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ABSTRACT. This study investigates the suitability of a kinematic approach to find the

velocity field from dated internal-layer architecture in firn. Internal layers are isochrones

and the depositional age of a layer particle is treated as a tracer. The forward problem uses

two-dimensional steady-state advection of age, and conservation of mass to predict layer ar-

chitecture. Different combinations of constraints on horizontal or vertical velocity properties

are added. dThe inverse problem can be formulated as the solution of underdetermined and

overdetermined systems of equations .eThe systems are solved using singular-value decomposition,

allowing analysis of the singular-value spectrum, modeldresolution,eand data resolution. dSolutions of

the inverse problemeare evaluated by comparing the velocity-field solutions with synthetic input velocity

data. Compared to conventional accumulation estimates,dthe new approach takes lateral advection

into account,eenabling improved separation of spatial and temporal variations in accumulation. dTwo

glaciological applications are presented: the determination of the migration velocity of a spa-

tially non-stationary accumulation pattern, and reconstruction of past accumulation and its

stationarity over time.e

1. INTRODUCTION

Internal layering is widely observed by radar sounding in

cold firn and ice, on high alpine and polar glaciers as well

as ice sheets. Layer architecture results from the interplay

of spatio-temporal variation of surface accumulation, bottom

melting, and advection caused by ice dynamics. Most layers

are isochrones, di.e. surfaces of equal age.eWhereas age

information retrieved from ice cores is representative only for

the immediate vicinity of the drilling location, the layer archi-

tecture provides a spatial picture. It represents an integrated

view of the temporal evolution of an ice mass.

Several studies exploited this property to enhance the view

of past conditions and to understand present conditions. The

simplest application is the one-dimensional direct inversion of

layer depth and density distribution for accumulation, cover-

ing shallow depth and a view millennia at most (see Annals

of Glaciology 39 and 41, and references therein, for a sum-

mary of studies). However, effects of horizontal advection are

not considered; these effects can introduce errors into the in-

ferred accumulation. Recently, Arcone and others (2005) used

an accumulation-rate model to investigate how accumulation-

rate anomalies and ice velocity affect stratigraphic variations

of internal layers. Other approaches utilize forward modeling

of the whole ice column and least-squares techniques to solve

for the accumulation rate by minimizing differences between

calculated and measured internal layer architecture (Siegert

and others, 2003; Jacobel and Welch, 2005). Parrenin and

Hindmarsh (2007) gave analytical solutions for layer stratig-

raphy, depending on mass balance, flow field, and ice thick-

ness. Of special interest is the reconstruction of trajectories

of particle flow to improve firn and ice-core dating and sep-

arate spatial from temporal variations. Based on observed

thickness anomalies between isochrones, Leonard and others
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(2004) identified a high-accumulation region upstream of the

Vostok ice core and quantified its effect on the paleoclimatic

reconstruction. Morse (1997) iteratively solved a non-linear

least-squares minimisation problem to invert the surface ve-

locity field at Taylor Dome for ice rheology and flow param-

eters. dWaddington and others (2007) used a forward

model efor calculating surface height, particle paths, and in-

ternal layer shapes to infer daneaccumulation pattern that re-

produces observed layer architecture. They apply the method

to the area around Taylor Dome.

In this study I dformulate a formal inverse approach

usingeobserved and dated layer architecture in firn, i.e. the

age–depth distribution, to kinematically determine horizontal

and vertical velocities. The direct solution for the flow field

from internal layers in the firn column with depth-dependent

density poses a problem that has not been investigated pre-

viously. Because of the variation of density with depth, the

modeling of firn rheology is much more difficult than that

of solid ice. Studies concerned with deeper layers (below a

few hundred meters depth) therefore usually consider den-

sity to be constant over the whole ice column. The kinematic

approach has the advantage that no assumptions about firn

rheology are needed and a true density distribution can be

utilised.

2. INFERRING VELOCITIES FROM

TRACER FIELDS

The debate in the oceanographic community on the ques-

tion “Can a tracer field be inverted for velocity?”, as formu-

lated by Wunsch (1985) two decades ago, showed that it is

in principle possible. Without going into details here, it can

be said that useful information about the underlying flow

field can be extracted from a tracer distribution, even for un-

derdetermined problems d(that is, there are less known

equations than unknowns; see appendix).eA number of
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physical and chemical parameters can be used as tracers in

ice masses. Of particular interest is the age of deposition at

the ice-sheet surface of a certain material particle, hereafter

simply referred to as age. In comparison to physical or chem-

ical tracers, such as isotopic composition or aerosols, age can

definitely be considered a conservative tracer in the sense that

it is subject to neither diffusion nor reaction. In the context

of ice-core deep drilling for paleoclimate research, glaciologi-

cal applications focused mainly on forward modeling of this

tracer under estimated environmental and dynamical condi-

tions (e.g. Nereson and Waddington, 2002; Clarke and oth-

ers, 2005). Typical application examples are reconnaissance

for suitable drilling sites, or ice-core dating by flow modeling.

Before dsolving the inverse problem for the kine-

matic model with real field datae, it is important to

understand strengths and to identify pitfalls dof the kine-

matic modele. This can best be achieved by creating syn-

thetic data to test algorithms, because all parameter fields

are known beforehand, dand as a result, the solution

of the inverse problem can be checkede. I use a sim-

ple prognostic forward model to create synthetic stationary

age distributions under prescribed conditions for a range of

flow scenarios of varying complexity for the upper 100 m of

the ice sheet, i.e. the firn column. Subsequently I apply a

diagnostic dinverse approacheto the synthetic age distri-

bution to solve for the velocity field. The inversion is based

on desingular-value decomposition (SVD). SVD has several

advantages over other schemes, such as e.g. least squares
dnormal equationse, especially in terms of analysing the

inversion results (as summarized, for instance, by Wunsch,

1996). Various combinations of boundary conditions and con-

straints are used to set up systems of equations to be solved,

covering the full range from under- to overdetermined sys-

tems. Comparison of reference velocities calculated by the

prognostic model with the inferred velocities from the in-

verse problem then provides a means to evaluate the per-

formance and reliability of the SVD for different constraints.

I introduce the flow scenarios, the deinversion formalism, and
dconstraintsein the next sections. The main dbodyeof the

paper (section 5) exploits SVD properties for interpreting the

results. dFinally, I apply the kinematic model to two

glaciological problems (section 6): the first problem

deals with application of the inverse approach to de-

termine the migration velocity of an accumulation

pattern from the age–depth distribution and an ac-

cumulation proxy at the surface. The second problem

aims at reconstructing the past distribution of accu-

mulation and determine its stationarity over time.e

2.1. Kinematic Equations

The approach presented here is based on a kinematic consid-

eration of the firn volume; therefore the equations for conser-

vation of energy and momentum are not taken into account.

In general, the distribution of any tracer in a medium can

be described by an advection-diffusion equation. (Details on

the tracer transport and formulation in ice sheets are dis-

cussed extensively by Clarke and others (2005).) In our case,

the corresponding tracer is depositional age, A = A(r, t), a

non-diffusive property, which obeys

∂tA + v · ∇A = 1. (1)

All calculations are carried out in two-dimensional (2D) space,

r = (x, z) (z positive and increasing downward), and the ve-

locity v = (u, w) = v(r, t). ∂t denotes the partial derivative

with respect to the subscript variable, here time t. d(See ap-

pendix for conventions and a list of symbols.)eEquation

(1) is sometimes referred to as the age equation (e.g. Hind-

marsh and others, 2006). The right-hand side represents a

source term, which is responsible for the actual aging of the

firn with time.

The second governing equation is the conservation of mass,

∂tρ +∇ · (ρv) = 0. (2)

where ρ = ρ(r, t) is the density. These two equations form the

fundamental system of linear equations used in the forward
dprobleme.

2.2. Assumptions and boundary conditions

A number of assumptions are employed for the sake of simplicity;dhowever,

they do not depreciateethe general applicability of the
dinverse-problem formulatione. The considered firn vol-

ume extends from the surface (z = 0) to an arbitrary depth

(z = zmax). The density distribution is taken to be later-

ally homogeneous and time-independent, di.e.e ∂xρ = ∂yρ =

∂tρ = 0 (Sorge’s law), but depth-dependence is maintained

(∂zρ 6= 0). This assumption is well justified on a regional

scale for ice-sheet plateaus (e.g. Frezzotti and others, 2004;

Richardson-Näslund, 2004; Rotschky and others, 2004; Ar-

cone and others, 2005), but has to be considered with care on

cold alpine glaciers. Note that the depth-dependency of den-

sity is a prominent ddeviation fromethe incompressibility

assumption often used in ice-sheet modeling. Time-dependence

of equations (1) and (2) is maintained in the prognostic for-

ward model. The system of equations to be dsolvede, how-

ever, is formulated in a time-independent way so that ∂t(·) =

0 (where (·) denotes any term to be differentiated), because

the forward model produces a steady-state age distribution

as output.

No forces appear in the above equations, simplifying mat-

ters such that the upper boundary can be taken as a hor-

izontal surface, i.e. parallel to x. Position and direction of

scalar and vector quantities then always refer to this surface.

(Consider a radargram as an illustrative example. It contains

records of the reflector depth with respect to the relative sur-

face. A topographic correction is applied only during data

processing.) The kinematic boundary condition at the sur-

face is w(x, z = 0) = ḃ(x)/ρ0, where ḃ(x) is the surface ac-

cumulation and ρ0 = ρ(z = 0) is the density at the surface.

Additional constraints are introduced later, primarily as pre-

scribed velocity properties.

