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A simple box model of the circulation into and inside the ocean cavern be-
neath an ice shelf is used to estimate the melt rates of Antarctic glaciers and
ice shelves. The model uses simplified cavern geometries and includes a coarse
parameterization of the overturning circulation and vertical mixing. The melt-
ing/freezing physics at the ice shelf/ocean interface are those usually imple-
mented in high resolution circulation models of ice shelf caverns. The model is
driven by the thermohaline inflow conditions and coupling to the heat and fresh-
water exchanges at the sea surface in front of the cavern. We tune the model
for Pine Island Glacier and then apply it to six other major caverns. The de-
pendence of the melting rate on thermohaline conditions at the ice shelf front
is investigated for this set of caverns, including sensitivity studies, alternative
parameterizations, and warming scenarios. An analytical relation between the
melting rate and the inflow temperature is derived for a particular model ver-
sion, showing a quadratic dependence of basal melting on a small temperature
difference between the inflow and the grounding zone which changes to a linear
dependence for larger differences.

The model predicts melting at all ice shelf bases in agreement with observa-
tions, ranging from below a meter per year for Ronne Ice Shelf to about 25 m/y
for the Pine Island Glacier. In a warming scenario with a one degree increase
of the inflow temperature the latter glacier responds with a 1.4 fold increase of
the melting rate. Other caverns respond by more than a ten fold increase, as
e.g. Ronne Ice Shelf. The model is suitable for use as simple fast module in
coarse large-scale ocean models.

1 Introduction

Precipitation deposited on the Antarctic ice sheet is released as freshwater to the Southern
Ocean either locally due to basal melting of floating ice shelves or remotely due to melting of
drifting icebergs (Jacobs et al. 1992). Extensive caverns underlying the ice shelves which
represent ∼11% of the ice sheet area and about 50% of the Antarctic coastline. Local
freshwater input significantly impacts the stability of the shelf water column and hence sea
ice thickness with far-reaching consequences for water mass characteristics and deep water
export (Hellmer 2004). Changes in magnitude of local freshwater input can be assumed
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for the near future in view of the current rates of ice shelf decay at the Antarctic Peninsula
(e.g. Skvarca et al. 1999, Braun et al. 2008).

Faster than previously anticipated, ice streams feeding the ice shelves respond to
changes in the ice shelf geometry (De Angelis and Skvarca 2003), thus increasing the
mass loss of the Antarctic ice sheet and contributing to sea level rise. Satellite observa-
tions reveal that various ice streams of the West Antarctic Ice Sheet (WAIS) are thinning
(Wingham et al. 2006) and accelerating (Rignot 2008). Since this happens in concert with
a retreat of the grounding lines, researchers suggest that the enhanced mass loss of WAIS
is caused by a warmer ocean. Indeed, in the Amundsen and Bellingshausen Seas Circum-
polar Deep Water reaches the ice shelf fronts with temperatures above +1∘C (Hellmer et
al. 1998) and can proceed, possibly without substantial cooling, into the deep interior. A
’warm tub’ environment is supposed to exist underneath Pine Island Glacier (PIG) where
different techniques infer melting near the grounding line in excess of 40 m/y (Rignot and
Jacobs, 2002, Payne et al. 2007). The relatively simple geometry of the PIG cavern invites
the application of numerical models of different complexity (Hellmer et al. 1998, Payne et
al. 2007, Thoma et al. 2008) which confirm the high melt rates in the deep interior and
provide a mean basal melting of up to 20 m/y. However, it is still a matter of debate, with
consequences for climate warming and related SLR, whether the dependency of the basal
mass loss on the external ocean temperature is simply linear or of higher order (Holland
et al. 2008). In addition, due to uncertainties in sea floor topography and ice shelf draft,
modeled values still bear huge errors. Therefore it remains speculative whether the ocean
could drive the collapse of an ice sheet.

The latest IPCC (2007) report emphasizes the lack of understanding of the processes
controlling ocean-ice interaction and thus the inability to accurately predict future sea level
rise. This statement fostered international efforts to develop coupled ocean–ice shelf–ice
sheet models (D. Vaughan, pers. communication 2008), and to consider basal processes
in climate models. However, especially the fast-melting ice shelves in the Amundsen and
Bellingshausen Seas (Rignot and Jacobs 2002) are too small to be resolved by the present
coupled climate models. In the present study, we develop a simple, ’low-cost’ box model for
the thermohaline circulation beneath an ice shelf, including a state-of-the-art presentation
of the processes at the ocean-ice shelf interface, and study its performance for a number
of prominent caverns with very different environments and geometries. For observed shelf
water characteristics feeding the sub-ice shelf circulation our model provides realistic melt
rates, outflow characteristics, and a first guess on the circulation strength from which
flushing rates can be inferred. Therefore, climate models representing well the conditions
on the Antarctic continental shelf could adapt this box model to circumnavigate an IPCC
(2007) claimed deficiency. The simple model, as a stand-alone code, is useful to estimate
melt rates from a few observations in front of the ice shelf.

