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Abstract In this article a concept is described in
order to predict and map the occurrence of benthic
communities within and near the German Exclusive
Economic Zone (EEZ) of the North Sea. The
approach consists of two work steps: (1) geostatistical
analysis of abiotic measurement data and (2) calcula-
tion of benthic provinces by means of Classification
and Regression Trees (CART) and GIS-techniques.
From bottom water measurements on salinity, tem-
perature, silicate and nutrients as well as from
punctual data on grain size ranges (0–20, 20–63,
63–2,000 μ) raster maps were calculated by use of
geostatistical methods. At first the autocorrelation
structure was examined and modelled with help of
variogram analysis. The resulting variogram models
were then used to calculate raster maps by applying
ordinary kriging procedures. After intersecting these
raster maps with punctual data on eight benthic
communities a decision tree was derived to predict

the occurrence of these communities within the study
area. Since such a CART tree corresponds to a
hierarchically ordered set of decision rules it was
applied to the geostatistically estimated raster data to
predict benthic habitats within and near the EEZ.

Keywords Benthic habitat mapping . Benthos . North
Sea . Exclusive Economic Zone (EEZ) .Multivariate
statistics . Classification and Regression Trees
(CART) . Geostatistics

Background and objectives

The investigation of the spatial distribution of benthic
organisms inhabiting the sediments of the sea floor of
the North Sea has a long tradition. First attempts go
back to the work of Petersen (1914), who charac-
terised dominant benthic species, relying on bathym-
etry and sediments. Since then the macrozoobenthos
has been investigated in different parts of the North
Sea leading to numerous publications (summarised in
Glémarec 1973; Kingston and Rachor 1982). With
regard to the German Bight the survey carried out by
Salzwedel et al. (1985) in October 1975 produced a
detailed data set on the macrofaunal communities for
the sublitoral. The spatial distribution of these benthic
communities was nearly affirmed in an extensive
study made by Rachor and Nehmer (2003). Here data
on benthic organisms were collected at 182 sites
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within the area of the German Bight and the bordering
central North Sea. With help of multivariate statistics
the abundance data was aggregated to derive eight
benthic communities representative for the biological
conditions at the sea floor. These communities also
include information on benthic organisms that are
referred to as endangered species.

The goal of this article is to calculate a prediction
map for the occurrence of these benthic communities
for the whole area within and near the German
Exclusive Economic Zone (EEZ) of the North Sea.
We refer to the resulting prediction map as a benthic
habitat map able to describe the biotic and abiotic
conditions at the sea floor. According to the ICES
(International Council for the Exploration of the Sea)
Working Group on Marine Habitat Mapping a marine
habitat can be defined as “[a] recognizable space
which can be distinguished by its abiotic character-
istics and associated biological assemblage, operating
at particular spatial and temporal scales.” (ICES
2005). The knowledge of such ecological units often
is a prerequisite for marine planning and management
needs, such as the installation of offshore wind power
plants or the declaration of protection zones (Hughes
1997; Reiniger 1997; Lourie and Vincent 2004). In
Europe the EUNIS (European Nature Information
System) habitat classification system provides a
hierarchical concept to characterise habitats in
Europe’s terrestrial and marine environments. Cur-
rently different international research groups focus on
the application of the EUNIS concept although
encountering problems when trying to adjust existing
marine data to the according classification rules. Our
habitat mapping concept takes into account availabil-
ity of marine data by aggregating abiotic and biotic
measurements to benthic habitat types with help of
statistical methods as well as GIS-technologies. Two
methodical work steps can be distinguished:

(1) With aid of geostatistical methods abiotic mea-
surement data on grain size ranges as well as on
salinity, nutrients, silicate and temperature for
the lower water body are spatially extrapolated
to raster maps.

(2) Together with site specific data on benthic
organisms the calculated raster maps are used
to derive a hierarchical classification system for
eight benthic communities derived by Rachor
and Nehmer (2003) by means of Classification

and Regression Trees (CART). The resulting
decision tree is applied to predict the occurrence
of these benthic communities for the EEZ.

