Use of automated image analysis to detect changes **Bielefeld University Faculty of Technology** in megafaunal densities at HAUSGARTEN (79N The **Applied Neuroinformatics** Group west off Svalbard) between 2002 and 2004

Birgit Lessmann¹, Yongjie Wang¹, Melanie Bergmann², Tanja Kämpfe¹ and Tim W. Nattkemper¹ ¹Applied Neuroinformatics Group, University of Bielefeld, Bielefeld, Germany ²Alfred-Wegener-Institute for Polar- and Marine Research, Bremerhaven, Germany

Introduction	Results	
• In 1999: Launch of the first and only deep-sea long-term observatory beyond the polar circle,	Evaluation procedure	
HAUSGARTEN (eastern Fram Strait) [1]	\bullet divide dataset into 5 subsets	
• Purpose: To achieve an understanding of the abundance and spatial distribution of organisms \rightarrow assess the effects of global change.	• use 4 subsets for training, the remaining subset for testing	
• Acquisition of a large quantity of underwater footage	• five evaluation steps, each subset is used once as testing set \rightarrow Five Fold Cross Validation	
\rightarrow visual analysis is very labour-intensive and time-consuming	• the classifier is tested with the training set	
• New approach: Application of machine learning algorithms for the automatic analysis of the	and evaluated by classifying the images of the testing set	

• New approach: Application of machine learning algorithms for the automatic analysis of the HAUSGARTEN footage

• Main focus:

- -The detection and classification of the most important biological species.
- The assessment of population abundances and variations

Material

• Photographic transects from the HAUSGARTEN central station (2500m) (Figure 1) • Taken by an ocean floor observation system (OFOS) associated to the research vessel Polarstern (Figure 2) in 2002 and 2004.