The caverns investigated in the present study and treated by our model are listed in
Table 1. The entries for ’basal melting’ are taken from the cited literature, and are given
the area mean melt rates. The model physics and governing equations are developed in
section 2. Section 3 presents the model results for the seven caverns of Table 1. The ’melt
law’, i.e. the dependence of the melt rate on the external temperature, is derived in section
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4. Finally, a conclusion discusses our model, its implications, and further use.

cavern length L width W basal study
melting

Amery AMY 540 130 0.35 Williams et al. (2001), M
Filchner FIL 620 160 0.35 Grosfeld et al. (1998), M
Fimbulisen FIM 200 150 1.93 Smedsrud et al. (2006), M
Getz GTZ 70 600 unknown
Pine Island Glacier PIG 70 40 24-29 Payne et al. (2007), M
Ronne RON 620 540 0.15 Joughin and Padman (2003), O
Ross ROS 800 600 0.13 Dinniman et al. (2007), M

Table 1: Length and width [in km], and melt rates [in m/y] of some cavern systems. The
geometric parameters are taken from the literature as given by the last column (O:
observation, M: model).

2 Cavern circulation physics in a box model

Melting of ice in an ice shelf cavern is the consequence of advection of relatively warm
water from the shelf ice front to the ice shelf base located at a deeper level where, due to
a higher pressure, the parcel’s temperature exceeds the local freezing point temperature
and its heat content may partly be used for melting. Hence, in addition to advection
and mixing physics, a model of the circulation in an ice shelf cavern has to implement
melting/freezing physics at the ocean-ice shelf interface. Our aim is to establish these
physical processes in a box model with very low resolution and a minimum of the physical
ingredients. Because the parcel on its path upward along the ice shelf base may encounter
a pressure level where its temperature drops below the local freezing point and freezing
of its freshwater content starts, at least three boxes in the cavern are needed: a deep one
for the deep inflow, one box for the melting regime at the deep ice shelf base, and a box
for the possible freezing regime closer to the ice shelf front (they are denoted by ’d’, ’w’
and ’i’, respectively, see Figure 1). Our box model has two additional boxes ’1’ and ’2’ in
the open ocean immediately adjacent to the ice shelf front. The system is driven by the
thermohaline fluxes of heat and freshwater into the top box ’1’, and by a reservoir of heat
and salt in the open ocean, denoted by ’0’. Except for this extremely coarse resolution, the
box model’s physics are those implemented in high resolution circulation models of cavern
systems (e.g. Payne et al. 2007, Dinniman et al. 2007).

Forcing The system is governed by the balances of the heat and salt content of the
respective boxes. The coupling to the offshore heat/salt reservoir 0 is assumed entirely
advective in an upstream sense: if, for instance, the flow is southward at depth, i.e. into

3



Cavern model Olbers and Hellmer

Figure 1: Left: The model geometry of a cavern with advective and diffusive fluxes indicated.
Boxes are: 0 = northern reservoir (passive), 1 = upper ocean front box, 2 = deep
ocean front box, d = deep cavern box, w = grounding line box, i = ice shelf water
box. Each has a volume Vj, horizontal area Aj and width W which is the same for
all boxes. Yellow arrows: volume flux q (positive for clockwise circulation), purple
arrows: relaxation (
) and diffusive (�) fluxes, green arrows: melting/freezing, blue
arrow: salt flux F . Right: the figure indicates the names of the box coordinates. Red
points are the coordinates given in Table 3 for various caverns around Antarctica, with
p ≡ depth. Blue points are coordinates determined as described in section 3 and also
shown in Table 3.

the cavern, there is a heat flux1 qT0 and a salt flux qS0 into box 2. Here q > 0 is the volume
transport (unit m3s−1) into the box which by mass conservation is the same in the entire
advection loop (see Figure 1). The outflow of the cavern is into the offshore box 1 which
is open to the ocean surface and couples the system to the growth and decay of sea ice.
However, coupling for the case q > 0 only occurs via interfacial mixing with the deep front
box 2. If the stratification in box 1 and box 2 is stable, the mixing is small and the influence
of the particular surface forcing in box 1 is only marginal. The simulations presented in
this study operate mostly in this regime. We assume a heat flux of the restoring form

(T̂ − T1) into the box 1 with a restoring time scale 
A1/V1 = 
/H1 and a temperature T̂
which is the freezing temperature −1.88 ∘C at the surface. Here, Ak denotes the surface
area, Hk the depth, and Vk the volume of box k = 1, 2, i, w, d. The freezing/melting and
export of sea ice induces a (negative/positive) freshwater flux into box 1 which we convert
to a (positive/negative) salt flux F .

Advection and mixing For q > 0 the heat and salt contents of box 1 are governed by

V1Ṫ1 = q(Ti − T1)− A1�(T1 − T2)− A1
(T1 − T̂ ) (1)

V1Ṡ1 = q(Si − S1)− A1�(S1 − S2) + A1F (2)

1The common factor �cp is canceled in all ’heat’ balances.

4



Cavern model Olbers and Hellmer

where we have inserted a term describing vertical mixing between the boxes 1 and 2. The
diffusivity is � = Kv/ℎ with the appropriate depth scale ℎ. A corresponding term with
opposing sign is included in the budget of box 2. The diffusive exchange of the upper box
with the deep ocean box should include the condition of static stability. Thus, � is large
(i.e. it has a small time scale) when the density difference �1−�2 between the upper box and
the deep ocean is above zero (or a small density �� ≪ �), and it is likely that convection
will occur, reflecting a statically unstable situation2. It is small otherwise. Hence

� =

{
�ℓ if �1 − �2 ≤ �� stable
�ℎ otherwise unstable

(3)

with �� ≥ 0 and �ℓ ≪ �ℎ. For simplicity we assume a linear equation of state, �/�∗ =
1 − �(T − T∗) + �(S − S∗) and take T∗ = 0 ∘C, S∗ = 34 psu and �∗ = 1033 kgm−3. The
expansion coefficients, given in Table 2 below, are appropriate for a depth of about 1000 m.