2.3. Prognostic forward model

The forward model runs under prescribed stationary alloca-

tions of density, horizontal velocity, and accumulation on an

ordinary grid, discretised with finite differences. It calculates

the vertical velocity from the combined effect of accumula-

tion at the surface, advection, and densification, and yields

the synthetic age–depth distribution. Starting from an initial

laterally homogeneous, vertically increasing age distribution,

the prognostic model runs in a transient mode until a steady

state is reached, i.e. when the particles from the surface at

t = 0 reach the edge of the domain. dAs a boundary con-

dition at the surface the age is set to zero. At the
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inflow of the model domain the horizontal age gradi-

ent is set to zero. eDetails on grid parameters are listed

in Table 1. The age–depth distribution constitutes the essen-

tial output, which is passed to the dinverse problem.eThe

prescribed horizontal velocities uref and calculated vertical

velocities wref of the forward model are defined for all grid

points. We later refer to them as the reference-velocity field,

denoted by the superscript ref , against which the inferred

velocity field, denoted by the superscript est, is compared.

2.4. Linear system for dinverse modele

The time-independent forms of equations (1) and (2) read

u∂xA + w∂zA = 1 (3a)

ρ∂xu + ρ∂zw + w∂zρ = 0. (3b)

The discretisation schemes for solving this linear system on

a triplex-staggered grid (a grid consisting of three subgrids

shifteddrelative toeeach other) are taken in an adapted form

from Fiadeiro and Veronis (1982) and Wunsch (1985). The

input fields of age and density are prescribed on a rectan-

gular grid, the A-grid, with a grid spacing of ∆x and ∆z

in x- and z-direction, respectively. The A-grid has I × K

nodes. Corresponding indices for the gridded variables are

i = 1, . . . , I for the horizontal coordinate (increasing down-

stream, dleft to righte) and k = 1, . . . , K for the vertical

(increasing downward, dtop to bottome) coordinate, as in-

dicated in Figure 1(a). The grid nodes representing u and w

(u- and w-grid) are shifted by half the grid spacing in the

horizontal and vertical direction, respectively, relative to the

nodes on which the input parameters for age A and density ρ

are prescribed (Figure 1). Application of staggered-grid dif-

ferences to Equation (3) leads to a discrete system, which for

a unit cell (Figure 1(a)) can be expressed as

„
cα

i−1,k cβ
i,k cγ

i,k−1 cδ
i,k

cκ
i−1,k cλ

i,k cµ
i,k−1 cν

i,k

«
0
BB@

ui−1,k

ui,k

wi,k−1

wi,k

1
CCA=

„
1

0

«
. (4)

Detailed expressions of the staggered-grid differences and co-

efficients {cα,...,ν
i,k } = f(A, ρ) are given in the appendix. As

desketched in Figure 1(b) for the node labeled A2,4,
dfive

A-nodes are involved in the discretised representa-

tion ofethe age equation for a single node. Consequently, the

ui,k, wi,k for a unit cell always ddepend on the values of

A and ρ at the neighbouring nodes. These valueseare

contained in the ci,k-coefficients in (4). The ui,k, wi,k can thus

not be fully determined on the boundaries, but only within

the dashed region shown in Figure 1. This region is termed

the solution domain. This formulation has the advantage that

no other specific conditions are necessary at the boundaries

of the domain where thedinverse problemeis solved with

SVD. As can also be seen in Figure 1(b), in each dimension,

x and z, the total number n of nodes for unknown variables u

and w differs. Within the solution domain, the number nx
u of

variables u in a row (x-direction) is nx
u = I − 1. Analogously,

along a column (z-direction) nz
u = K − 2. For the variable w,

nx
w = I − 2 and nz

w = K − 1. The total number of elements of

each variable within the solution domain is nu = nx
unz

u and

nw = nx
wnz

w. Defining the following vectors and matrix,

d = {dp} = (1, 1, . . . , 0, 0)T ∈ RM , M = 2nz
unx

w,

v = {vq} = ({ui,k}, {wi,k})
T

= (uT , wT )T ∈ RN , N = nu + nw,

M = {Mp,q} = ({cα
i,k}, . . . , {c

ν
i,k}) ∈ RM×N , (5)

allows one to set up the matrix equation

Mv = d. (6)

dThe variables p, q are merely indices of vector and

matrix elements, to be distinguished from the coor-

dinate indices i, k of the actual grid. The vectored

represents the data in data space RM , and dthe vectorev

represents the model parameters in model space RN . M is the

number of (known) equations, N is the number of unknowns,

in our case the velocities within the solution domain. The rela-

tionship between model parameters and data is described by

the model matrix M, sometimes referred to as the data kernel

(Menke, 1989, p.9). dThe reader might wonder how it is

actually possible to define uncertainties of the data

vector d, which contains only ones and zeros. For this

particular inverse problem, the actually measurable

quantities, age and density, appear on the left-hand

side in the matrix elements of the data kernel. The

uncertainty of the data vector is thus a measure how

the uncertainties of the data kernel cause the vector

on the right-hand side of (6) to differ from values be-

ing exactly ones and zeros, even for exact velocities

v. This point will be explored later in more detail by

using a Monte Carlo-based approach.e

3. SINGULAR VALUE

DECOMPOSITION

3.1. dPrinciplese

The SVD of a matrix M is a generalisation of the spectral de-

composition of a square to a rectangular matrix. The spectral

decomposition of a rectangular matrix always exists. Here we

apply SVD to calculate the pseudo-inverse (or generalised in-

verse) of M, mainly following the notation of Wunsch (1996).

Any rectangular matrix M can be decomposed into a factori-

sation of the form

M = UΛVT , (7)

where U and V are both unitary rectangular matrices, U ∈

RM×M , V ∈ RN×N , and VT denotes the transpose of V.

The generally non-square matrix Λ ∈ RM×N contains the

singular values (square root of eigenvalues) of M in decreas-

ing order on the main diagonal, Λp,q = δpqλp, with the Kro-

necker symbol δpq. The matrix V contains a set of orthogonal

base-vectors of M, spanning the N -dimensional model (or

solution) space, whereas the matrix U contains a set of or-

thogonal base-vectors spanning the M -dimensional data (or

observation) space. The number R of non-zero singular values

is the rank of M. If some singular values are zero or M 6= N ,

one or more of the rows or columns of Λ must all be zeros.

One can then drop those columns of U and V that are mul-

tiplied by zeros only, thus reducing the matrices in (7) to the

expression

M = URΛRVT
R , (8)
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(a)

◦ wi,k−1

⊗Ai,k−1

ρi,k−1

• ui−1,k⊗Ai−1,k

ρi−1,k
⊗Ai,k

ρi,k
⊗Ai+1,k

ρi+1,k

⊗Ai,k+1

ρi,k+1

• ui,k

◦ wi,k

(b)

A2,4

ρ4,3

⊗ ⊗ ⊗ ⊗ ⊗ ⊗• • • • •

◦ ◦ ◦ ◦ ◦ ◦

⊗ ⊗ ⊗ ⊗ ⊗ ⊗• • • • •

◦ ◦ ◦ ◦ ◦ ◦

⊗ ⊗ ⊗ ⊗ ⊗ ⊗• • • • •

◦ ◦ ◦ ◦ ◦ ◦

⊗ ⊗ ⊗ ⊗ ⊗ ⊗• • • • •

◦ ◦ ◦ ◦ ◦ ◦

⊗ ⊗ ⊗ ⊗ ⊗ ⊗• • • • •

◦ ◦ ◦ ◦ ◦ ◦

⊗ ⊗ ⊗ ⊗ ⊗ ⊗• • • • •

Fig. 1. (a) Unit-cell scheme of the numerical grid used for solving the linear system of equation (3). (b) Scheme of the triplex-

staggered numerical grid for I = K = 6. The uppermost row corresponds to the surface. Distance between nodes of similar

type is ∆x and ∆z, between nodes of different type ∆x/2 and ∆z/2 in the horizontal and vertical direction, respectively. The

thick cross centered on the ⊗-node labeled A2,4 represents the unit cell in (a) and strikes all nodes involved in the age equation

for the A2,4-node. Likewise, the dthick crosselabeled ρ4,3 strikes all nodes involved in the conservation of mass equation for

the ρ4,3-node. dBoth equationsecan therefore only be solved for those A-nodes within the region bounded by the dashed

line, referred to as solution domain. The ⊗-nodes on the corners are displayed for completeness, but not used in the inverse

problem.

where the subscript R indicates the number of columns, with

UR ∈ RM×R and VR ∈ RN×R. ΛR ∈ RR×R is the square

submatrix of Λ with non-vanishing singular values. It can

be shown (e.g. Wunsch, 1996) that VRΛ−1
R UT

R is the pseudo-

inverse of M, which we use to solve (6) for the unknown model

vector, the solution

v = VRΛ−1
R UT

R d , (9)

where Λ−1
R is the inverse of ΛR, i.e. with λ−1

p on the main di-

agonal (λp 6= 0) and zeros elsewhere. The above expressions

for M, U, and V define four spaces,dwhich are explained

further below:ethe model range VR ∈ RN×R (column space

of M), the model nullspace V0 ∈ RN×(N−R), the data range

UR ∈ RM×R (row space of M), and the data nullspace U0

∈ RM×(M−R). Depending on the size of M , N , and R, not of

all of these spaces need to exist (in the sense that they are not

empty sets). dConditions for existence of these spaces,

definition for over- and underdetermined systems of

equations, and combinations of these are listed in the

appendix.eIf there is a data nullspace U0 (R < M), and if

the data have components in it, then it will be impossible to

fit the data exactly. This data mismatch between true data

and estimated data, referred to as dtheeresidual norm, will

then be different from zero. (As a norm we will use the L2

norm or Euclidean length of a vector, later denoted by the

operator || · ||. See appendix for definition and further infor-

mation.) On the other hand, if the model has components in

the model nullspace V0 (R < N), then it will be impossible

to determine the model exactlyd(hence the term model

nullspace).eIn that case, the model solution can be pre-

sented as a sum of the particular solution given by (9), which

contains only range vectorsdand solves (6), and an ar-

bitrary homogeneous solution V0α, which solves the

homogeneous system of equations Mv = 0.eThe vector

α contains (N −R) coefficients for the linear combination of

the (N − R) column vectors of V0 in the model nullspace,

about which the equations provide no information.