Materials and methods

Geostatistical methods

Originally applied to estimate mineral resources and
reserves (Krige 1951; Matheron 1965, 1971), nowa-
days geostatistics are used in marine environmental
research, too (Chihi et al. 2000; Jerosch et al. 2006;
Petitgas 1997; Poon et al. 2000; Schlüter et al. 1998;
Stelzenmüller 2005). In geostatistics the spatial auto-
correlation of measured properties is at first examined
and then modelled by variogram analysis. Variogram
analysis consists of two work steps: calculation of an
experimental semivariogram from measurement values
and fitting a mathematical variogram model. Vario-
gram maps may be used to examine whether the spatial
dependency not only changes with distance but also
with direction (Johnston et al. 2001). Variogram models
usually are described with respect to three significant
measures: nugget-effect, sill and range. The range
equals the maximum distance within which a distinct
increase of semivariogram values indicates spatial
auto-correlation. The sill corresponds to the semi-
variance assigned to the range. In cases of anisotropies,
either the range or the sill (or both) will vary with respect
to direction. Small-scale variabilities or measurement
errors may lead to high semivariances at nearby locations
causing the variogram model to cut the ordinate above
the origin (nugget effect). A pure nugget effect indicates
a complete lack of spatial auto-correlation.

Based on the variogram model, kriging can be used
to make predictions for a defined point raster. Several
kriging options (e.g. simple, ordinary or universal
kriging) enable minimising the estimation variance
and weighted averaging of the measured values
within a chosen searching or kriging window.
Whether or not anisotropies are detected in the
variogram analyses determines whether this kriging
window is circular (no anisotropies) or ellipsoidal
(different ranges of spatial autocorrelation for differ-
ent directions).

Cross-validation should be used for fitting an
adequate variogram model and for describing the
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equality of estimation. For this purpose, each mea-
surement value is extracted from the dataset and
estimated by kriging based on the selected variogram
model. By subtracting each measured value from its
estimated value an estimation or cross-validation error
can be calculated resulting in an error distribution for
the whole dataset. Examples of such parameters are:
the mean error (ME – the average value of the cross-
validation errors which at best should be 0), the root
mean square standardised error (RMSSE – ratio of
mean squared crossvalidation errors and the kriging
variances which at best should equal 1), the Mean
Percentile Error (MPE – the median of all absolute
values of the cross-validation errors in percent where
the measured value is set 100%), and the correlation
coefficient after Spearman (CS – in case of an ideal
correlation the CS-value should equal 1, if no such
correlation exists CS tends towards 0).

Classification and regression trees (CART)

CART is introduced as a statistical procedure to derive a
classification system or decision tree, respectively, for
the occurrence of benthic communities in the area of the
German EEZ of the North Sea. CART is applied in
various scientific disciplines to uncover hidden struc-
tures in complex data matrices and to predict the
characteristics of a chosen target variable by a set of
meaningful predictor variables (Breiman et al. 1984). In
psychological and medical research, for example,
decision trees like the ones calculated with CART are
applied to understand and predict human character-
istics, behaviours and even diseases (Swan et al. 2004;
Arentze and Timmermans 2005; Rosenfeld and Lewis
2005). In environmental sciences application examples
can be found in environmental monitoring (Ryan 1995;
Schröder and Schmidt 2003), global change biology
(Thuiller 2003), applied forestry (Lawrence and Labus
2003) and meteorology (Walmsley et al. 2001). In
marine biology Norcross et al. (1999) used CART to
classify near shore flatfish habitats in Alaska’s waters.
Huetmann and Diamond (2001) predicted and mod-
elled the distribution of seabirds in the Canadian North
Atlantic by applying CART.