The fluxes and coefficients q, AF,A� and A
 all have the unit m3s−1. However, whereas
F, � and 
 are determined by fixed coefficients (which may vary between different model
integrations), the circulation rate q is a dynamical quantity. As customary in box models
with thermohaline ingredients, we assume that the flow is driven by the difference of
densities, and here we take the difference between the ice shelf front and the grounding
line. We generally take a linear dependence

q = C(�2 − �w) = C�∗ (�(S2 − Sw)− �(T2 − Tw)) (4)

with a constant3 C and the linear approximation of the equation of state (note that the
densities in the above parameterization must be adjusted to the same pressure level). In
section 4 a nonlinear extension of (4) will be considered. We should mention that in general
S2 > Sw, T2 > Tw and �2 > �w in the steady state, hence q > 0 as depicted in Figure 1.
The haline part of the density dominates at low temperatures, and thus the circulation is
generally haline-driven.

In fact, the relation (4) is Stommel’s pipe law (Stommel 1961): the transport of the early
box models of the thermohaline circulation is assumed to occur in connecting pipes, and
the density difference between the boxes causes a pressure drop at depth which accelerates
the fluid in the pipes against friction. Hence, C depends on the friction coefficients of
the system. For non-rotating dynamics it is easy to derive the balance of the meridional
overturning circulation, and one finds that diffusion of vorticity, e.g. Avvzzz where v is
the meridional velocity, z the vertical coordinate and Av the viscosity, is balanced by the
meridional torque g�y exerted by the density field (y is the along-cavern coordinate and g
the gravitational acceleration). Then we obtain q ∼ �y/Av times geometric coefficients (for
details see the appendix in Olbers and Zhang 2008). The situation in a rotating system is
more complicated but parameterizations of pressure gradients as suggested by Wright et

2In the simulations discussed in this study the unstable regime only occurred in transient states. The
ultimate steady states are determined by the low �.

3The parameter C has the dimension m3s−1 per density unit, i.e. m6kg−1s−1. In the following we give
values for C leaving out the units and the factor 106.
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parameter parameter

�e 920 kgm−3 �∗ 1033 kgm−3


T 5× 10−5 ms−1 
S 2× 10−6 ms−1

cp 3974 Jkg−1K−1 L 3.34× 105 Jkg−1

a −0.057 ∘C/psu b 0.0832 ∘C

c 7.64× 10−4 ∘C dbar−1 T̂ −1.88 ∘C
� 7.5× 10−5 K−1 � 7.7× 10−4

Table 2: Typical values of some parameters of the cavern system. 
T and 
S values are taken
from Jenkins et al. (2001). Except for the values of the 
’s we regard this set of
parameter values as fixed.

al. (1998) lead to similar expressions (also here we refer to the discussion in Olbers and
Zhang 2008). In the cavern system we bravely model these effects of friction, rotation, and
also bottom formstress by the one coefficient C.

Melting physics The heat and salt balances at the ocean/ice shelf interface are formulated
in close accordance with Hellmer and Olbers (1989). We consider the heat and salt balances
of a layer situated immediately below the shelf ice base. Storage of the heat and salt content
in the respective layer is ignored for simplicity (the layer has a tiny extent), and thus, fluxes
at the lower and the upper interfaces are in balance. Diffusion of heat and salt through
the ice is neglected. The heat balance is thus given by QT = QTb where QT is the total
heat flux crossing the lower interface and QTb is the one across the upper interface due to
melting/freezing. We parameterize QT by the difference of temperature between the ice
shelf base (Tb) and the ocean (T ) in the form QT = �∗cp
T (Tb − T ) where �∗ and cp are
the density and the heat capacity of sea water, respectively, and 
T is a turbulent exchange
coefficient for heat (in ms−1). The amount of heat, QTb, lost by the ocean due to melting of
ice (m > 0) or gained due to the formation of ice crystals within the layer (m < 0), is given
by QTb = −�eLm where �e is a mean density for ice, L is the latent heat of fusion, and
m is the melt rate. Likewise, the total salt flux at the lower interface QS = �∗
S(Sb − S)
must be equal to the salt flux QSb = −�eSbm caused by meltwater input (or a salt input
due to salt rejection during freezing). Here 
S is a turbulent salt exchange coefficient and
(Sb−S) is the salinity difference between the ice shelf base and the ocean. The parameters
�★, �e, cp and L are assumed constant (see Table 2).

Finally, we assume that the temperature Tb at the ocean/ice shelf boundary is at the
in-situ freezing point. In a linearized version it can be expressed as a function of the salinity
Sb and the pressure p by

Tb = aSb + b− cp (5)
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Figure 2: Dependence of the salinity Sb, freezing temperature Tb, and melting rate m on pressure
p and the ambient temperature T for S = 33 psu. The melting rate has the unit m/y.

with the constants a, b and c (see Table 2). To summarize, we have three equations, i.e. (5)
and


T (Tb − T ) = −��m
(6)


S(Sb − S) = −�Sbm

We use the abbreviations � = L/cp ∼ 84 K and � = �e/�∗ ∼ 0.89. The above three-
equations model can be solved for the ice shelf base salinity Sb, temperature Tb, and the
melting rate m in terms of the water properties T and S and the pressure p at the shelf
ice base. We find a quadratic equation for the salinity Sb = Sb(S, T, p), determined by

aS2
b − (T − b+ cp+ d)Sb + dS = 0 (7)

with d = �
S/
T . The temperature Tb(S, T, p) then follows from (5) and the melting rate
m(S, T, p) may be computed from either of (6). The dependence of these quantities is
displayed in Figure 2 (upper row). Note that Sb is very different from the ocean salinity S
outside the turbulent boundary layer. Likewise, the freezing point aS + b− cp, computed
for the bulk salinity S differs substantially from Tb. This model of the turbulent boundary
layer is applied to the boxes w and i; the above quantities T, S, Tb, Sb and m then get the
corresponding index w or i.