The SVD is related to the least-squares approach. All of

the structure imposed by SVD is also present in least-squares

solutions. One commonality is that the SVD simultaneously

minimises the residual and solution norms (minimum norm

property, e.g. Scales and others (2001, p. 66)). However, the

SVD solution generalises the least-square solution to the case

where the matrix inverses of MTM or MMT , the simplest

forms, do not exist, for instance if the system is not full rank

(Wunsch, 1996, 157f). An important advantage for the appli-

cation of SVD and the interpretation of the solution is that

only a single algebraic formulation is necessary, dforeover-

, under-, or just-determined systems. The SVD provides its

control over the solution norms, uncertainties, and covari-

ances through choice of the effective rank R̂ ≤ R, which

leads to the so-called truncated SVD, demonstrated later.

The truncated form makes a clear separation between range

and nullspace in both solution and data spaces.

3.2. Resolution

A useful feature of the SVD is that it provides direct access to

the resolution dobtainable when mappingebetween model

and data spaces (for discussions see Menke (1989, p.62f) and

Wunsch (1996, p.165)). The model resolution matrix, defined

as

TV = VRVT
R, (10)

determines the relationship between the general solution and

the particular solution. If no model nullspace exists (R = N),
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the general and particular solution are equal. Then TV = IN ,

the N × N -dimensional identity matrix, meaning that the

model is completely resolved. If a nullspace exists, non-zero

terms will appear off the main diagonal in (10), so only aver-

ages of some model parameters can be resolved. Analogously,

the data resolution matrix

TU = URUT
R (11)

provides information on how well the observed data are

estimated when the model solution obtained with the gen-

eralised inverse is used in the forward model to predict ob-

servable quantities. Both resolution matrices are functions of

the data kernel M, which contains the a-priori information

about the physical representation of the problem, i.e. by the

time-independent equations (3). When the problem is linear,
dresolution matrices depend on neither the model pa-

rameters v nor the data d.e

3.3. Error covariance and uncertainty

Solving the inverse problem yields an estimate of model pa-

rameters, denoted vest, which are subject to uncertainties.

Using the estimated vest in the forward problem (6) yields a

prediction of the data vector, dest, which differs from the true

data vector d by some residuals, denoted n = d − dest. The

residuals can in general arise from two contributions: noise

from errors in the measurement of data, and inadequacy of

the forward algorithm to describe the problem exactly. The

covariance Cvv of the estimated model parameters depends

on the residual covariance Rnn (the second-moment or covari-

ance matrix of n, see appendix for details). It can be shown

to be (Wunsch, 1996, p.143)

Cvv = VRΛ−1
R UT

RRnnURΛ−1
R VT

R . (12)

In the case of uncorrelated uniform variance σ2
n of the data,

(12) simplifies to

Cvv = σ2
nVRΛ−2

R VT
R . (13)

The covariance of the model parameters arises from uncer-

tainties present in the data and generates uncertainty in the

coefficients of the model range vectors. Data covariance is

thus mapped onto model covariance. To obtain the complete

solution uncertainty Pvv of the model parameters, the influ-

ence of the missing nullspace contribution has to be taken

into account as well. It follow as (Wunsch, 1996, p.151)

Pvv = Cvv + V0RααVT
0 , (14)

where Rαα is the second-moment matrix (or covariance ma-

trix, see appendix) of the coefficients α of the model nullspace

V0, forming the homogeneous solution V0α. dThe matrixeRαα

may be entirely unknown, or an estimate from a-priori infor-

mation might be available. The uncertainty of the residu-

als, Pnn, follows from the variance of the estimated residuals

about their mean (Wunsch, 1996, p.117), which can be writ-

ten as

Pnn = U0U
T
0 Rnn(U0U

T
0 )T . (15)

The covariance (12) of the estimated model parameters is

very sensitive to small non-zero singular values. Solution vari-

ance can be reduced by choosing an effective rank R̂ < R to

exclude small λp. Inspecting the singular-value spectrum of

the data kernel enables one to choose an appropriate cut-

off size for contributing singular values (Menke, 1989, p.122).

This artificial reduction of model- and data-space dimensions

leads to rank deficiency, and thus worse resolution, and in-

creased dimensions of the nullspaces, but decreases model

covariance. dThe choice ofethe effective rank R̂ therefore

provides a means to trade off variance and resolution, or so-

lution norm and residual norm, respectively.

3.4. Scaling and weighting

Weighting is in general used to give more importance to cer-

tain observations than to others, mainly to correct for uncer-

tainty. An undesired weighting effect occurs if a system con-

sist of different physical equations, involving different physical

quantities. In our case, the conservation of mass and the age

equation involve the quantities age and density. In the linear

system (6), the rows of M represent these equations. Their

different physical origin leads to different norms of the row

vectors (i.e. Euclidean length) of the matrix M. To correct for

this effect, we first perform row scaling of the matrix M by

multiplying each row with the reciprocal of its row norm (see

appendix for details). This is carried out below by operations

with the matrix W, which contains the row norms of M on

its diagonal. Likewise, the column vectors of M have different

norms. Therefore we require column scaling after the row scal-

ing is performed. This is done by operations with the matrix

S. Performing row scaling first, and column scaling second,

transforms our linear system (6) from the original space to

the so-called scaled space, denoted by the tilde attribute ∼.

The transformation has the form

W−T/2MST/2S−T/2v = W−T/2d, (16)
dwhich we abbreviate as

fMṽ = d̃. (17)

Theenotation for W stems from its Cholesky decomposition

W = WT/2W1/2 (Wunsch, 1996, p.159). Similarly, S has

the Cholesky decomposition S = ST/2S1/2 and contains the

column norms of the already row-scaled matrix W−T/2M on

its diagonal.

The SVD is applied in the scaled space. Back transfor-

mation of the solution ṽ in the scaled space to the desired

solution v in the original space is carried out by v = ST/2ṽ.

It can be shown that for a full-rank underdetermined (overde-

termined) system, row (column) scaling is irrelevant, das the

respective scaling matrix is not present in the solu-

tion anymore (Wunsch, 1996, p.161 and 164). Despite

this fact,ewe always apply both scalings to cover all general

cases. In addition to scaling, the use of W and S allows a de-

gree of control of the relative norms of solution and residual.de

3.5. Separation of mean and variation
dDepending on the problem we are dealing with, in-

formation about the variations of the velocity around

an average is more interesting than the average ve-

locity, as the velocity variations tell us more about

the processes occurring at the ice-sheet surface and

their interaction with ice dynamics.eUnfortunately, the

minimum-norm property of the SVD will result in a solution

that is smallest, in the sense of being closest to zero. dThis

means that we might get a wrong structure of the

velocity field. It is thereforeefeasible to consider only the
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Table 1. Simulation parameters

Scenario∗ ūref ∂xuref ŭref

(m a−1) (a−1)

NF 0 0 0
SF 1 0 0
MF 10 0 0

MDF 10 4 · 10−5 6= 0

dimension min max increment
Prognostic Forward Model

x 0 5 km 100 m
z 0 100 m 1 m

SVD solution

x 0 5 km 500 m
z 0 50 m 5 m

∗NF: no flow; SF: slow flow; MF: moderate flow; MDF: moderate
divergent flow with a 20% increase in u over the x-domain. ū is the
mean horizontal velocity averaged over the entire domain.

variations of the flow field on a homogeneous background.

Hence we separate the mean flow from its spatial variations

by

v = v + v̆, (18)

where v = (uT ,wT )T is the mean flow field and v̆ = (ŭT , w̆T )T

is the spatial variation. Separate mean values ū = 〈u〉, w̄ =

〈w〉, each averaged over the entire domain, are used for hori-

zontal and vertical velocities, respectively, and u = ū inu ,w =

w̄inw , where in is a vector of length n with all ones. Our linear

system (3) can then be reformulated as

Mv̆ = d̆ = d−Mv. (19)
dIn case that the mean velocities used for this sep-

aration are incorrect, then the SVD-solution of the

inverse problem will try to correct this error, e.g. by

providing a velocity variation very different from zero

on average.eFor the rest of the paper we drop the tilde at-

tribute ∼. We assume that separation of mean and variation

and subsequent scaling has been applied prior to SVD. The

results are then discussed in terms of the variational compo-

nent of the velocity field v̆, as well as the complete velocity

field v.

4. SIMULATIONS AND INVERSE

PROBLEMS

4.1. Scenarios
deSynthetic scenarios of flow are created with the forward

model, with physical parameters chosen to mimic real condi-

tions. The horizontal flow field uref is prescribed. A Gaussian

variation in surface accumulation ḃ(x) is superimposed,

ḃ(x) = ḃ0

„
1 + exp

»
−

(x− xµ)2

x2
σ

–«
, (20)

where ḃ0 = 50 kg m−2 a−1is the background accumulation,

a value typical for the Antarctic plateau. The maximum ac-

Fig. 2. Accumulation forcing (a) and resulting age–depth

distributions using different horizontal velocities of scenario

(b) no flow, NF,(c) slow flow, SF, (d) moderate flow, MF,

(e) moderate divergent flow, MDF, for the upper 50 m of the

firn column (Table 1). dColorscale represents age val-

ues at grid nodes, with the spatial resolution of the

colorscale corresponding to the resolution used for

discretising the inverse problem. Contours are lines

of equal age.eHorizontal flow is from left to right. Crosses

in (a) indicate position of nodes on A-grid, scale on the right

is vertical velocity at the surface.



