

Alfred-Wegener-Institut für Polar- und Meeresforschung in der Helmholtz-Gemeinschaft

Airborne sea ice thickness measurements in 2007 and 2008

Stefan Hendricks¹, Christian Haas², Lasse Rabenstein¹, Torge Martin³

- 1. Alfred Wegener Institute for Polar and Marine Research, Germany
- 2. University of Alberta, Canada
- 3. National Oceanic and Atmospheric Administration, USA

Outline

1. Sea Ice Thickness Results

- Sedna Ice Camp
- SIZONet
- IPY Polarstern Cruise

April 2007 April 2008 August – September 2007

2. EM-Bird measurements over deformed sea ice

- 1D assumption: EM bird data processing
- 3D forward model: Effects of footprint and sea ice geometry

Part I Sea Ice Thickness Results

EM Bird

SEDNA airborne EM campaign

• Facts

- 11 flights
- ~2150 km of profile data
- Sea ice thickness + areal photography

Buoy Array

Sea Ice Physics AVVI

7

Validation Lines

Sea Ice Physics AVVI

8

Sea Ice Thickness Distribution

SIZONet 2008

SPACE (Synoptic Pan-Arctic Climate and Environment Study)

September 2007

Transpolardrift - Summer 2007

Comparison with Groundbased Methods

Variability of Thickness Pdf's

- All Modal Thickness values
 equal or below 1 meter
- 2 profiles at ice edge
- No thick level ice?

Arctic summer cruise: Conclusions

- Homogenous ice thickness distribution
 - Modal thickness < 1 m in all profiles
- Decrease of modal thickness from 2.5 m (1991) to 0.9 m (2007) in the Transpolar Drift

Part II

EM-Bird measurements over deformed sea ice

EM Bird data processing

Assumptions:

- conducticity of sea ice and snow negligible
- Wide stretched layers: 1D case
- Complex numerical Solution with Hankel transform
 - Inphase
 - Quadrature (Apparent conductivity)
- Direct function of height of instrument with respect to halfspace boundary
- Described by double-exponential function

3D EM forward model

- 1D assumption invalid over deformed
 - Apparent ice thickness
- Error of apparent ice thickness with 3D EM forward model
- Comsol Multiphysics commercial software package
 - Magnetostatics, time-harmonic analysis
 - Finite Elements
- Modelling of Inphase and Quadrature component
 - Calculation of ice thickness with 1D approach

Pressure Ridges: Apparent Sea Ice Thickness

Ridge Porosity

- Porosity Conductivity Relation
- Inphase less dependent on ridge conductivity than Quadrature

2D Modell from drill profile

•

- 3D modell based on drillhole draft profile
- Offset between airborne EM and model data
 - 2D draft profile instead of 3D
 - Non-conductive sea ice
- 3D effects not covered by drillhole line can create a bias of 1 m in airborne data

Sea ice draft profile

- Feasibility study of 3D draft profile
- Apparent thickness very well
 represented by 2D mean over footprint

Conclusions

- Underestimation of maximum ridge thickness due to
 - Footprint smoothing
 - Invalid 1D assumption

- Weighting between both effects depends on geometry
 - footprint dominates for weaker ice thickness gradients

• Mean EM thickness mainly conserved

• Inphase and Quadrature show different sensitivity to ice conductivity

Thank you ...