice withS = 0.65 the brightness temperature levels
out at aboutd = 0.5 m for Tice = −0.5◦ C and atd = 1.5 m
for Tice = −2◦C. For Tice = −3◦ C the penetration depth is
approximately 1.5 m for these low salinity conditions. For
typical Arctic or Antarctic first year ice withTice = −5◦ C
andS = 8 the resulting brightness temperature (not shown)
resembles that of the Baltic sea-ice atTice= −0.5◦ C.

5.1.3 Retrieval model approximation

The results of the semi-empiric model are shown in Fig.2
together with the results of the emissivity model. The param-
etersT0, T1 or Tm andγ have been obtained by least squares
optimization. For example, the resulting parameters for ice
concentrationC = 1, ice temperatureTice= −2◦ C, ice salin-
ity S = 0.65 and the roughness parameterizationσd = 0.1d

areT0 = 92.3 K, Tm = T1 = 248.9 K andγ = 4.0. The accu-
racy of the retrieval model approximation is better than± 1 K
for d > 0.1 m andC > 0.5. Thus, it is a good assumption for
the major part of the ice covered seas.

5.1.4 Maximum retrievable ice thickness

The maximum ice thicknessdmax follows from the definition
in Sect.3. For Baltic sea-ice atT = −3◦C the maximum
thickness isdmax≈ 1.5 m for an assumed measurement un-
certaintyδ = 1 K. It reduces to 0.9 m for Baltic sea-ice at a
temperature ofT = −1◦C. For more saline Arctic first year
ice (S ≈ 8) atT = −3◦C, the maximum ice thickness is less
than half a metre.
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Fig. 4. Melted surface on the flight of 13 March 2007. Photograph
courtesy of Juha Karvonen (FIMR).

5.1.5 Sensitivity of the retrieval

The sensitivity of the retrieval to variations in temperature
and radiometric accuracy is shown in Fig.3. For exam-
ple, a variation in the ice temperature by± 1◦C around a
mean temperature of−2◦C results in a deviation of± 0.05 m
for d = 0.2 m (Tobs= 180 K) and in a deviation of± 0.1 m
for d = 0.4 m (Tobs=220 K). An uncertainty in the radio-
metric accuracy of± 1 K leads to a thickness uncertainty of
± 0.02 m ford = 0.4 m and± 0.05 m ford = 0.7 m. Errors in
the prescribed ice concentration propagate in the same way
as errors in the radiometric accuracy, whereas a 5% error in
the concentration would translate to a 7 K error in the bright-
ness temperature. Thus, a 5% ice concentration error would
translate into an uncertainty of± 0.1 m for a thickness of
0.5 m. A 5% error is likely the upper limit of uncertainty for
ice concentration retrievals in the central Arctic (Andersen
et al., 2007).

5.2 Comparison of ice thickness retrievals

The campaign dataset consists of four profiles of nearly co-
incidental EM and EMIRAD measurements. The analysis
of the data is complicated because of the relatively small EM
footprint and the spatial displacement between both measure-
ments. In the following, we show the analysis for the flight
track with the best spatial overlap of EM and EMIRAD mea-
surements. The vertical channel of the aft looking antenna
was heavily degraded for this track. Therefore, we consider
the nadir data only.

The sea-ice thicknessdTB was obtained from the bright-
ness temperature by the inversion of the semi-empiric model
(Eq. 11) for a prescribed ice concentrationC = 0.98, salin-
ity Sice = 0.65 and an ice bulk temperature rangeTice =

−2 ± 1◦C. These assumptions lead to the following three
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flight of 13 March 2007. The graph shows the EM-thicknessdEM
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represents the EM-thickness at 40 m resolution while the thick line
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failures of the retrieval method.

sets of retrieval parameters,T0 = 90.8 K, Tm = 245.5 K and
γ = 5.9 m−1 for Tice = −1◦ C, T0 = 92.4 K, Tm = 245.9 K
and γ = 4.0 m−1 for Tice = −2◦ C andT0 = 93.8 K, Tm =

245.1 K andγ = 3.3 m−1 for Tice= −3◦ C.
The resulting thickness is shown in Figs.5 and6 together

with the smoothed and high frequency EM thicknessdEM, an
ASAR image and bathymetric data.

Ridged areas and ship tracks that are well visible in the
ASAR image are recognized in both thickness retrievals. The
darker area in the ASAR image on the right-hand side agrees
with retrieved thicknesses between 0.2 and 0.5 m. Gaps in the
dTB curve indicate a failure of the retrieval which could be
either explained by ice temperatures higher thanTice= −1◦C
or ice thicker than 1.5 m.