O. Eisen: Inferring velocity from stratigraphy by an inverse method 7

cumulation occurs at xµ = 0.5(xmin − xmax), the center of

the x-domain, with ḃ(xµ) = 2ḃ0. xσ = xµ/6 determines the

width of the distribution (Figure 2a). Following Richardson

and Holmlund (1999), density is parameterised as

ρ(z) = ρi + (ρ0 − ρi)e
−cρz. (21)

dThe variables ρ0 = 400 kg m−3and ρi = 900 kg m−3represent

the density at the surface, and the density of solid

icee, respectively, and cρ = 0.05 m−1. Such a density distri-

bution is commonly observed in Antarctica.
dFor the numerical forward model and the inverse

problem, the continuous functions defined in (20) and

(21) are discretised onto the respective grids. The

triplex-staggered grid used in the inverse problem

of the linear system (3) has been explained above,

with more specifications given below. The forward

model is implemented on a grid spanning 5 km in

the horizontal and 100 m the vertical direction, con-

taining 51 × 101 nodes (Table 1). This volume suf-

fices to cover the firn region of cold polar or high-

altitude sites and also comprises those length scales

which show prominent variations in internal layer ar-

chitecture over short distances, as imaged by radar

at various places in Antarctica (Rotschky and others,

2004; Arcone and others, 2005; Anschütz and others,

2006).

The effect of four different flow regimes of firn with

prescribed horizontal velocity field (Table 1) on the

age–depth distribution are displayed in Figure 2. eIn

the dsimplestecase, no horizontal advection takes place (sce-

nario “no flow”, NF). This could be considered the case on a

broad ice dome or along an ice divide. The other cases con-

sider constant slow flow (SF), ū = 1 m a−1, and constant

moderate flow (MF), ū = 10 m a−1, which are also typical

for polar ice sheets (Xiaolan and Jezek, 2004; Bamber and

others, 2000) or high-altitude alpine glaciers (e.g. Lüthi and

Funk, 2001; Schwerzmann and others, 2006). For these three

scenarios the prescribed velocity variation ŭref = 0. For the

moderate velocity of ū = 10 m a−1, a fourth scenario considers

divergent flow (MDF) of the form u(x) = ū+cu(x−xµ), with

cu such that u(x) increases by 20% from 0.9ū to 1.1ū over the

x-domain, and thus ŭref 6= 0. A scenario with non-constant

horizontal velocities is the most likely case to encounter in

reality, so it will be dethe special focus of the later analy-

sis. Typical velocities for fast ice-stream flow are not taken

into account in the main part of this feasibility study,dbut a

set-up with a higher flow velocity of 50 m a−1will be

treated in the application of the inverse approach to

glaciological problems in section 6.eThe scenarios clearly

show how the varying horizontal advection affects the result-

ing age–depth distribution (Figure 2). For scenario SF, the

effect of the accumulation variation tapers off before an af-

fected ice particle leaves the model domain. For both MF-

scenarios, advection is larger, so the accumulation effect is

still present at the doutflow of model boundary.ede

4.2. Additional constraints

A standard approach to determine the parameters of a phys-

ical model, assumed to be a compatible description of a sys-

tem, is to minimise an objective function that gauges the mis-

fit between measurements and model results. Model physics

are usually enforced as constraints on the minimisation in

Table 2. Prescribed dconstraintseand system properties

Strategy∗ u,w ∂xu ∂zu M R R̂

Plain – – – 162 162 90
dBwe wi,0 – – 171 171 90
Bu ui,0 – – 172 172 100
Pf – – 0 ∀(i, k) 242 180 170
Du – ∆xu∀(i, k) – 243 180 171
dBwPf e wi,0 – 0 ∀(i, k) 251 180 180
BuPf ui,0 – 0 ∀(i, k) 252 180 180
dBwDue wi,0 ∆xu∀(i, k) – 252 180 171
BuDu ui,0 ∆xu∀(i, k) – 253 180 172

∗Age advection and conservation of mass are considered for
all cases. Strategy coding: Plain: no additional constraints; Bw:
boundary conditions of w at surface prescribed; Bu: boundary con-
ditions of u at surface prescribed; Du: horizontal divergence of
u prescribeddat all depthe; Pf: plug flow (no shear) prescribed.
Constraints are enforced by additional equations to model matrix
M. Symbols: ∀(i, k): prescribed for all nodes (i, k); dimension of
data space M d(number of equations)e; dimension of model
space N = 180 (dnumber of unknowns, equalefor all dinverse
problemse); R mathematical rank; R̂ effective (reduced) rank
used fordthe inverse problem.e

the form of exact equations, so-called hard constraints (e.g.

Wunsch, 1996). For ice-flow modeling this was for instance

presented by MacAyeal (1993) in the case of estimating the

basal friction of an ice stream and applied to real data later

(MacAyeal and others, 1995; Vieli and Payne, 2003; Joughin

and others, 2004; Larour and others, 2005), and Truffer (2004)

estimated the basal velocity of valley glaciers. In addition to

the basic physical description of a system, certain aspects of

a solution such as structure, norm, or boundary values are

also sometimes known a-priori. This information is valuable

and helps to restrict the non-uniqueness in solutions of in-

verse problems. It can be included in the objective function

either as a hard constraint by Lagrange multipliers, or as a

soft constraint by trade-off between the norm of the solu-

tion and the norm of the data mismatch. The trade-off can

be implemented in several ways, e.g. by weighting, tapered

least squares, or damped least-squares (Menke, 1989, p.52).

Although the SVD does not explicitly employ an objective

function, constraints can likewise be imposed. dAn example

is provided by Waddington and others (2007), who

also use SVD to invert a linear system of equations

representing a thermomechanical ice-flow model.e

Each of the different sets of constraints applied in the fol-

lowing exercises with a synthetic scenario can in reality also

be determined from measured data. For the problem I address

here, the flow and deformation of firn, one usually hasda first

guesseof the flow field at the surface. Horizontal surface ve-

locities can be measured directly (e.g. ground-based global-

positioning-system surveys of stakes) or indirectly (e.g. ob-

servations with satellite-based interferometric synthetic aper-

ture radar). Here, the reference velocity field vref represents

possible measurements, and thus provides a-priori informa-

tion about various velocity characteristics. d(For real field

applications these vref would be subject to measure-

ments errors. For the synthetic scenario, however,

they are the true values.)eIt is thus possible to prescribe

the horizontal velocity at one or more positions at the surface

(z = 0). For the rest of the paper I will use the discrete index
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notation. The surface corresponds to index k = 1 = k0, so

that

ui,k0 = uref
i,k0

, (22)

can be prescribed on one or more horizontal nodes i at the

surface. In addition to the velocity, other properties dsuch

asethe derivative of horizontal velocity, e.g. uniform, diver-

gent, or convergent flow, can be prescribed as well. With

∆xuref
i,k denoting the horizontal difference of the horizontal ref-

erence velocity at the node (i, k) between neighboring nodes,

we can constrain

ui−1,k0 − ui,k0 = ∆xuref
i,k0

. (23)

Distribution of horizontal velocities with depth are deducible

from measurements of borehole deformation, enabling us to

also use k 6= k0 in (22) for values at depth at the borehole

location (i = ib),
dandealso to infer properties dof surface-

paralleleshearing,

uib,k = uref
ib,k, (24)

uib,k−1 − uib,k = ∆zu
ref
ib,k. (25)

where ∆zu
ref
ib,k is the vertical difference of horizontal reference

velocity at (ib, k). The case ∆zuref
ib,k = 0, i.e. constant hori-

zontal velocity along the vertical, is commonly dcalledeplug

flow. This case will be used later.

Not only can horizontal deformations be deduced from bore-

hole deformation, it is also possible to directly determine the

vertical velocities by different methods. One way is to observe

the movement of markings in a borehole wall (Hawley and

others, 2004; Schwerzmann and others, 2006). This provides

similar information for the vertical velocities,

wib,k = wref
ib,k, (26)

wib,k−1 − wib,k = ∆zw
ref
ib,k. (27)

To infer information about the properties of the problem

posed here, such as stability of the solution and general so-

lution structure, I will employ different combinations of the
dequations constrainingethe linear system (3) to increase

the degree of determinacy. The constraints are enforced by

expanding the number of rows of the model matrix M and

the data vector d in equation (6). Each combination of con-

straints will be referred to as andinverse probleme, which is

then applied to a simulation scenario (Table 2). dThe sim-

plest case (denoted Plain) does not employ further

constraints and considers just equations for advec-

tion and conservation of mass.eOther constraints are set

up by prescribing conditions for u dor w:ethe horizontaldor

verticalevelocity at the surface as boundary condition (de-

noted Budor Bw, respectively),eplug flow (Pf), and hori-

zontal divergence (Du). Moreover, combinations of these con-

straints are also used in the inverse problems dBwPf, BuPf,

BwDu, BuDu, and BwPf.e

The inverse problem Plain shows that the principal prop-

erty of the kinematic approach is underdeterminacyd, i.e. there

are less known equations M than unknowns N (M=

162 < N = 180)e. All other dinverse problemsewith con-

straining equations are less underdetermined, with the major-

ity being overdetermined systems (Table 2). Only the rather

complex MDF-scenario (moderate flow with divergence) will

be solved with dseveral constraintseand will be used later

to discuss the solution properties in detail.

The SVD inversion is implemented with the linear alge-

bra package (LAPACK) routines integrated in MATLAB. As

most of the densification of snow takes place in the upper

part of the firn column, the inverse problems address only

the upper 50 m. The grid used for the inverse problems spans

11 × 11 nodes, with increments of 500 m and 5 m in the

horizontal and vertical, respectively. The grid used for the
dinverse problemsehas a five-fold lower resolution, but its

nodes coincide with a subset of the grid used in the forward
dprobleme. As a resultde, the fields of age and density in-

put to the dinverse problemsedo not have to be interpo-

lated. A linear interpolation of the u- and w-reference-velocity

fieldsd(uref and wref)eis carried out to project these val-

ues onto the triplex-staggered grid (Figure 1). Evidently, the

lower resolution and the interpolation will have some influ-

ence on the results. However, this effect could be considered

equivalent todsmallemeasurement errors for real data. The

influence of data errors on the results will be considered at

the end of the following analysis section.