CART handles both categorical and metric data
without data transformation and produces decision
trees to display class memberships by recursively
partitioning a heterogeneous data set into subsets
(also called classes, groups, nodes) by means of a

series of binary splits. The aim is to create subsets that
improve in terms of homogeneity according to the
features of the target variable. How each node is split
into two subnodes is determined with the help of the
predictor variables. Whether the target variable is of
metric, ordinal or nominal scale dignity different
impurity measures exist. The Gini index is commonly
used when the target variable is categorical, although
other options exist (entropy, twoing index) (Steinberg
and Colla 1995):

g að Þ ¼ 1�
X

i

P i=að Þ2 ð1Þ

In Eq. 1 g(a) represents the Gini measure of a given
node a and is determined by subtracting the sum of all
squared probabilities of all features i of the target
variable from 1. The Gini index becomes 0 if all cases
in the node belong to the same category (optimal
homogeneity) and reaches its maximum when all
cases are evenly distributed within the node. To
choose the optimal binary split the maximum reduc-
tion of inhomogeneity is calculated over all possible
splits by using the following equation (Yisehac and
Webb 1999):

$i s; tð Þ ¼ i tð Þ � pL i tLð Þ½ � � pR i tRð Þ½ � ð2Þ

Here $i(s,t) stands for the decrease in impurity or the
improvement at a particular split s of node t. The
terms pL and pR are the proportions of the cases at
node t that go into the left and right subnode and I(tL)
and I(tR) are the impurities of the left and the right
subnode.

Thus, decision trees are processed until a maxi-
mum tree is reached depending on user specified
restrictions, e.g. insufficient number of cases in a
produced node or until further splitting is impossible
(only one case or identical cases in the node). Smaller
trees can be produced by pruning the maximum tree
either automatically or interactively by expert judge-
ment. In this way all decision trees result in so called
endnodes which are the product of a hierarchical
sequence of decision rules. These may now be applied
on objects where information on the predictor variables
is given and that on the target variable is missing. By
dividing all misclassified cases through the total
number of cases a prediction quality measure may be
expressed in terms of a misclassification rate or risk
estimate.
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Data basis and preparation

The data set used to predict benthic communities was
collected within the framework of the project MarGIS
financially supported by the German Federal Ministry
of Education and Research. Along with thematic
surface data (e.g. sediment data maps) most of these
data consist of biotic (e.g. data on benthic organisms)
and abiotic measurements of the lower water column.
The data sets were provided by several national and
international databases and projects and were inte-
grated in a relational Database Management System
(rDBMS) (Jerosch et al. 2005). Approximately
235,000 abiotic measurement data sets were collected
from the ICES Data Base, the Marine Environmental
Data Base (MUDAB) of the German Federal Mari-
time and Hydrographic Office (BSH) and the German
Federal Environmental Agency (UBA) as well as the
Institute of Marine Research (IfM), University of
Hamburg for the North and the Baltic Sea.

For the calculations performed here data on eight
benthic communities derived in summer 2000 by
Rachor and Nehmer (2003) (Fig. 1) as well as abiotic
measurement data on salinity, temperature, silicate,
nitrate, ammonium and on grain size ranges (0–20,
20–63, 63–2,000 μ) were taken from the MarGIS
database for the study area. The latter was extended to
a 40 km buffer around the EEZ in order to improve

the geostatistical estimations for the outer parts of the
EEZ. Since the abiotic data were to serve as the
predicting variables in the CART analysis, the data
were aggregated over a 6 year period from 1995 to
2000 according to four monthly time intervals:
January–March; April–June; July–September and
October–December. By integrating these data sets in
ArcGIS (Version 9.0) the site-specific data were
checked with respect to its spatial distribution. Only
those datasets were considered for further statistical
analyses that covered the whole area of interest. These
are summarised in Table 1.

In addition to the abiotic parameters listed in
Table 1 an already existing map on bathymetry was
included in the calculation of benthic habitats. This
map was made available by the Alfred-Wegener-
Institute, Bremerhaven.