Finally, we obtain the fluxes QT and QS as functions of Tw, Sw and p = pw, the values
for box w. The water modification in this box is thus governed by

VwṪw = q(Td − Tw)− Aw�(Tw − Td) + Aw(
T +mw)(Tbw − Tw) (8)

VwṠw = q(Sd − Sw)− Aw�(Sw − Sd) + Aw(
S +mw)(Sbw − Sw) (9)

This form of the balances takes care of the in- or decrease of the box volume as conse-
quence of the melting or freezing at the ice shelf base (the mw contributions, see Jenkins
et al. 2001). For melt rates exceeding 10 m/y this implies a substantial correction in the
salt balance.
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The governing equations We assume three more active boxes (named 2, d and i) in the
same spirit as for the front box 1 and the base box w (see Figure 1). The balances for heat
and salt (for q > 0) for the cavern system described above are

Ṫ1 = q1(Ti − T1)− �1(T1 − T2)− (T1 − T̂ )/� (10)

Ṡ1 = q1(Si − S1)− �1(S1 − S2) + F1 (11)

Ṫ2 = q2(T0 − T2) + �2(T1 − T2) (12)

Ṡ2 = q2(S0 − S2) + �2(S1 − S2) (13)

Ṫw = qw(Td − Tw)− �w(Tw − Td) + (
Tw + m̃w)(Tbw − Tw) (14)

Ṡw = qw(Sd − Sw)− �w(Sw − Sd) + (
Sw + m̃w)(Sbw − Sw) (15)

Ṫi = qi(Tw − Ti)− �i(Ti − Td) + (
T i + m̃i)(Tbi − Ti) (16)

Ṡi = qi(Sw − Si)− �i(Si − Sd) + (
Si + m̃i)(Sbi − Si) (17)

Ṫd = qd(T2 − Td) + (Vi/Vd)�i(Ti − Td) + (Vw/Vd)�w(Tw − Td) (18)

Ṡd = qd(S2 − Sd) + (Vi/Vd)�i(Si − Sd) + (Vw/Vd)�w(Sw − Sd) (19)

where qk = q/Vk, �k = �/Hk and � = H1/
, F1 = F/H1, 
Tw = 
T/Hw, m̃w = mw/Hw

etc. If the circulation reverses (q < 0), the advection terms change accordingly, e.g. box 1
is fed by the offshore reservoir instead of box 2. All coefficients now have the dimension
s−1. We consider the geometric dimensions for each cavern as fixed (see Table 3 below),
likewise most of the coefficients listed in Table 2 parameterizing the melting process, and
the temperature T̂ of the frontal surface layer, so that the changeable parameters are
C, �ℓ, �ℎ, 
 and the salt forcing F1 of box 1. We express the ratio �ℎ/�ℓ = O(104) as
a fixed large number and model �ℓ = Kv/ℎ with a diffusivity Kv and ℎ = 100 m. As
mentioned before, the value of �ℎ is mostly irrelevant. Finally, the salt flux into box 1
enters as F1 = f0S∗/H1 where f0 is the local sea ice freezing rate in ms−1. The free
parameters are then C,Kv, F1 and � . Solutions are obtained by time stepping using a code
from MATLAB.

3 Melting in some cavern systems

We finalize our study by applying the cavern box model to a suite of ice shelf caverns,
namely Amery (AMY), Filchner (FIL), Fimbulisen (FIM), Getz (GTZ), Pine Island Glacier
(PIG), Ronne (RON), and Ross (ROS). The basic geometry of these caverns is given by a
few coarse estimates of length and width scales in Table 1 and the depths pfd, pgl, pi and
pw at the cavern fronts and the grounding lines in Table 3 (see Figure 1 for the locations
of the geometric points in the cavern). Rough values for the watermass temperatures and
salinities at the front of these caverns are found in Table 4. We will use these values to set
up the box model and adjust the free parameters C,Kv, F1 and � for each cavern to obtain
estimates for the melting and overturning rates.

We take a very simple proportionate algorithm to determine the volume Vk and the
horizontal area Ak (k = 1, 2, i, w, d). The front boxes 1 and 2 have the depths H1 and H2
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cavern pi piw pw pid p∗iw pwd pfd pgd H2 Hi Hw Hd

AMY 200 1400 2000 400 1577 2166 800 2500 400 188 172 366
FIL 400 933 1200 633 1122 1366 1100 1700 466 211 177 400
FIM 200 266 300 300 433 500 500 900 200 133 183 300
GTZ 300 766 1000 466 866 1066 800 1200 333 133 83 233
PIG 400 733 900 600 822 933 1000 1000 400 144 61 233
RON 200 733 1000 266 800 1066 400 1200 133 66 66 133
ROS 240 280 300 293 320 333 400 400 106 46 36 86