5. RESULTS AND ANALYSIS

This section compares the solutions of the differentdinverse

problemsefor dthe MDFescenario. I first illustrate the ad-

vantages of SVD-based concepts for comprehensive analyses

by investigating the singular-value spectrum (Figure 3) to-

gether with some norm properties (Figure 4), and resolu-

tion matrices (Figure 5)defor the MDF scenario. dFor three

inverse problems the velocity fields of the solutions

are presented (Figure 6).eSubsequently I discuss the dis-

tribution of several norms d(Figure 7)e, which enable us

to evaluate the solutions and compare the results for the
dinverse problems.eThe first norm type is the L2-norm (see

appendix) of the residual and solution vectors, ||n̆|| and ||v̆||,

respectively. (We consider the solution of the velocity vari-

ation v̆, our main interest, instead of the complete velocity

field v.) The residual norm is a measure of the mismatch

between the data and the model predictions of the data by

the estimated model parameters v̆. The solution norm is a

measure of the length of the solution vector v̆. As discussed

above, the SVD simultaneously minimises these norms to pro-

duce the particular solution, with the rank R̂ determining

the trade-off between residual and solution norm. The second

type of norm is the norm of the difference between the refer-

ence velocity field v̆ref d(which is the right ”answer”efrom

the prognostic forward model linearly interpolated to the u-

and w-grid) and the velocity-field solution v̆est, separately for

horizontal and vertical velocities (||∆ŭ|| = ||ŭref − ŭest|| and

||∆w̆|| = ||w̆ref − w̆est||). Hereafter, these are referred to as

velocity-difference norms. They provide a measure of how well

the inversion dfor a specific inverse problemeperformed

with respect to the known reference data set.

5.1. Singular-value spectrum

We focus on four dinverse problems with different con-

straints eto determine the solution for the velocity field of

the MDF scenario: the underdetermined and dsimplestecase

Plain, thedalmost-determined inverse problem Bwe(boundary

conditions of w at surface prescribed), and the overdeter-

mined inverse problems dBwPf and BwDu (as Bwe, but
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Fig. 3. Singular-value spectrum fordfour inverse problems

with different constraints applied to the MDF sce-

nario (see Table 1)e. The number of unknown variables

N = 180 for all inverse problems.

additionally plug flow (Pf) or horizontal divergence (Du) pre-

scribed as constraints, respectively (Table 2)).

The first third of the ordered singular values (up to in-

dex 72 din Figure 3e), is basically identical for alldinverse

problems.eBeyond this index, up to index 170, the spectra

of the overdetermined dinverse problems fall off slowly

in several steps up to index 170e, whereas the under-

determined inverse problems show only one or two further

Fig. 4. Distribution of velocity-difference norms ||∆ŭ||,

||∆w̆||, and ||∆ŭ||+||∆w̆|| as a function of reduced rank R̂

for inverse problem Bw for the MDF scenario. The norms are

scaled with the dsquare rooteof their mean.

steps before falling steadily.edAll spectra show a final dis-

crete drop at singular values of ∼0.25–0.5.edSuch an

abrupteand final discrete drop in a singular value spectrum

is a typical phenomenon for various problems (Menke, 1989).

Beyond the final discrete drop, all spectra fall continuously
don the log-scale. eThe spectra for underdetermined dinverse

problems decrease faster with increasing index than

the overdetermined inverse problemse. Whereas the rate

of decrease of the spectrum for Plain does not change signifi-

cantly, the otherdinverse problemseshow an increasing rate

of decrease for the smallest singular values on the log-scale.
dIn general, the spectra differ from one another the

most for approximately the smallest 20–30% of the

singular values. This has important implications for

the residual norms and solution norms.eUsing the un-

truncated spectra for estimating the model parameters usu-

ally results in very small residual norms, equivalent to high
dparametereresolution, but larger solution norms. The cor-

responding velocity fields show very detailed velocity struc-

tures, which, however, need not to be the correct.
dTo demonstrate the influence of the the choice of

the reduced rank R̂, Figure 4 displays the resulting

difference norms for the inverse problem Bw of the

whole range of possible values for R̂. The difference

norm of vertical velocities, ||∆w̆||, weighted with the

square root of its mean, is constant at about 1 for

R̂ ≤ 80, then falls off rapidly to steady values around

0.26, before it rapidly increases for R̂ > 169. This dis-

tribution indicates that for 90 ≤ R̂ ≤ 169, the vertical

reference-velocity structure is approached best, al-

though not exactly matched. This can be confirmed

by checking the complete velocity structure for other

R̂ in figures comparable to Figure 6, but these are

omitted here for brevity.

The distribution of ||∆ŭ|| for Bw, likewise weighted

with the square root of its mean, is constant around

1.7–1.8 for R̂ < 120. Two plateaux are present for

130 ≤ R̂ ≤ 160. In this region the mismatch of hori-

zontal reference and solution velocities are at their

minimum. For R̂ > 160, ||∆ŭ|| increases with rank R̂.

Adding both velocity-difference norms, each weighted

with the square root of its mean velocity, a broad

minimum with two plateaux for ||∆v̆|| is apparent

again for 130 ≤ R̂ ≤ 160. This range corresponds to

the tail of the singular-value spectrum (Figure 3),

where the singular values fall continuously. Similar

analysis for the variation of difference norms with

reduced rank for the other inverse problems yield

equivalent findings: the velocity-difference norms al-

ways show a minimum for a range of singular val-

ues before these show the tendency to decrease more

rapidly with larger index. Within this minimum re-

gion the choice of R̂ leads to only little differences

of the final velocity solution. The inverse problems

which constrain the horizontal velocity at the sur-

face, i.e. Bu, BuPf, and BuDu, basically display the

same features.
dOne choice for R̂eis the index of the last step-like drop-

off as the lower bound of the singular value spectrum to be

used for estimating the solution of our inverse problem in

equation (9). The continuously and rapidly falling part of the

singular spectra is thus truncated, a common practice when

employing SVD for solving inverse problems (e.g. Wunsch,
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1996). This leads to poorer resolution, but smaller solution

norms and velocity-difference norms, and yields sufficiently

realistic results for most dinverse problemse(Figure 6). Al-

though the resulting smallest singular value of the truncated

spectra dare about the same order of magnitude for

all inverse problemse, the corresponding reduced rank R̂

differs significantly (Table 2). This results from the fact that,

depending on the number and type of dconstraintse, the

equations show a varying degree of linear independence. The

smaller the singular values, the more linearly dependent are

the equations. dFor BwPf, however, this choice of R̂ =

171 at the final discrete drop produces a field of al-

most constant horizontal velocities, implying that im-

portant information is still present in the tail of small

singular values for larger R̂. For BwPf it is actually

possible to maintain the full rank and obtain realistic

solutions. To accommodate this observation, another,

however more subjective choice for R̂, would be to

choose a singular value of 0.2 as cut-off value for all
dinverse problems.eWhich choice too make is in general a

difficult one, especially if no further information is available

from a-priori information. For all inverse problems I decide to

choose the final discrete step-like drop-off, apart from BuPf

and BwPf, for which full rank is maintained. This is justified

as BuPf does not show falling tail of singular values at all

(not shown), and the drop for BwPf occurs only for a very

large index and less severe than for the comparable spectrum

of BwDu (Figure 3).

5.2. Model and data resolution
dThe resolution matrices TU and TV provide another

means to judge the solution of an inverse problem.eIf

non-diagonal elements are non-zero, the related main-diagonal

element must be less than unity, indicating that this pa-

rameter is not fully resolved, i.e. only averagesdof nearby

parametersecan be determined. I now discussdthe solution

of three inverse problems with different constraintsefor

the MDF scenario. At full rank, the data are fully resolved

for all underdetermined dinverse problemse, and the model

parameters are fully resolved for all overdetermined dinverse

problemse. dThe latter is the case for BwPf, for which

the full rank R = 180 is maintained (Figure 5).eFor the

truncated underdetermined solutions d(Plain and Bu)edethe

model resolution matrix TV indicates that the horizontal

velocities are only poorly resolved (Figure 5b). deThe ver-

tical velocities are equally well resolved for both dinverse

problemse. It will become evident that this is in accordance

with comparison of the actual velocity fields shown in Figure 6

discussed below. Without checking the reference-velocity field

it is thus possible to assume that din the underdetermined

cases the vertical-velocity solutions are more reliable

than the horizontal-velocity solutions.e

For all doverdetermined or truncated underdeter-

mined cases,ethe data cannot be fitted exactly, giving rise

to larger residuals. dThe order of the diagonal elements

of the data-resolution matrix TU in Figure 5a follows

from that of the structure of M of the linear system

(6), rearranged into a vector. This vector represents

groups of equations or constraints (as indicated on

the abscissa of Figure 5a for BwPf: element 1–81: age

equation, 82–162: conservation of mass, etc.). Within

each group of equations, the elements are sequen-

tially ordered by horizontal rows of grid nodes.eThe

diagonal elements now indicate that especially the data pre-

dicted by the age equations are only poorly resolved for all
dinverse problemse. The equations for conservation of mass

are better resolved, though not fully. Especially without fur-

ther constraints (Plain), they show a decreasing resolution

trend with depth (larger element index). For BwPf, the plug-

flow constraint is well resolved. This result will be evident in

the horizontal-velocity structure discussed later. dFor both,

Bw and BwPf the equations representing the vertical

velocities at the surface are very badly resolved.eThe

“oscillations” in data resolution are not arbitrary. The vari-

ations visible in Figure 5a seem to systematically depend

on the position of the underlying node. The variations are

smaller in the horizontal than in the vertical direction. deOverall,

the model-parameter and data-resolution matrices allow us to

judge and improve the quality of the solution by inspecting

the residual and solution norms and the singular-value spec-

trum without requiring a reference-velocity field.