Geostatistical analysis of abiotic measurement data

The extension ‘Geostatistical Analyst’ from ArcGIS
9.0 was used to calculate raster data on bottom water
measurements on salinity, temperature, silicate, phos-
phate and nitrate as well as on grain size ranges
(0–20, 20–63, 63–2,000 μ). The calculations were
performed for a 6 year period from 1995 to 2000
according to the four monthly time intervals

Fig. 1 Benthic communi-
ties within the German
Bight and bordering Central
North Sea (Rachor and
Nehmer 2003)
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mentioned above. The Universal Transverse Mercator
(UTM) coordinate system (Zone 32) was used as a
spatial reference system.

According to Webster and Oliver (2000) the mean
distance of each measurement site to its nearest
neighbour was set as a starting point for the lag size
(Table 1). Whether or not the autocorrelation structure
could be detected in the variogram window a
multitude of this distance was applied. The number
of lags allocated to each lag size was set so that the
distance of significant autocorrelation (range) became
clearly visible in the variogram window. In a next step
we tested various variogram models, including differ-
ent types of models, sills, ranges, and nugget effects.
Finally, if the semivariances displayed on the vario-
gram map indicated anisotropies in the data field,
different ranges for different directions (to account for
anisotropies) were compared with each other. All
variogram parameters (range, sill, nugget-effect, type
of variogram model, anisotropies) were chosen with
respect to the ME, the RMSSE and the RMSE derived
from the results of crossvalidation.

The results of variogram analysis depict distinct
autocorrelations patterns for all abiotic parameters and
time intervals (Table 2). Almost all calculated spher-
ical variogram models show low nugget–sill ratios
(n–s-ratio in Table 2), ranging from 0.02 (salinity

[PSU]: April–June) to 0.57 (temperature [°C]: January–
March). Ninety percent of the nugget–sill ratios lie
below 0.5 which is indicative for low small-scale
variances and strong autocorrelations of the mea-
surement values. With the aid of variogram maps
anisotropies could furthermore be detected resulting
in searching ellipses instead of circles in the
succeeding kriging interpolations. The form of these
ellipses may be described by means of the anisot-
ropy-ratio (a-ratio in Table 2) which is the propor-
tion of the minor axis of the ellipse to its major axis.
A low anisotropy-ratio is therefore equivalent to a
narrow searching ellipse resulting in more coastal
parallel spatial structures in the kriging maps. The
direction of the major axes of the searching ellipses
of all 20 parameters mirror different parts of the
coastline of the German, Danish and Dutch coastal
parts of the study area. They reach from 327.5° for
the salinity conditions from October to December
(NNE-direction) to 93.1° for the temperature con-
ditions in the same time interval (E-direction).

Ordinary kriging was applied to use the informa-
tion of the variogram model for surface estimations.
The grid cell size was set with respect to the average
mean distance of neighbouring point pairs over all
parameters for all time intervals, here 3,150×3,150 m.
The kriging window, which includes the measurement

Parameter Months Sample size Mean nearest neighbor
distance (m)

Ammonium January–March 256 4,838
July–September 197 6,638

Nitrate January–March 198 6,046
July–September 239 4,076

Phosphate January–March 292 4,526
July–September 247 4,270

Salinity January–March 907 1,351
April–June 670 2,200
July–September 919 2,040
October–December 644 1,199

Silicate January–March 304 3,745
July–September 223 4,993

Temperature January–March 913 1,384
April–June 668 2,191
July–September 921 2,030
October–December 645 1,184

grain size range 0–20 μ 674 1,454
grain size range 20–63 μ 662 1,451
grain size range 63–2,000 μ 668 1,443

Table 1 Data basis for the
prediction of benthic com-
munities within the EEZ
plus a 40 km buffer
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values to estimate a certain point, was adjusted to the
range of the variogram model. A four-sector neigh-
bourhood was defined to avoid directional bias. A
maximum of five points was accounted for in each
sector to estimate a certain point.