Table 3: Geometric values of the cavern systems, computed from the values in Table 1 and the
algorithm explained in the text. Units are dbar or m. Note that H1 ≡ pid.

cavern min T1 max T1 min S1 max S1 min T2 max T2 min S2 max S2 min Ti max Ti min Si max Si

AMY -2.0 -1.5 34.2 34.5 -1.9 -1.7 34.5 34.6 -2.5 -2 34.3 34.5
FIL -1.9 -1.8 34.35 34.6 -2 -1.95 34.68 34.74 -2.25 -1.9 34.6 34.65
FIM -1.8 -1.7 34.2 34.35 -1.84 1.8 34.34 34.36 -2.1 -1.9 34.23 34.32
GTZ -1.74 -1.37 34.04 34.1 0.53 0.71 34.55 34.64
PIG -1.8 -0.6 33.8 34.3 1 1.2 34.64 34.7 -0.4 0 34.2 34.5
RON -1.9 -1.5 34.3 34.6 -1.9 -1.5 34.65 34.85 -2.15 -1.9 34.5 34.8
ROS -1.9 -1.85 34.66 34.78 -1.9 -1.5 34.75 34.9 -2.11 -1.95 34.64 34.72

Table 4: Temperatures and salinities appropriate to minimum and maximum in the boxes 1,
2, and i, according to observations from sections along the ice shelf front and other
data, taken from the literature. AMY: Wong et al. (1998), FIL: Grosfeld et al. (2001),
FIM: Nicholls et al. (2006), GTZ: M. Schröder, pers. communication, PIG: Hellmer
et al. (1998), RON: Nichols et al. (2003), ROS: Jacobs and Giulivi (1998).

and horizontal lengths L1 and W , with L1 = 300 km being identical for all cavern systems
but different W . Referring to Figure 1 we equate H1 + H2 ≡ pfd with the water depth
at the cavern front and assume H1 ≡ pid = pi + �f (pfd − pi) with proportion factor �f .
Similarly, pwd = pw + �g(pgd − pw) for the depth of the upper box at the grounding line,
and furthermore Lw = �Ld, Li = Ld − Lw for the horizontal lengths of the boxes w and
i. The side areas Bk of the respective rectangles for boxes 1 and 2 and the trapezoids
for the boxes w, i and d are then readily calculated, the volumes are Vk = BkW and the
horizontal areas Ak = LkW (neglecting the slope of the interior boxes). Finally, we define
an equivalent depth Hk = Bk/Lk = Vk/Ak for all boxes. The proportion factors are taken
�f = �g = � = 1/3, and the resulting geometric quantities are listed in Table 3, using the
width, length and depth values from Table 1 and Table 3.

The PIG cavern We start our study of the ensemble of seven caverns with some sim-
ulations for the PIG configuration. The thermohaline conditions at the front of PIG are
displayed in Figure 3 (from Hellmer et al. 1998). The deep inflow with temperatures above
1∘C and salinities above 34.64 psu are clearly visible in the deep trench below 800 m depth
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Figure 4a
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Figure 4b
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Figure 3: Potential temperature and salinity along the calving front of Pine Island Glacier
(light gray) in mid-March 1994 (from Hellmer et al. 1998). The contour interval for
temperature is 0.2∘C and for salinity it changes from 0.05 for S < 34.6 psu to 0.02
for S > 34.6 psu.

(to be compared to our box 2 values). The outflow of glacial meltwater (to be compared to
our box i values) is seen in the temperature section between about 400 m and 600 m depth
with T below -0.2 ∘C, with a minimum of -0.4 ∘C and S in the range 34.3 to 34.4 psu.
Finally, our box 1 should be compared with the hydrographic state at the front above the
ice draft, i.e. in the gray shaded domain of the panels of Figure 3. Here, the temperature
ranges between −1.8 to −0.6∘C and the salinity between 33.8 and 34.2 psu. These values
are summarized in Table 4 (and correspondingly for the six other caverns). As a further
measure of the PIG characteristics we should yield an area mean melting rate of about 20
m/y (e.g. Payne et al. 2007).

We regard this glacier as ideal for parameter studies because it has a simple configu-
ration (its geometry is not too far from our box system), it is likely without any freezing
areas at the ice shelf base and has a quasi-permanent fast ice area in front. From the
latter condition we suspect that the effect of sea ice freezing is small, hence F1 = 0 can
be assumed as a good first guess. Furthermore, the coupling of the interior to the freezing
point layer at the front box 1 may be of minor importance, hence � can be assumed to be
large.

In Figure 4 (upper panels) the case C = 2, Kv = 10−5 m2s−2, � = 300 days and F1 = 0
is shown to yield a moderately acceptable fit to the observed hydrography with overturning
and melt rates of q = 0.24 Sv and mm = 38.6 m/y. A change of � can repair deficits in

10



Cavern model Olbers and Hellmer

−3 −2 −1 0 1 2
−4

−2

0

2

te
m

p

PIG −  C=2   K
v
=1e−005   τ=300   F=0   γ

T
=5e−005   /   1 1 1 0

 

 

−3 −2 −1 0 1 2
0

20

40

60

m
el

tin
g 

[m
/y

ea
r]

 

 

−3 −2 −1 0 1 2
33.5

34

34.5

35

sa
l

−3 −2 −1 0 1 2
0

0.1

0.2

0.3

0.4

 tr
an

s 
&

 m
ix

 in
 b

ox
 1

 [S
v]