5.3. Solution- versus reference-velocity
fields

The principal results obtained in the last section are clearly

seen in the velocity distribution (Figure 6). dThe reference

velocity fields uref and wref , which are the correct solu-

tions being sought, are shown in Figure 6a and a’.eThe

underdetermined solution Plain dwithout constraintsedoes

not reproduce the horizontal velocity, but gives an deidea

what the vertical velocity field might look like. In the almost-

determined case Bw the vertical structure is reproduced cor-

rectly, but the vertical velocities in the solution are smaller

than the reference velocities. dThe horizontal velocities

again do not show the expected divergence.eThe ver-

tical velocities in the overdetermined case BwPf are dvery

similar to the almost-determined case Bw, but dif-

fer slightly more from the reference values. Because

plug flow was used as a constraint for this dinverse

probleme, the horizontal velocities uest are now in very good

agreement with the reference field uref , although dwith over-

all smaller values.eThe better agreement of the horizontal

velocities of the solution and reference is consistent with the

fact that the horizontal velocities are well-resolved for this
dinverse probleme(see diagonal elements of model resolu-

tion matrix in Figure 5b). e

5.4. Norm properties of solutions
dWe next discuss the different norm properties of the

inverse problem with different constraintseas listed in

Table 2.eThe difference norm for horizontal velocities, ||∆ŭ||,

is very sensitive to the choice of the mean velocity ū. To

provide a similar foundation for all dinverse problemse,

the mean velocity ū is always provided as the mean of the

reference-velocity field for each scenario, such that only the

variations in the velocity solutions are compared (Table 1).

The influence of zero-mean velocities will be discussed later

in this section.

For full-rank SVD, ordering the ddifferent inverse problemsewith

increasing M (the number of equations), as done in Fig-

ure 7, would generally illustrate the dependence of the resid-

ual norm on determinacy. Naturally, for full-rank underdeter-

mined systems (M < N) the data can be fit exactly, resulting

in ||n̆|| = 0. For reduced rank, however, the residual norm ||n̆||

increases, but yields a dsmalleresolution norm ||v̆||. deFor the
dMDFescenario, the residual norm ||n̆|| is more than a factor
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Fig. 5. Diagonal elements of (a)ddata resolution matrix TU, and (b) model resolution matrices TV,efor the dinverse

problemseBwPf, Bu, and Plain, given in the legend, applied to the MDF scenario with N = 180. dIn (a)e, components of d̆

(element of datade) for BwPf correspond to the age equation, conservation of mass equation, plug-flow constraint, and constraint

of vertical velocity at the surface, as indicated on the abscissa. dIn (b),ecomponents of v̆ (element of model parameterde)

correspond to u and w, respectively, as also indicated.

of two larger for the underdetermined problems d(Plain, Bw,

Bu)ethan for the overdetermined problems d(BwPf, BwDu,

BuPf, BwDu) (Figure 7a).eIn each of these two groups

the residual norm is dquiteeconstant. The velocity norm ||v̆||

spans an order of magnitude (Figure 7b), with opposite ratio

for under- and overdetermined dinverse problemsethan for

the residual norm, as expected.
dMore interesting from an application point of view

is the residual between reference and solution veloc-

ities (Figure 7c and d). The difference norms of hor-

izontal velocities drop from ||∆ŭ|| ≈ 0.5− 0.6 m a−1for

underdetermined problems to values close to zero for

the overdetermined problems. The difference norms

of vertical velocities vary around ||∆w̆|| ≈ 0.10 − 0.11

m a−1 for the over- and underdetermined problems,

except for the cases Plain and BuDu, which are only

slightly larger with ||∆w̆|| ≈ 0.12 m a−1. e

dIn some experiments, a-priori information on hori-

zontal velocity fields may be unavailable.eIn those cases,

ū = 0 would have to be used. Employing this case for the

MDF scenario, the velocity-difference norm remains quasi

constant, but the residual norm significantly increases for

those dinverse problemsethat do not incorporate bound-

ary values for u at the surface. Without a non-zero estimate

for mean velocities, the solution produces the smallest veloc-

ity norm as a consequence of the minimum-norm property of

the SVD. Reducing the rank does not provide a remedy in

this case.

5.5. Error and covariance estimates

The last point to investigate, fundamental to all inverse prob-

lems, is the solution uncertainty. The quantities density ρ and

age A are part of the data kernel M. Density measurements

along ice cores are very accurate, usually with an uncertainty

<2%. However, our assumption of a dlaterallyehomogeneous

density distribution might be wrong, even if mean distribu-

tions are considered. The uncertainty of the age–depth distri-

bution determined from radar surveys depends on numerous

factors: converting radar travel time to depth based on in-

tegrated density, estimating age from ice cores, transferring

the ice-core age to the internal horizons, tracking of individual

horizons, and interpolation of the age distribution onto the

SVD grid. From analysis of Antarctic field data, Eisen and

others (2004) found a maximum error of approximately 2%

for the age–depth distribution in firn. In alpine regions, or re-

gions with a dlaterallyeinhomogeneous density distribution,

this error might be larger.

An error estimate of the model parameters v̆ requires knowl-

edge dofethe data covariance Cvv, according to equations (12)

and (14). For the linear system considered here, uncorrelated

uniform variance for the data cannot be assumed, as different

physical equations are taken into account. Instead of prescrib-

ing an arbitrary data covariance, we perform a Monte Carlo-

based estimate of covariances, using perturbed reference ve-

locities, age, and density distributions as input to a forward

calculation using equation (6). A total of 103 experiments,

each of which uses a normally distributed random error of

10% for A, 2% for ρ, and 1% for vref , results in a distribution

of estimated data vectors. From this the corresponding dis-

tribution of residuals n follows. Subsequent analysis finally

yields an estimate of the residual covariance Rnn. As could

be expected from the numerical setup, the different equations

are not uncorrelated. Although the main diagonal dominates

Rnn, secondary diagonals also exhibit significant components.

The contribution of the covariance of the nullspace vectors

through Rαα to the model uncertainty is neglected, as a-

priori information dabout its structure is noteavailable.
dWe compare the model uncertainty for the solu-

tion obtained with dinverse problemseBuPf and BwPf.

Following dEquationse(18) and (19), both dinverse prob-



12 O. Eisen: Inferring velocity from stratigraphy by an inverse method

Fig. 6. Solutions for the horizontal (left, a–d) and vertical (right, a’–d’) velocity fields for the MDF-scenario dof inverse

problemsePlain (d, d’), Bw (c, c’), BwPf (b, b’) , and the reference fields (a, a’). The different horizontal and vertical spatial

domain of u and v result from the different grids used (Figure 1).
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Fig. 7. (a) Residual norm ||n̆||, (b) velocity norm ||v̆||,

(c) horizontal velocity-difference norm ||∆ŭ||, (d) vertical

velocity-difference norm ||∆w̆|| of the dMDF scenario (Ta-

ble 1). The inverse problems are indicated on the top

abscissa, ordered with increasing number of equa-

tions M . For all dinverse problemsethe number of un-

knowns N = 180.e

lems with constraints for the MDF scenarioesolve for

the velocity variation v̆ on a background velocity of ū =

10 m a−1and w̄ = 0.1 m a−1. dThe model uncertainties

Pvv for ŭ and w̆ of the solution of BuPf at full rank

increase with element, i.e. depth (Figure 8a and b).

(Note that according to the definition in equation (5),

the elements of the vector v̆ are sequentially ordered

by horizontal rows of grid nodes.) For the horizontal

velocity variation ŭ, maximum uncertainties occur at

larger depth and are about the equal to the maximum

velocity variation (Figure 8a). For the vertical veloc-

ity variation w̆, uncertainties for near-surface nodes

are an order of magnitude smaller than the velocity

variation, and at larger depth they are about equal

to the maximum variation (Figure 8b). The uncer-

tainty estimates for ŭ are always at least one order

of magnitude larger than the actual residual between

the solution of BuPf and the reference velocity. For w̆

residuals and uncertainties are of comparable magni-

tude. edFor the inverse problem BwPF, also solved at

full rank R̂ = 180, the uncertainty of the horizontal ve-

locities is about two orders of magnitude larger than

the maximum velocity variation (Figure 8c). The un-

certainty for the vertical velocity variation is compa-

rable to those of BuPf (Figure 8d). edAlthough BuPf

and BwPf produce very similar solutions for the ve-

locity field, the uncertainties of their horizontal ve-

locities of the solution are very different. This can be

attributed to the different constraints for the horizon-

tal velocity. For BuPf the horizontal surface velocities

are prescribed as a constraint, and thus by constrain-

ing plug flow, also the horizontal velocities at larger

depth are constraint. For BwPf, merely plug flow is

constraint. The actual value of the horizontal veloc-

ities is thus more influenced by the age–depth field

for BwPf than for BuPf, and thus subject to larger

uncertainties. e

The uncertainty of the residuals n,dand thus of the model

covariance C, depends significantlyeon the rank cho-

sen. Generally, for R̂ close to the full rank R, the uncer-

tainties of the solution are larger than for smaller R̂. For

instance, for R̂ = 178, the uncertainties for the horizontal

velocities of BwPf are comparable for those of BuPf for full

rank with R̂ = 180. Reducing the rank used for the solution

leads to smaller uncertainties, but decreases the resolution of

the model parameters. Again, this is the manifestation of the

trade-off between resolution and model covariance. Moreover,

for R̂ < R the covariance of the null-space vectors Rαα con-

tributes to the model uncertainty dof equation (14),ebut

cannot be estimated without a-priori information.