To assess the quality of the surface estimations key
parameters were calculated from the results of cross-
validation. These are summarised in Table 3, in which

the ME, RMSSE, MPE as well as the Cs values are
listed. Both ME and RMSSE indicate neither under-
estimation or overestimation and therefore no bias in
the surface estimations: ME shows that the average
crossvalidation errors equal almost zero in all cases.
RMSSE equals almost 1 for all parameters and
monthly time intervals indicating that variances
calculated from the crossvalidation errors by average

Dataset N–S-ratio A-ratio Direction

Ammonium January–March 0.29 0.59 16.7
July–September 0.31 0.61 56

Nitrate January–March 0.13 0.39 0.1
July–September 0.48 0.43 58.2

Phosphate January–March 0.32 0.47 356.5
July–September 0.23 0.53 40.2

Salinity January–March 0.16 0.56 340.6
April–June 0.02 0.73 339.4
July–September 0.05 0.60 356.2
October–December 0.25 0.65 327.5

Silicate January–March 0.18 0.43 352.2
July–September 0.39 0.74 40.3

Temperature January–March 0.57 0.73 341.6
April–June 0.27 0.91 16.2
July–September 0.19 0.61 55
October–December 0.52 0.48 93.1

Grain size ranges 0 bis 20 μ 0.17 0.91 341.7
20 bis 63 μ 0.22 0.73 23.4
63 bis 2,000 μ 0.06 0.74 18.6

Table 2 Key parameters
from variogram analysis

Dataset ME RMSSE MPE Cs

Ammonium January–March 0.00 0.94 33.8 0.78
July–September 0.00 1.00 31.9 0.88

Nitrate January–March 0.00 0.98 22.7 0.67
July–September 0.00 0.98 22.7 0.53

Phosphate January–March 0.01 1.10 31.5 0.63
July–September 0.00 0.99 14.7 0.74

Salinity January–March 0.00 1.05 27.4 0.77
April–June 0.00 1.01 0.6 0.91
July–September 0.02 1.06 0.4 0.95
October–December 0.00 1.02 0.2 0.97

Silicate January–March −0.03 0.98 19.3 0.87
July–September −0.04 1.08 32.8 0.56

Temperature January–March 0.00 1.01 10.5 0.60
April–June 0.04 1.06 9.3 0.67
July–September 0.01 0.98 4.5 0.93
October–December −0.02 1.04 6.7 0.42

Grain size ranges 0 bis 20 μ −0.50 0.99 30.22 0.81
20 bis 63 μ −0.95 0.99 71.71 0.70
63 bis 2,000 μ 1.66 1.04 1.62 0.86

Table 3 Quality of estima-
tion by means of crossvali-
dation
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equal the theoretical kriging variances. MPE can be
observed to be low for the grain size range 63–
2,000 μ as well as for all temperature estimations.
With acceptation to the monthly time interval from
January to March this also holds true for the salinity
estimations. Highest MPE’s can be found for the grain
size range 20–63 μ (71.7%), bottom water ammonium
for January to March (33.8%) as well as silicate for
July–September (32.8%). Except for temperature for
October–December all coefficients of correlation after
Spearman lie above 0.5. In 45% of all cases Cs lies
above 0.8 indicating high degrees of associations
between the measured and estimated values. Cs is
permanently high for bottom water salinity for all
monthly time intervals.

Predictive benthic habitat mapping by CART

Our predictive habitat mapping concept relies on the
derivation of CART decision models for the occur-
rence of benthic communities available at 182 sites
within and near the German EEZ (Fig. 1) (Pehlke
2005). The benthic communities were statistically
derived by Rachor and Nehmer (2003) from abun-
dance data on benthic faunistic organisms collected
within the study area. They distinguish eight different
communities: Amphiura filiformis (53 sites), Tellina
fabula (40 sites), Goniadella spisula (27 sites),
Nucula nitidosa (24 sites) Bathyporeia tellina (20

sites), Macoma balthica (8 sites), benthic organisms
of the central North Sea (5 sites) as well as of the
Helgoland Depth (4 sites). The methodology to
spatially predict the occurrence of these eight benthic
communities for the entire study area is summarised
in Fig. 2. The CART-calculations were performed
with the SPSS-module ‘Answer Tree.’