−3 −2 −1 0 1 2
0.1

0.2

0.3

0.4

0.5

de
ns

log of time in years

d
w
i
1
2

w
i
w+i

33 34 35
−2

−1

0

1

2

sal
te

m
p

 

 

d
w
i
1
2

−3 −2 −1 0 1 2
−4

−2

0

2

te
m

p

PIG −  C=1.2   K
v
=1e−005   τ=300   F=0   γ

T
=3e−005   /   1 1 1 0

 

 

−3 −2 −1 0 1 2
0

10

20

30

m
el

tin
g 

[m
/y

ea
r]

 

 

−3 −2 −1 0 1 2
33.5

34

34.5

35

sa
l

−3 −2 −1 0 1 2
0

0.05

0.1

0.15

0.2

 tr
an

s 
&

 m
ix

 in
 b

ox
 1

 [S
v]

−3 −2 −1 0 1 2
0.1

0.2

0.3

0.4

0.5

de
ns

log of time in years

d
w
i
1
2

w
i
w+i

33 34 35
−2

−1

0

1

2

sal

te
m

p

 

 

d
w
i
1
2

Figure 4: Two integrations for the PIG cavern with different parameters. Each experiment
is displayed in 6 panels, showing the development of temperature, salinity, density
(relative to a state with zero temperature and 34 psu), melting rate, overturning, and
a T/S-diagram of the final steady state. The rectangles in this diagram indicate a
rough estimate of the range of observed hydrographic parameters in the frontal boxes
for the particular cavern. Note the difference in the axes scales of corresponding
panels. Upper panel: C = 2, otherwise standard parameters. Lower panel: C =
1.2, 
T = 
S/0.04 = 3× 10−5 ms−1.

box 1 (moves the blue dot in the T/S-diagram to to higher or lower temperatures) but has
no effect on outflow box i. Likewise, less or more mixing (e.g. to still a moderate size of
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Figure 5: Sensitivity experiments for AMY and ROS, showing the TS diagrams for seven C
values. C changed according to [0.1, 0.3, 0.5, 1, 2, 5, 10] × C0 with C0 = 2. All other
parameters are identical for the experiments, as given in Table 2, except for the modi-
fied turbulent exchange coefficients (see text). The inflow temperature T0 and salinity
S0 are chosen as the middle point of the margins of T2, S2 from Table 4. The different
experiments are displayed by varying dot sizes, increasing from the low C value to the
high one.

Kv = 10−4 m2s−2) has very little effect, and increasing F1 mainly influences the salinity
of box 1. With the higher amount of salt in this upper front box, however, the system
gets easily unstable, sometimes only for a short period until the melting in the cavern and
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advection leads to a reduction of the salinity. A major change is expected for a decreased
or enhanced circulation, modeled by decreasing or increasing the value of C (a smaller C
will make box i colder and fresher, a higher C warmer and saltier; see next section). As
a first summary we note that the circulation should have a size with C around 1, that F1

should indeed be small (if not zero), and that a bit of the coldness of the front surface layer
should be mixed into box 1 to decrease its temperature.

In the present simulation the melting at the grounding line, mw = 50.1 m/y, is likely
too large but agrees with the values of the plume model by Payne et al. (2007). We felt that
melt rates in excess of 30 m/y as a net for PIG are still too large. The simulation used the
standard values of 
T and 
S, given in Table 2. A fine-tuning, in particular for the melting
rate, can be performed by relatively moderate changes of these coupling coefficients. For

T = 
S/0.04 = 3 × 10−5 ms−1 we achieve mm = 23.1 m/y and mi = 29.95 m/y and still
acceptable watermass characteristics for C = 1.2 and Kv, �, F1 as before. This experiment
is displayed in the lower panels of Figure 4.

In view of the simplicity of the model we made no attempt of an objective optimization
of the model parameters. In fact, they are not very robust: the change of one of them may
be counteracted by a change of another one. Moreover, in most cases there is a certain
range of acceptable values. Note that the consideration of the observed melt rate for the
tuning, as done for PIG, will not be made for the other cavern systems. The simulated
melt rates of these caverns are thus regarded as predictions from the inflow conditions.

The other caverns We applied our model to all caverns listed in Table 1. The standard
parameters from Table 2 are used, except that we take the PIG-values 
T = 
S/0.04 =
3 × 10−5 ms−1. For each cavern the specific geometry of Table 3 is implemented. The
temperature T0 and salinity S0 of the external reservoir are chosen as the middle point of
the margins of T2, S2 from Table 4. Figure 5 exemplifies the fitting procedure (changing
only C) for two caverns (AMY and ROS), and Figure 6 shows the temperatures, salinities,
overturning strengths and melt rates as function of C for some caverns. We assess a
simulation as acceptable if the front hydrography T1, S1, T2, S2 and particularly Ti, Si are
within their observation ranges (given in Table 4). In most cases this goal was achieved
for some range of C values. Similar sensitivity experiments were also made for the other
basic parameters Kv, � , and F1 with slight improvements of the fits but will thus not be
reported here.