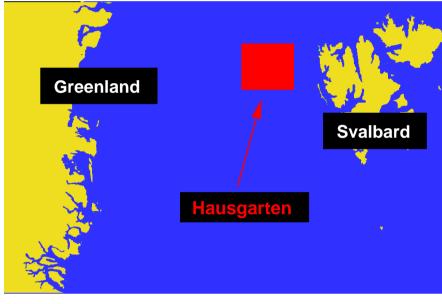
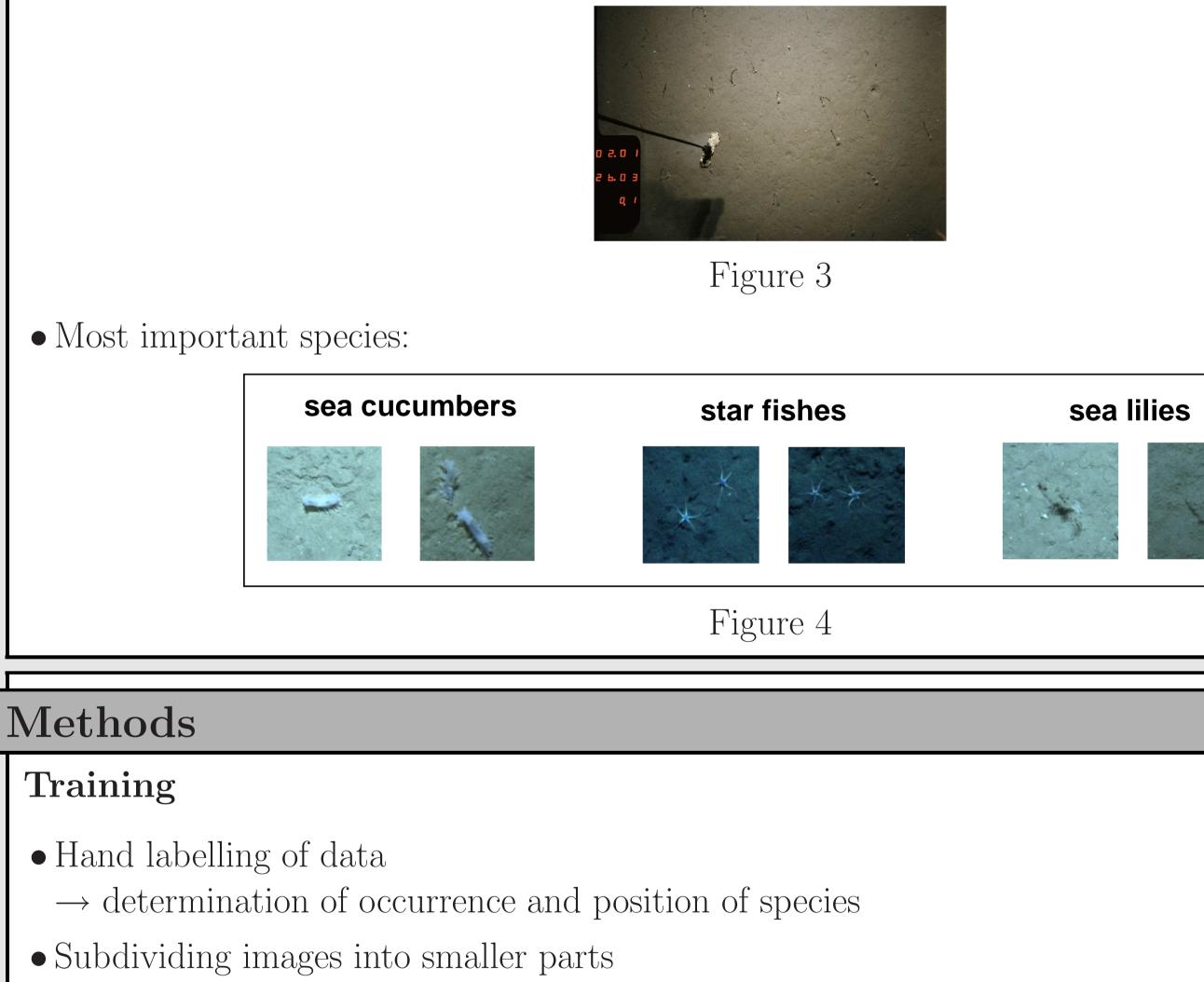
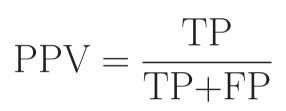



Figure 1

• Each transect contains some 700 photographs.

• RGB TIFF-Format, 3504×2336 pixels

Evaluation measure


• During each evaluation step the several images are counted:

- -those classified correctly as a particular class member (true positive TP)
- -those classified incorrectly as a particular class member (false positive FP)
- -those classified correctly as not class member (true negatives TN)
- -those classified incorrectly as not class member (false negatives FN)
- Two measures are computed for describing the classification result [3]
- -The Sensitivity (SE) measures the amount of correctly classified class members within all class members:

S

$$E = \frac{TP}{TP + FN}$$

-The Positive Predictive Value (PPV) measures the amount of correctly classified class members within all objects classified as a class member

Optimised parameter settings of the particular system lead to promising results of the system performance. The following SE and PPV values for the different species could be achieved.