At first, all geostatistically estimated abiotic raster
data and the bathymetry map were intersected with
the punctual data on benthic communities, resulting in
a table build up of 182 rows and 24 columns
representing X-/Y-coordinates, benthic communities
as well as the 20 abiotic parameters listed in Table 1
and the bathymetry. By defining the benthic commu-
nities as the target variable and the abiotic parameters
as the predictor variables a decision tree was
calculated by applying CART. The tree was grown
in a way that the minimum number of cases per
endnode did not exceed four. This corresponds to the
number of sites belonging to the smallest benthic
community, here the community “Helgoland Depth”
(n=4). Additionally the binary splitting was not
continued when the improvement of homogeneity
lay below 0.001. The resulting tree was pruned back
so that each of the resulting endnodes at best was
dominated by one of the eight communities. Since the
decision tree corresponds to a hierarchically ordered
set of decision rules these were written into an SQL-
statement and applied on the raster data available for
the entire study area. In this way a prediction map

Fig. 2 Predictive benthic
habitat mapping by CART
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was generated with as many benthic habitat classes as
there were endnodes in the underlying decision tree.
Finally, the benthic prediction map was intersected
with the predictor variables to statistically describe all
habitat classes with respect to the abiotic conditions.

The CART analysis resulted in a decision tree
grown in nine binary splits leading to 10 endnodes or
classes, respectively. Figure 3 depicts the nodes of the
decision tree in terms of histograms where each bar
represents one of eight communities. The first binary
split that subdivides the root node into two subnodes
that contain 80 (Node 21 in Fig. 4) and 102 (Node 22
in Fig. 4) sites, respectively, is due to the bottom
water temperature in the months between July and
September. By example of the two marked benthic
communities A. filiformis and N. nitidosa it can be
observed that they increase in their percentage in one
of the subnodes (A. filiformis from 29.1% (root node)
to 63.8% (node 21) and N. nitidosa from 13.2% (root
node) to 22.6% (node 22). By following the dendro-
gram from up to down it can be observed that the
portion of each benthic communities increases step-
wise leading to nine endnodes in which one of the
eight communities is dominant (portion>75%). Each
community is represented once except for Goniadella
spisula that can be found in endnode 33 (93%) and
endnode 36 (100%). Endnode 32, consisting of 10
sites, is evenly represented by five communities. The

nine binary splits that recursively partition the 182
sites were chosen according to six predictor variables:
bottom water temperature [°C] July–September (once)
and October–December (once), bottom water salinity
[PSU] July–September (twice), bottom water ammo-
nium [μmol/l] July–September, water depth [m]
(once) as well particle size group 0–20 μ [g/kg]
(three times).

The quality of the decision tree to predict the eight
benthic communities may be described with the aid of
the misclassification matrix depicted in Table 4. Here
for each community both successfully classified and
misclassified cases are listed. It can be seen that,
except for M. balthica, all other communities are
successfully classified to at least 75%. The smallest
misclassification rate can be found for N. nitidosa
(12.5%) as well as A. filiformis (7.55%). By dividing
all misclassified cases through the total number of
cases an overall misclassification rate or risk estimate
of merely 16% can be calculated.

Since each endnode is determined by decision
rules, the tree can be applied to predict benthic
communities at sites where such information is not
available. By doing this for all geostatistically
estimated raster cells within the EEZ and its bordering
areas, a predictive habitat map was calculated with
respect to the occurrence of benthic communities
derived by Rachor and Nehmer (2003). This map is

Fig. 3 Predictive benthic habitat classification tree for the EEZ of the North Sea
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depicted in Fig. 5. Each of the 10 endnodes described
in Fig. 3 corresponds to one of the 10 spatial units
illustrated in Fig. 5. Each of these spatial units may
therefore be described with respect to the possibility
of the occurrence of one of the eight communities.
This possibility of the occurrence of each community
can be derived from its percentage in the corre-
sponding endnode.