The correlation ofdEM and dTB is 0.5 which indicates
a relationship which was very likely (99.7% significance)
not caused by chance (Fig.7). The data points shown in
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Fig. 7. ScatterplotdTB anddEM for interpolated averages along
the track shown in Fig.6. Each point represents an average over
a section of about 1200 m which is similar to the doubled 3 dB
footprint of the EMIRAD instrument. A linear regression yield
dTB = 0.8dEM + 0.08 m with a standard error of 0.16 and a cor-
relation coefficient ofr = 0.5 by including only the values with
dEM < 1.5 m (black dots). The correlation decreases tor = 0.1 by
including also the valuesdEM > 1.5 m (red dots).

Fig. 7 are averages over approximately 1200 m long sec-
tions. The overall mean thickness and the standard devia-
tion of the thickness derived from the EM measurement and
from the 1.4 GHz radiometry aredEM = 0.82± 0.4 m and
dTB = 0.65± 0.3 m, respectively. The EM modal sea-ice
thickness amounts to 0.5 m and is significantly smaller than
the mean thickness because of the skewness of the thickness
distribution. The results agree well with Swedish Meteoro-
logical and Hydrological Institute (SMHI) ice maps that in-
dicate level ice thicknesses in the range of 0.15–0.7 m.

6 Discussion

6.1 Validity of the assumptions

6.1.1 Limitations of the dataset

The results shown in this study represent only a part of the
data collected during the SMOS Sea-Ice campaign. We have
not presented the remaining data that do not show good cor-
relations. However, these negative results do not have the
strength to falsify our conclusions because of the relatively
low validity of the measurements. There have been certain
limitations with respect to the spatial overlap between the

EM and the L-band measurements. The L-band data were
seen to be occasionally degraded and the radiometer was
not operating at its nominal performance. The EM data was
potentially affected by the shallow bathymetry and the sea-
ice ridging. Furthermore, no accurate information about the
sea-ice temperature was available and the melting conditions
were adverse. Thus, our conclusions drawn from the limited
dataset are not based on solid ground, or in other words, rest
on thin ice. Nevertheless, the relatively good agreement be-
tween the model results and the presented data permit to state
that the possibility for ice thickness retrieval is given within
certain limitations.

6.1.2 Incoherent averaging

In the present study, an incoherent model was tested for re-
trieval. However, observational UHF (610 MHz) data sug-
gest that coherent effects should possibly be taken into ac-
count (Hallikainen, 1983). A major difference between the
results ofHallikainen (1983) and the present study is the
spatial integration and the used wavelength. The footprint
of the UHF measurements was on the order of two magni-
tudes smaller whereas the wavelength was doubled. Both
factors are in favour of interferometric oscillations. When
taking a larger integration field into account, the incoherent
assumptions are more applicable because of the increased in-
homogeneity at the larger scale. We expect that incoherence
is a very reasonable assumption for the large scale SMOS
FOV. The multi-angle SMOS data should be investigated to
study the effect of coherence on the averaging process. This
might be possible because different incidence angles trans-
late to different pathlengths through the ice.

6.1.3 Vertical model resolution

The three layer model assumes a homogeneous slab of ice
which is a strong simplification. Even if the ice structure,
density and salinity would be homogeneous there would still
be a vertical temperature gradient resulting from the tempera-
ture difference between the atmosphere and the ocean. Multi
layer sea-ice models can be employed to investigate these ef-
fects. By doing thisTonboe(2009) arrived at a similar con-
clusion as compared to the present study.

6.1.4 Specular reflection

A specular reflecting surface was assumed for the calculation
of the reflectivity and, thus, the emissivity. In general the
sea-ice and the ocean do not exhibit a smooth surface. The
theory of rough surface or slightly rough surface scattering
relies on further assumptions about the stochastic nature of
the surface roughness such as the correlation function and
the rms height. However, the correlation function is difficult
to obtain. If it was available an improved emissivity model
could be derived. This would be particularly important for
off nadir measurements and to account for the polarization.
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6.2 Simultaneous ice thickness and concentration
retrieval

The question remains open if simultaneous retrievals of ice
concentration and thickness will be possible with SMOS data
alone. By considering the nadir data only this is definitely not
the case. If the multi-angle SMOS data can be used for this
purpose this should be further investigated. A more appropri-
ate emission model that accounts for the surface roughness is
probably a prerequisite for theoretical studies.

6.3 Estimation of retrieval parameters

For the present study the a priori parameters ice concentra-
tion, ice salinity and ice temperature were relatively well
known. To apply the method for SMOS retrieval the infor-
mation about ice concentration and temperature could stem
from different sensors like AMSR-E. High resolution sea-
ice concentration could be aggregated to the SMOS FOV
(Spreen et al., 2008). To avoid additional assumptions about
ice temperature and, even more difficult, about the ice salin-
ity, the retrieval parameters could be constrained when suit-
able training data are available. The parametersT0 andT1
could be estimated from minimum and maximum values of
the observed brightness temperature if there is a completely
ice-free and a thick ice-covered footprint in the swath. The
coefficientγ could be estimated by the means of co-located
brightness temperatures and sea-ice thickness data. The re-
gional and seasonal variability ofγ should be investigated to
assess if the assumption of a constant is applicable.