6. APPLICATION TO TWO

GLACIOLOGICAL PROBLEMS
dIn this final section I apply the inverse approach

to answer two fundamental questions, which emerge

from the analysis of radar data: 1. What is the migra-

tion velocity of an accumulation pattern relative to

that of the underlying ice? 2. Was an accumulation

pattern constant over time? e

6.1. Variation of the migration velocity
dUnder certain conditions an accumulation pattern

is migrating at a different velocity than the underly-

ing ice. For instance, this is the case for megadunes

on the Antarctic plateau (Frezzotti and others, 2002;

Fahnestock and others, 2000) and smaller dune-like

features in coastal areas (Anschütz and others, 2006).

Although estimates of the horizontal velocity of the

ice might be available, we cannot use it to deduce

the migration velocity of the accumulation pattern.

The internal layer structure, however, provides the

key to the answer, as it is influenced by the relative

velocity between the accumulation pattern and the

ice, and not by the absolute velocity of the ice it-

self. Using the surface ice-velocity constraints under
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Fig. 8. Elements of the solution vector v̆est and the reference v̆ref for velocity variation, the solution and reference residual

vector ∆v̆ = v̆ref − v̆est, and solution uncertainty, the diagonal of P1/2
vv , for the dinverse problemse(a, a’) BuPf, (b, b’) BwPf

at full rank R̂ = N = 180 for the MDF scenario (Table 1). The display is split into (a, b) horizontal velocities ŭ, and (a’, b’)

vertical velocities w̆. In b) the y-axis on the right corresponds to the elements of Pvv, as they are two orders of magnitude

larger than the velocity variation ŭ. dThe components of each vector correspond to sequentially ordered horizontal

rows of grid nodes. For instance, the uppermost horizontal velocities of the solution domain correspond to

elements 1–11, the nodes in the row below to elements 12–22, etc.e

such conditions would not result in a realistic pat-

tern of vertical velocity and accumulation. It would

be more reasonable to prescribe additional flow con-

ditions and determine the migration velocity of the

accumulation pattern relative to the ice surface by

solving the resulting inverse problem.

Assume that from a field survey, GPR data and

dated firn or shallow ice cores are available. The age–

depth distribution results from merging the GPR

profile with the age and density profiles of the core.

Let us assume for this example, for the sake of brevity,

that the true distribution of the migration velocity

and other physical properties correspond to the MDF

scenario as treated before. We now take the shallow-

est internal layer as a proxy for surface accumulation

and use it as the first constraint (Bw). Although this

internal layer is subject to advection relative to the

accumulation pattern, as are the deeper layers, the

advected distance will in general be small enough to

provide a first guess of the surface accumulation. As

we only have shallow GPR data covering the firn col-

umn, we can assume plug flow in the firn and use this

as the second constraint (Pf). We thus get the inverse

problem with constraints BwPf, different properties

of which have been determined and discussed for the

MDF scenario above already. The horizontal and ver-

tical velocity fields of the solution to the inverse prob-

lem are the ones shown in Figure 6.

For the glaciological problem assumed here, the

horizontal velocity field now corresponds to the rela-

tive horizontal migration velocity of the accumulation

field in respect to the ice. If the ice velocity is avail-

able in addition, the absolute migration velocity of

the accumulation pattern can be calculated. This ex-

ample shows how useful a kinematic inverse approach

can be to provide an estimate of the horizontal ad-

vection velocity field, even if no further velocity in-

formation is available. e

6.2. Estimation and stationarity of an
accumulation pattern over time

dThe reader may wonder why it is actually necessary

to use a mathematically complex inversion scheme

under the simplifying assumption of plug flow in firn.

If the flow is indeed plug flow, then all information

on the horizontal field could be deduced from mea-

surements at the surface. However, determination of

accumulation from the age distribution produces sig-

nificantly different results for conventional techniques

and for dinverse-problem solutions. With the con-

ventional technique, accumulation is estimated asethe

quotient of cumulative mass difference and age difference be-

tween two isochronous layers. The effect of advection on layer

architecture for an inhomogeneous accumulation pattern dcan

leadeto non-intuitive results, as demonstrated for a number

of cases by Arcone and others (2005). A spatially varying ac-
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cumulation pattern and strong advection cause dconvolution

of surface signalseto appear in the internal layer structure.

From the conventional approach, even if a correction for ad-

vection is included, it is impossible to tell whether the ac-

cumulation pattern and value was constant in the past. Mis-

interpretations of internal layer data are therefore possible.
dTo demonstrate the capability of the kinematic in-

verse approach to provide the answer for this case, I

now discuss the problem of a spatially oscillating ac-

cumulation pattern and a constant advection velocity

presented by Arcone and others (2005) in their figure

10c. This problem is comparable to the MF scenario

(Table1) with a higher horizontal velocity. For the

analysis, the age–depth field (Figure 9a) is produced

by the forward model for a model domain of 30 km

in x-direction and 100 m in z-direction. At the inflow

of the model domain, cyclic boundary conditions are

used, mimicking an infinite extension of the accumu-

lation pattern at the surface. Accumulation and flow

parameters are comparable to the scenario of Arcone

and others (2005, figure 10c): a constant horizontal

velocity u = 50 m a−1, a stationary cosine-like accu-

mulation pattern with a wavelength of 10 km, a mean

accumulation ḃ0 = 225 kg m−2 a−1, and a spatial am-

plitude of 0.55ḃ0 (Figure 9b). The density–depth func-

tion is the same as before. We only consider the first

25 km as the model domain of the inverse problem.

For the conventional accumulation estimate, ad-

vection can be simply taken into account by shift-

ing the accumulation distribution determined from

neighbouring internal layers upstream by the distance

covered with the mean horizontal flow velocity since

the layers were deposited at the surface (Figure 9d).

The result shows that, apart from the accumulation

pattern derived from the layer closest to the surface,

the accumulation values calculated from deeper lay-

ers vary considerably from the actual accumulation

pattern at the surface. For accumulation minima at

the surface, the accumulation derived from the deep-

est layers determined with the conventional approach

is up to 70 kg m−2 a−1higher than the actual accu-

mulation at the surface, equivalent to ∼ 70% of the

reference value. For accumulation maxima, it varies

about ±30 kg m−2 a−1(8.5% of the reference value). In

addition, the conventional accumulation pattern can-

not be reconstructed over the complete x-domain, be-

cause the layer architecture essentially necessary for

a complete reconstruction has been partly advected

outside the domain of the known age–depth distribu-

tion (the deepest continuous layer has an age of about

340 a, corresponding to an advection of 17 km). For

a detailed analytical discussion on the related topic

of causal relations between changes in accumulation,

layer architecture, and particle trajectories, see Par-

renin and Hindmarsh (2007).

For solving the kinematic inverse problem, we as-

sume that the horizontal surface velocities are known

from measurements and that plug flow prevails. We

can then use the constraints BuPf. To provide enough

numerical nodes per wavelength of the accumulation

pattern, it is necessary to increase the resolution of

the grid 25× 25 nodes. This yields a total of M = 1609

equations and N = 1104 unknowns. As for the compa-

rable case mentioned earlier, the full rank R = 1104 is

applicable to the inverse problem BuPf. From the ver-

tical velocities of the solution the accumulation can

be determined. It is provides a very congruent dis-

tribution for the accumulation derived from vertical

velocities at all depth. For accumulation maxima the

solution is about 5 kg m−2 a−1smaller than the actual

accumulation pattern, equivalent to −1.4% of the ref-

erence values. For minima, it is about 5 kg m−2 a−1larger,

equivalent to +5.2%. The congruent shape of the ac-

cumulation pattern derived by the inverse approach

implies that the assumption of steady state is cor-

rect. This, in turn, tells us that the accumulation

was constant over time. Again, this result can not

be achieved from by the conventional accumulation

estimates alone. e

7. SUMMARY

In this paper I investigated the feasibility of inferring the ve-

locity field in an advective flow regime in firn by employing

age–depth data and a kinematic inverse-problem approach.

The inverse problem was solved by means of a singular-value

decomposition of a linear system of equations. The compari-

son of dinverse problems with differenteconstraints shows

that all kinematic systems provide a generally stable solution,

given that the singular spectrum is adequately truncated, and

that the choice of the reduced rank can be based on objective

criteria. For the underlying system of equations, the given ad-

vection scenario, and the prescribed spatially inhomogeneous

accumulation, the inverted dhorizontal-velocity is much

more sensitive to the employed constraints than the

vertical-velocity solution.

The amount of information retrieved about the ve-

locity field naturally varies with the degree of de-

terminacy of the underlying linear system. For all
dinverse problemse, the prescription of dsomeesurface ve-

locities seems necessary to retrieve small velocity variations

superimposed on a mean flow field. Without any quantita-

tive information on horizontal velocity, the minimum-norm

property of the SVD makes realistic solutions difficult. de

A detailed investigation of the solution is possible by ex-

ploiting the mathematical advantages of the SVD. The solu-

tions were examined in terms of resolution, error estimates,

and trade-off of resolution and solution covariance. deThedinverse-

problemeapproach is likely applicable to other flow scenarios

as well. Two applications to realistic scenarios were presented.

Interaction of a spatially constant accumulation pattern with

a high-velocity flow field was analysed to dexcludeetemporal

variations in accumulation by removing the advective com-

ponents of accumulation estimates. Although the approach

presented here assumes a steady-state pattern, larger tem-

poral variations in accumulation derived from layer ages at

different depth drevealetemporally varying accumulation.

A possible extension of the kinematic inversion approach
dpresented would be the use ofemore unknown param-

eters, de.g. we could useea certain density parameterisa-

tion and dsolveefor those parameters as well. Another pos-

sibility is some form of dtime dependence.edWe could

also includeedynamical equations and then dsolveean in-

verse problem to find parameters for a flow law of firn.
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Fig. 9. dSVD solution vs. conventional accumulation

estimates and prescribed values. a) Age–depth dis-

tribution according to the scenario presented by Ar-

cone and others (2005, figure 10c) and discussed in

the text, with ice flow u = 50 m a−1from left to right.