A few peculiarities of the individual caverns are worth mentioning. The in- and outflow
values are not very accurately known for some of the caverns, making it easier to find an
’optimal’ fit, but particularly for FIM and GTZ we could only find reasonable fits if the
inflow temperature T0 is changed to values well below zero. We conclude that in- and
outflow characteristics have not yet been identified for these caverns. Most of the caverns
show freezing in box i close to the shelf ice front, at least for a slow circulation (small C) as
in the case of FIM (not displayed) and ROS. Very clear freezing signals are seen for AMY,
FIL and RON for all values of C. The melt rates cover quite a large range from well below
a meter per year (FIL, FIM, RON, ROS) to the large melt rates of GTZ (not displayed)
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Figure 6: Sensitivity experiments for the caverns AMY, FIL, RON, and ROS. The figure shows
temperature, salinity, overturning strength, and melt rate as function of C.

and PIG with 20 to 30 m/y. The overturning rates do not differ substantially between the
seven caverns: in the cavern ensemble overturning values from 0.1 Sv to 1 Sv are found,
and though in each member the overturning rate is clearly related to the respective inflow
temperature, there is not such correlation obvious in the ensemble.

4 The melting law

The dependence of the melting rate on the inflow conditions at the front is a major concern.
In particular, the variation of the grounding line melt ratemw with the offshore temperature
T0 of the inflowing water is of interest because T0 is expected to increase for a warmer
climate, leading to larger melting, as shown in Figure 8 below. A discussion of this issue
has been given by Holland et al. (2008). For their own idealized model they find a quadratic
increase of the basal melt rate as the offshore part of the ocean outside the ice shelf warms.
They report as well the relationships found in previous studies, revealing (almost) linear
and (almost) quadratic laws. As Holland et al. (2008) point out, ’the different modeling
studies should not be intercompared’. From a limited number of experimental data an
exact law cannot be detected. But even more severe are the differences of assumptions
made in the models, ranging from the model codes and geometries to melting physics and
warming scenarios.

Our model is designed as simple as possible. Nonlinearities arise only via advection,
the quadratic equation (7) of the three-equations model, and the ’Jenkins’ terms in the
freezing/melting physics . In Figure 7 we show the melt rates of our numerical model for
a particular geometric configuration and hydrographic conditions at the front (we take the
RON configuration, see Table 3 and Table 4), resulting for a range of T0 values. The first
panel derives from the model described so far. The basal melting increases with increasing
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Figure 7: Melting rates obtained for various overturning relations and velocity dependencies
of the turbulent exchange coefficients with power laws according to (20) and (21) [n
and k are indicated in the title] for the RON configuration. Colors: mw green, mi

magenta, mm = (mwAw +miAi)/(Aw +Ai) black.

T0, and this occurs in a nonlinear way. For the melt rates there is a shift of a power-law
dependence with a higher power (likely quadratic) at small T0 to a lower power dependence
(likely linear) at higher T0.

The other panels of Figure 7 use an extended model version with more nonlinearities
implemented: at first, a power law dependence on the density difference is assumed for the
strength of the overturning rate

q ∼ ∣ �2 − �w ∣n−1 (�2 − �w) (20)

Furthermore, we consider the turbulent coefficients of the basal freezing/melting layer as
dependent on the velocity with the simple relation


TS = 
̃TS ∣ q/qc ∣k (21)

with a constant qc and the tilded coefficients given by the values we used so far. Our
standard model is thus n = 1, k = 0. The cases n = 1, 3 combined with k = 0, 1, 2, 3 and
qc = 1 Sv are displayed in the panels of Figure 7. It becomes obvious that a wide range of
dependencies can be generated by a suitable combination of the above parameterizations.
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In particular, there is shift of regimes between the nonlinearity of advection and the non-
linearity of the melting entrainment. Note that the velocity dependence does carry over to
the temperature and salinity in the turbulent layer, but it enters the melting rate. When
the melting rate gets a higher q-dependence than the advection (for k > 1) an increase of
the frontal temperatures implies a decrease of melting.

Nonlinear relations between q and �2 − �w are likely if the meridional density torque
in the cavern is balanced by bottom formstress rather than linear friction. An even more
complicated behavior may be expected if the turbulent exchange coefficients are considered
to be a function of the flow velocity, as proposed by Jenkins and Bombosch (1995) and used
e.g. by Holland et al. (2008). We conclude that a unique melting law can unlikely be found
from a suite of numerical models with different physics, as analyzed in the latter study. In
the real world, caverns may of coarse differ with respect to appropriate parameterizations,
i.e. they may work with different n and k.

5 Discussion and conclusions

We have developed a simple model for a fast assessment of the strength of the overturning
circulation and the melting rate in an ice shelf cavern. While the resolution with a few
boxes is extremely coarse, the melting formulation (the three-equations module of Hellmer
and Olbers 1989) is that used in high-resolution three-dimensional models. In the simplest
version of our model the overturning strength is parameterized by a linear friction law,
motivated by the balance of vorticity diffusion and the driving gradient of density between
the front and the grounding line of the respective cavern. The coefficient of proportionality
and a few further model parameters (describing vertical mixing in the cavern, and the
turbulent exchange processes at the ice shelf base) are tuned by fitting to the hydrographic
parameters (temperature and salinity in in- and outflow cores) observed at the ice shelf
front. The model is able to reproduce the melting and freezing zones along the ice shelf
base and predicts reasonable values of melt rates in seven caverns which were chosen as a
representative ensemble of Antarctic ice shelves and glaciers.

The response to global warming, assuming that just the inflowing temperature T0 in-
creases, is substantial. Referring to Figure 8, a 1∘C warming leads to an increase of the
total melting rate by a factor of about 1.6 for PIG (the factor is the minimum in the
ensemble) and 13.7 for ROS (maximum in the ensemble) for the standard model version.
The figure also displays the very similar result obtained with a model version in which
the turbulent exchange coefficients are velocity dependent. The figure thus exemplifies the
sensitivity of the model to a change of the physics. The model, of course, cannot account
for a possible change in the basal area which might occur in a warmed state.