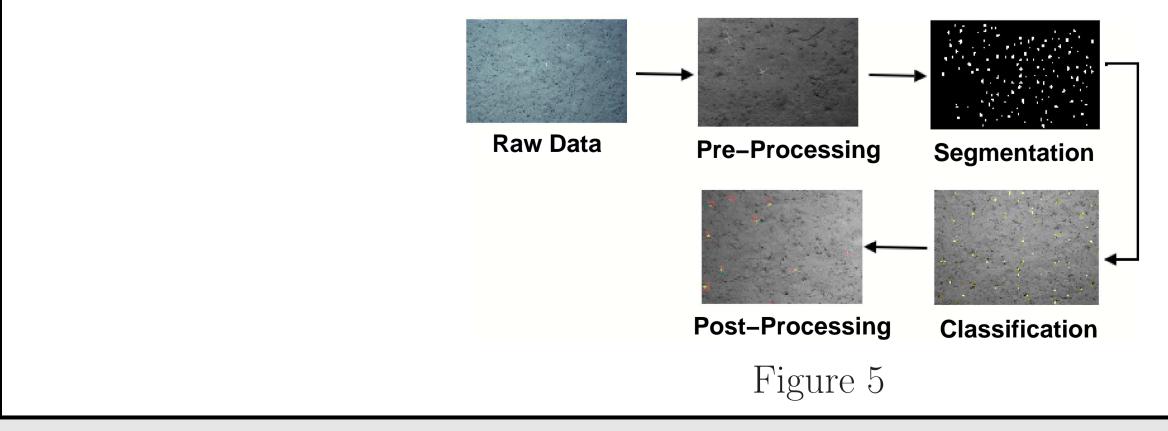
Species	SE	PPV
Sea cucumbers	85,61 %	78,21~%
Star fishes	74,47~%	74,57~%
	ra a l M	

- Generation of a training set with
- -subimages containing a particular species
- -subimages without this species
- Training of a classifier (Support Vector Machine) [2]
- Application

Sea lilies 56,34 % 55,45 %

- \rightarrow Satisfying results for star fish and sea cucumbers
- \rightarrow Detection of sea lilies still requires improvement

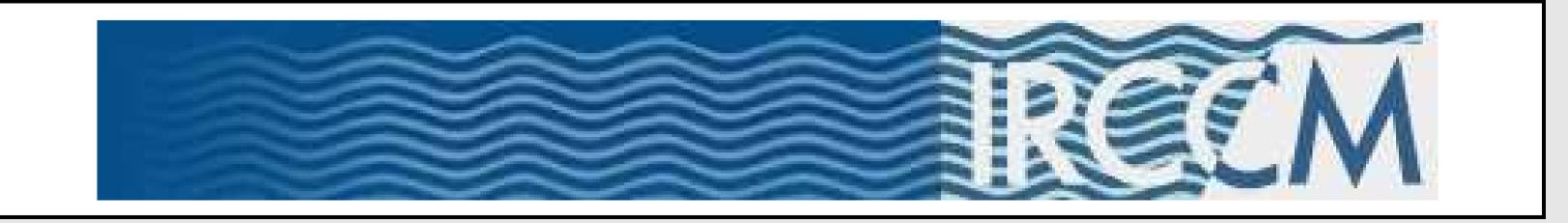
Conclusion and Outlook


- We have proven the general feasibility of our approach for the detection of species
- Two particular species can already be detected and identified reliably
- Results from manual analysis of 66 images taken at the central part of the transect:
- -significant decline in mean density of sea cucumbers (Elpidia glacialis), sea lilies (Bathycrinus cf. carpenteri), burrow entrances and total megafaunal densities from 2002 to 2004
- -This concurs with a decrease in sea ice coverage, particulate flux to the sea floor, sediment-bound nutrients and pigments, microbial biomass and changes in meiofaunal community structure.
- -Results from automated image analysis will increase the spatial resolution and statistical power of our analysis
- \rightarrow processing of larger quantities of images.

References

- [1] Soltwedel, T. et al.: Hausgarten: Multidisciplinary Investigations at a Deep-Sea, Long-Term Observatory in the Arctic Ocean Oceanography, $\mathbf{18}(3)$ (2005) pp. 46-61
- [2] Schölkopf, B., Smola, A.J.: Learning with Kernels: Support Vector Machines, Regularization, Optimization and Beyond (Adaptive Computing and Machine Learning). MIT Press, Cambridge, MA, 2002

• Segmentation of interesting objects:


- -different algorithms for different species
- -Application of the classifier to the segmented object

[3] Fawcett, T.: ROC Graphs: Notes and Practical Considerations for Researchers. HP Labs Tech Report HPL-2003-4, (2003)

Contact

Birgit Lessmann: blessman@techfak.uni-bielefeld.de