6.4 Complementarity of SMOS and CryoSat ice
thickness retrieval

Could there be a benefit of combining SMOS and CryoSat
data? We describe in the following the error characteristics
for both sensors.

The CryoSat sea-ice thickness retrieval will be based on
the measurement of sea-ice freeboard. Using a priori infor-
mation about the snow thickness and the snow and sea-ice
densities, the freeboard can be converted into a thickness.
We assume a± 1 cm uncertainty for the freeboard measure-
ment as the only error source. The SMOS retrieval for Baltic
sea-ice ofTice = −1◦C shall be influenced by a radiometric
uncertainty of± 5 K as the only error source. The resulting
relative errors of the retrieval are shown in Fig.8. It can be
seen that a thickness below about 0.4 m the relative error of
the SMOS retrieval is smaller than that of CryoSat. It should
be stressed that the results shall be interpreted only qualita-
tively since the error budget is incomplete and only a very
rough estimate. However, the main characteristics will re-
main similar for a more complete and accurate error budget.
The shown complementarity could be exploited in a com-
bined dataset from both sensors. The SMOS data should then
be taken into account if the ice is indicated to be thinner than
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Fig. 8. Error characteristic of SMOS and CryoSat ice thickness
retrieval for a simplified error budget as explained in the text.

0.4 m. Assimilation systems like that ofKauker et al.(2009)
could take advantage of such complementary input data.

6.5 Spatial and temporal resolution

It is instructive to compare the SMOS spatial resolution to
those of the Special Sensor Microwave/Imager (SSM/I) be-
cause its performance has been widely assessed. The SMOS
nadir resolution of 35 km is similar to the SSM/I 37 GHz
channel. In a far range the SMOS 80 km footprint is slightly
larger than along the track resolution of the SSM/I 19 GHz
channel. The SSM/I has been a tremendously important sys-
tem for sea-ice application despite its relatively coarse res-
olution. The good temporal sampling and spatial coverage
outweigh the drawbacks of the coarse resolution in many
cases. A major limitation of the coarse resolution is the re-
stricted application in coastal areas due to the land spillover
effect. These influences can possibly be reduced by an un-
mixing technique (Maaß and Kaleschke, 2010).

6.6 Seasonal restriction

With the onset of melt, the ice thickness retrieval will prob-
ably be impossible with SMOS due to the strongly reduced
penetration depth. Therefore, the SMOS retrieval shall be re-
stricted to the cold seasons. A promising field for the SMOS
application would be the observation of young ice growth
that is only poorly achievable with existing satellite sensors.

7 Conclusions

The new SMOS L-band radiometer was recently launched
and NASA’s Aquarius mission is awaiting its launch. We de-
scribed a model for the retrieval of ice thickness from L-band
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radiometric data. We tested it against aircraft measurements
of 1.4 GHz brightness temperature and coincident ice thick-
ness data derived using electromagnetic induction.

The incoherent model solution (Fig.1) shows a monotonic
increase of brightness temperature for increasing ice thick-
ness. This allows calculating the sea-ice thickness from the
measured brightness temperature by a simple inversion of the
function for prescribed free parameters. The model degrees
of freedom are limited and the needed information can be
obtained from other satellites, e.g., the ice concentration and
the ice temperature from AMSR-E, or can be parameterized.
The most important model parameters besides incidence an-
gle, ice thickness and ice concentration are the ice surface
roughness, the ice bulk temperature and the ice bulk salin-
ity. Variations in ocean salinity and temperature can be ne-
glected for this application because of the large radiometric
contrast between ice and water. A parameterization of the
sea-ice roughness as a percentage of ice thickness seems to
be a reasonable approach. New measurements are necessary
to validate this parameterization.

The SMOS Sea-Ice campaign was conducted under ad-
verse melting conditions which led to a small thickness sen-
sitivity of the ice emissivity. Towards larger ice thickness
the retrieval error becomes infinitely large. We suggest that
the retrieval should be interpreted as a lower boundary of the
thermodynamic (i.e., modal or level) ice thickness. The re-
trievable maximum ice thickness is constrained by the ice
temperature and salinity.

Overall, this study supports the expectation that the new
spaceborne 1.4 GHz radiometers can be used to measure ice
thickness. Our model results suggest that the upper limit for
the sea-ice thickness retrieval will be roughly half a metre for
the Arctic and 1.5 m for the Baltic.

More ice thickness measurements are needed for the vali-
dation. The time and position of future validation campaigns
is uncritical because of the good spatiotemporal coverage of
the SMOS data which is a great advantage as compared to
altimeters.

Thin ice plays an important role for heat exchange be-
tween the ocean and the atmosphere. Therefore, an ice thick-
ness product based on L-band radiometry will probably be
useful for sea-ice applications in climate research and meteo-
rology, as well as possibly for ship navigation in polar waters
and would be complementary to the thickness derived from
altimetric freeboard measurements.
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