By numerical solutions of the cavern model and by analytical treatment we find a linear-
quadratic melting law for the dependence of the melting rate on the inflow temperature T0:
quadratic at low T0 and linear at large T0. Implementing, however, further nonlinearities
into the governing equations — e.g. a nonlinear relation between the overturning rate and
the density gradient, or a velocity dependence of the turbulent exchange coefficients — the
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Figure 8: Basal melt rates for all caverns, evaluated for the respective ’optimal’ C values. For
each cavern the left two columns [greenish] refer to our standard model with linear
overturning rate and constant turbulent exchange coefficients (in the notation of sec-
tion 4 this is n = 1, k = 0), the right two columns [yellowish] to a model version with
extended nonlinearities (n = 1, k = 1). For each model version the first column is for
standard T0, the second column for T0 + 1∘C. In each column, the lower block applies
to area mean melting mm and the total block to melting mw in the grounding line box.

model yields quite different melting laws.
The model can be further simplified concerning its structure, e.g. combining box 2 with

the almost passive box d (see Figure 1), or extended by introducting more boxes to achieve
a better resolved cavern geometry. The basic parameterization of the overturning is not
easily improved if one wants to remain in the realm of box models: the coupling of the
overturning strength to the density gradient is an unavoidable model crook. We intend to
couple our box model to a global OGCM, implementing a few major caverns, and study
the influence of the outflowing cold watermasses on the circulation, both locally around
Antarctica and remotely in the AABW branches penetrating the world ocean abyss.

Acknowledgements We appreciate the very useful comments and critics of Adrian
Jenkins.

References

Braun, M., A. Humbert, and A. Moll. Changes of Wilkins Ice Shelf over the past 15 years and

17



Cavern model Olbers and Hellmer

inferences on its stability. The Cryosphere Discuss., 2:341–382, 2008.
De Angelis, H. and P. Skvarca. Glacier surge after ice shelf collapse. Science, 299(5612):1560–

1562, March 2003.
Dinniman, M. S. and Klinck, J. M. and W. O. Smith. Influence of sea ice cover and icebergs

on circulation and water mass formation in a numerical circulation model of the Ross Sea,
Antarctica. Journal of Geophysical Research–Oceans, 112, 2007.
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Appendix

In section 2 we have computed the melting rate as function of the ambient cavern tem-
perature Tw and salinity Sw. Here we make the attempt to express it as a function of the
temperature T0 and salinity S0 of the water flowing into the cavern at the front. For sim-
plicity we neglect the diffusive terms in the thermohaline balances. Summing the steady
state balances for the boxes 2, d, and w we arrive at
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Figure 9: Tw, Sw and melting rate mw as function of T0, calculated from (26) and the values
C = 2, Aw = 1.1× 1011m2 (appropriate for RON). The turbulent exchange coefficient

★T is changed according to [0.5, 0.7, 1, 1.5] × 3.5 × 10−5 ms−1 shown by the blue, red,
black, and magenta curves, respectively.

q(T0 − Tw) + Awmw(Tbw − Tw − ��) = 0

(22)

q(S0 − Sw) + Awmw ((1− �)Sbw − Sw) = 0

where (6) has been used. Inserting now q = C(�2 − �w) with �2 = �0 and the three-
equations relation (7), we arrive at a set of equations for Tw and Sw which defies analytical
treatment. Some reasonable approximations, however, lead to a manageable problem.
First, Tbw − Tw ≪ � and (1 − �)Sbw ≪ Sw are valid. Secondly, the melting physics can
be linearized, as proposed by McPhee (1992). The freezing law (5) is applied with the
salinity Sbw in the turbulent layer replaced by the ocean salinity Sw outside the layer,
i.e. Tbw = aSw + b− cpw. At the same time a slightly modified coefficient 
★T is used in the
first equation of (6) to fit the nonlinear laws of the three-equations model. The melting
rate becomes

mw = −

★
T

��
(aSw + b− cpw − Tw) (23)

With the abbreviations x = T0 − Tw, y = S0 − Sw, g1 = Aw

★
T/C�∗, g2 = g1/��, T

★ =
aS0 + b− cpw − T0 the equations (22) become, after the mentioned approximations,

− �x2 + �yx+ g1(T
★ + x− ay) = 0 (24)

�xy − �y2 − g2(S0 − y)(T ★ + x− ay) = 0 (25)
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implying y = xS0/(�� + x) ≈ xS0/�� because �� ≫ x. A quadratic problem is obtained
for x, namely

(�s− �)x2 + g1 (T ★ + x(1− as)) = 0 (26)

with s = S0/��. Furthermore, as ≪ 1 so that (�s− �)x2 + g1 (T ★ + x) = 0. Proper
expansion reveals that Tw = T − x is quadratic for small T0 and linear for large T0. The
results, computing Tw, Sw and mw from (26) as function of T0, are displayed in Figure 9 for
four values of the exchange coefficient 
★T . The configuration of RON has been used and
the performance can be checked by comparison with the upper left panel (green curve) of
Figure 7. Obviously, a suitable choice for 
★T lies between the value of the blue and red
curves.

We may proceed to solve for the i-box properties Ti, Si and mi, which is even simpler
because the overturning strength q is known now from the w-box solution. In fact, an
analytical solution of the complete model can thus be given, even with the diffusion terms
retained but based on the above described simplified freezing law.
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