Note the almost horizontal isochrones for an age of

around 200 a. b) prescribed surface accumulation

(black line and grey crosses) producing the age–depth

distribution of a); c) accumulation solution for the

inverse problem BuPf calculated from the vertical-

velocity solution and the prescribed density–depth

distribution at different depth indicated as lines; d)

conventional accumulation estimates with correction

for horizontal advection according to layer age indi-

cated by lines (see text for details). As the correc-

tion for advection corresponds to an upstream shift

(to the left), the inferred accumulation distributions

can thus cover only parts of the x-dimension, as fur-

ther information is outside the domain for which the

age–depth distribution is available (beyond 25 km).

Grey crosses in b)–d) indicate reference values for

accumulation at numerical nodes at the surface. e
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APPENDIX

Notation

Convention of variables:

vectors: lower-case bold letters (e.g. u)

matrices: upper-case bold letters (e.g. M)

Section 2.1

A, Ai,k depositional age of particle

ρ, ρk, ρi,k density

t time

x, z horizontal, vertical spatial coordinate

r = (x, z) coordinate vector

∂i partial derivative with respect to i ∈ {x, z, t}

u, ui,k horizontal velocity component

w, wi,k vertical velocity component

u, w horizontal, vertical velocity field

v velocity (=model) vector ∈ RN

= (uT ,wT )T

Section 2.2

ḃ accumulation

ρ0 density at surface

Section 2.3

uref ,wref reference horizontal, vertical velocity field, di.e. the correct solutione

uest, west estimated model parameters: the SVD solution of horizontal and vertical velocity field

Section 2.4

∆x, ∆z horizontal, vertical spatial increment

{cα,...,ν
i,k } coefficients of linear system

I, K number of horizontal, vertical nodes

i, k horizontal, vertical index

nu, nx
u, nz

u number of nodes for u: total, x-, z-direction

nw, nx
w, nz

w number of nodes for w: total, x-, z-direction

M dimension of data space (number of observations)

N dimension of model space (number of unknowns)

d data vector ∈ RM

dp components of d

vq components of v

M model matrix ∈ RM×N

Mp,q components of M

p, q element indices

Section 3.1

R mathematical rank of M

R̂ effective/reduced rank of M

Λ singular-value matrix ∈ RM×N

Λp,q components of Λ

ΛR submatrix of Λ ∈ RR×R

λp singular value

U data/observation space ∈ RM×M

= {UR U0}

V model/solution space ∈ RN×N

= {VR V0}

UR data range ∈ RM×R

VR model range ∈ RN×R

U0 data nullspace ∈ RM×M−R

V0 model nullspace ∈ RN×N−R

α coefficients of data nullspace

δij Kronecker symbol
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Section 3.2

TV model/solution resolution matrix

= VRVT
R

TU data/observation resolution matrix

= URUT
R

IN unit matrix ∈ RN×N

Section 3.3

n vector of residuals ∈ RM

Rnn residual covariance

Rαα covariance of nullspace coefficients

Cvv model covariance

Pvv model uncertainty

Pnn residual uncertainty

Section 3.4

S, W column-, row-scaling matrix

MT transpose

Λ−1 inverse

W1/2 square root (Cholesky decomposition)
fM, d̃, ṽ linear system in scaled space

Section 3.5

d̄, v̄ vectors corresponding to flow-field mean

d̆, v̆, . . . vectors corresponding to flow-field variations

〈u〉, 〈w〉 mean of vectors u,w

iN diagonal of IN , vector with all ones

Section 4.1

xmin, xmax, zmax boundaries of x- and z-dimension

ḃ0, xσ, xµ parameters of accumulation distribution

ρi, cρ parameters of density distribution

cu parameter of horizontal velocity distribution

Section 4.2

k0 vertical index at surface

ib horizontal index of borehole position

∆xu, ∆zu horizontal, vertical difference of u over one spatial increment

Section 5

∆v̆, ∆ŭ, ∆w̆ residuals of velocity variation (referencedminusesolution)

||∆ŭ||, ||∆w̆|| norm of velocity residuals

||n̆||, ||v̆|| norm of residual, solution/model vector

Staggered-grid differences and coefficients
dApplying finite differences to (3) on the triplex-staggered

grid yields the discrete equations

1

2∆x
[(Ai+1,k −Ai,k)ui,k + (Ai,k −Ai−1,k)ui−1,k]

+
1

2∆z
[(Ai,k+1 −Ai,k)wi,k + (Ai,k −Ai,k−1)wi,k−1] = 1(A1a)

ρk

1

∆x
(ui,k − ui−1,k) + ρk

1

∆z
(wi,k − wi,k−1)

+
1

2∆z
[(ρk+1 − ρk)wi,k + (ρk − ρk−1)wi,k−1] = 0,(A1b)

ewhere the i index for density ρi,k has been dropped, as den-

sity is laterally homogeneous, and depends donlyeon depth

index k. Rearranging and combining factors to the coefficients

{cα,...,ν
i,k } results in the expression for a unit cell (Figure 1),

cα
i−1,kui−1,k + cβ

i,kui,k + cγ
i,k−1wi,k−1 + cδ

i,kwi,k = 1(A2a)

cκ
kui−1,k + cλ

kui,k + cµ
i,k−1wi,k−1 + cν

i,kwi,k = 0,(A2b)

whichdcan be written inethe matrix notation of equation

(4). The coefficients are given by

cα
i−1,k =

1

2∆x
(Ai,k −Ai−1,k),

cβ
i,k =

1

2∆x
(Ai+1,k −Ai,k),

cγ
i,k−1 =

1

2∆z
(Ai,k −Ai,k−1),

cδ
i,k =

1

2∆z
(Ai,k+1 −Ai,k),

cκ
k = −

ρk

∆x
,

cλ
k =

ρk

∆x
,

cµ
k−1 = −

1

2∆z
(ρk + ρk−1),

cν
k =

1

2∆z
(ρk+1 + ρk). (A3)

Cases of determinacy and conditions for
existence of nullspaces
dLet us denoted by {} empty sets of the model nullspace

V0 or the data nullspace U0. If a data nullspace ex-

ists, U0 6= {}, and the data vector has components in

it, then it will be impossible to fit the data exactly

(Scales and others, 2001). If a model nullspace exists,

V0 6= {}, and the true model vector has components

in it, then it will be impossible to find the correct

model. The following combinations are possible:e

M = N just determined

V0 = U0 = {}

M = N > R deficient rank just determined

V0 6= {}, U0 6= {}

M > N = R full-rank overdetermined

V0 = {}, U0 6= {}

M > N > R deficient rank overdetermined

V0 6= {}, U0 6= {}

N > M = R full-rank underdetermined

V0 6= {}, U0 = {}

N > M > R deficient rank underdetermined

V0 6= {}, U0 6= {}

Definition of moments, norms, scaling, and
weighting

Second-moment or covariance matrix
Let x be a random variable with samples (x1, x2, . . . , xn)

drawn from the population. The k-th sample moment of x

is defined as

1

n

nX

i=1

xk
i . (A4)

The sample mean 〈x〉 follows as the first moment of x. The

k-th central moments are defined as

1

n

nX

i=1

(xi − 〈x〉)k . (A5)

The sample variance of x is the second central moment,
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1

n

nX

i=1

(xi − 〈x〉)2 . (A6)

Assuming that the true mean of x is zero, the second moment

is equal to the second central moment or variance,

1

n

nX

i=1

x2
i . (A7)

Renaming x with 1x with samples {1xi}, (i = 1, . . . , n) and

considering a second random variable 2x with samples {2xi},

and further assuming that 1x and 2x have zero mean, we can

estimate the covariance of 1x and 2x as

r12 =
1

n

nX

i=1

1xi
2xi. (A8)

Extending this further to the random variable Nx with sam-

ples {Nxi}, we can define the random vector x = (1x,2x, . . . ,Nx)

with samples xi = (1xi,
2xi, . . . ,

Nxi). The covariance (or sec-

ond moments) for pairs of variables px and qx follows as

rpq =
1

n

nX

i=1

pxi
qxi. (A9)

The rpq are the components of the covariance or second-

moment matrix Rxx, as introduced in section 3.3 for vectors

n and α.

L2-norm
The norm of a vector is a measure for its length. A general

definition for the norm of a vector x = (x1, x2, . . . , xn) is

given by

||x||p = (|x1|
p + |x2|

p + · · ·+ |xn|
p)1/p , (A10)

where |xi| denotes the absolute value of the component xi,

and p ≥ 1 is a real number. For p = 1, (A10) is the so-called

L1-norm. For p = 2, we get the L2-norm, usually referred to

simply as the length of the vector x in Euclidean space, the
dsquare rooteof the sum of squares of its components. The

L2-norm is used throughout this paper.

Row and column scaling
Let Mp,q

dbeethe components of the matrix M, with p =

1, . . . , M denoting the row number, and q = 1, . . . , N de-

noting the column number. The L2-norm of the i-th row is

calculated by

||M||rowp =
`
|Mp,1|

2 + |Mp,2|
2 + · · · + |Mp,N |

2
´1/2

. (A11)

dFor row scaling, each element Mp,q of the p-th row

is divided by the row norm ||M||rowp . eThis leads to the

row-scaling matrix W, which has components Wp,q, defined

as

Wp,q = δpq||M||rowp , (A12)

that is, the ||M||rowp on the main diagonal and zero elsewhere.

Now taking M ′
p,q as the components of the already row-

scaled matrix M′, the L2-norm of the q-th column is deter-

mined from

||M′||colq =
`
|M ′

1,q |
2 + |M ′

2,q|
2 + · · · + |M ′

M,q |
2
´1/2

. (A13)

dFor column scaling, each element M ′
p,q of q-th col-

umn is divided by the column norm ||M′||colq . eThe com-

ponents of the column-scaling matrix S are defined as

Sp,q = δiq/||M
′||colq , (A14)

so that S has the 1/||M′||colq on the main diagonal and zeros

elsewhere.