Discussion

With regard to its scientific plausibility the decision
tree depicted in Fig. 4 mirrors existing knowledge
about potential classification schemes for benthic
habitats in the North Sea. Peterson (1914), Remane
(1940), Thorson (1957), Jones (1950), Duineveld et
al. (1991), Kuenitzert et al. (1992), Salzwedel et al.
(1985), Heip and Craeymeersch (1995) and Rachor
and Nehmer (2003) refer to the bathymetry and the
sediment conditions to be important for the density
and distribution of benthic organisms or the compo-
sition of benthic habitat complexes. This corresponds

to the results of the CART-analysis: of nine binary
splits water depth and sediment (in terms of the
particle size group 0–20 μ) were chosen four times in
the CART-tree that was calculated for the occurrence
of benthic communities in the study area. Jones
(1950), Glémarec (1973) and Kuenitzert et al.
(1992) furthermore claim temperature to be responsi-
ble for the spatial distribution of faunistic communi-
ties. Jennings et al. (2001) found the temperature
conditions and the water depth to be the most
important environmental factors able to discriminate
the grouping of sites according to chosen attached and
free living epibenthic species. With regard to the
classification system derived by the CART-analysis
the temperature conditions near the sea floor were
taken twice to be the most important predictors for the
benthic communities. Further, according to OSPAR
(2000) changes of the benthic populations among
other things correlates with changes of the degree of
eutrophication which might be the reason why the
bottom water ammonium concentration was chosen as
a predictor in the CART analyses presented in this
article. The meaning of bottom water salinity (chosen

Fig. 4 First split of the predictive benthic habitat classification tree for the EEZ of the North Sea
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as a predictor twice) for the abundance of epibenthic
organisms was proven in an investigation made by
Callaway et al. (2002).

As was carried out in “Data basis and preparation”
section the first methodological step to calculate a
predictive benthic habitat map consisted in the geo-
statistical analysis of abiotic measurement data that

was aggregated according to four monthly time
intervals within the year aggregated over a 6 year
period from 1995 to 2000. Such aggregation was
done with regard to two reasons: (1) to guarantee a
sufficient coverage of measurement values across the
study area and (2) to cover a sufficiently long time
period to characterise the abiotic conditions near the

Fig. 5 Predictive benthic habitat map for the German EEZ of the North Sea and bordering area

Table 4 Misclassification matrix for the prediction of the eight benthic communities

Category

cNS NN MB HD GS TF BT AF

Predicted centr. North Sea (cNS) 5 0 0 0 0 0 0 0
Nucula Nitidosa (NN) 0 21 0 0 0 2 0 2
Macoma Balthica (MB) 0 0 4 0 0 0 0 0
Helgoland Depth (HD) 0 1 0 3 0 0 0 0
Goniadella Spisula (GS) 0 1 3 1 21 3 0 0
Tellina Fabula (TF) 0 0 1 0 5 33 1 0
Bathyporeia Tellina (BT) 0 0 0 0 1 0 17 2
Amphiura Filiformis (AF) 1 1 0 0 0 2 2 49

Total 6 24 8 4 27 40 20 53
Misclassified 1 3 4 1 6 7 3 4
Misclassified % 16.67 12.50 50.00 25.00 22.22 17.50 15.00 7.55
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sea floor (Kröncke and Bergfeld (2001) suggest that
such a time period should at least cover 3 years). To
account for temporal variances of the abiotic param-
eters coefficients of variation were calculated at
places were sampling was performed more than once
between 1995 and 2000 (Table 5). Considering the
predictor variables chosen to calculate the decision
tree depicted in Fig. 4 only bottom water ammonium
between July and September shows high mean
coefficients of variation (38.7% from multiple meas-
urements at 34 stations). The bottom water tempera-
ture between July and September shows mean
coefficients of 3.26% calculated from 241 measure-
ment stations where samples were taken up to 21
times within the 6 year period. For the same
parameter measured between October and December
the mean coefficient is 9.79% (number of measure-
ment sites=66). The bottom water salinity values
seem to be stable throughout the study period. All
mean coefficients amount to less than 2%.

In further analyses, the benthic habitat map
presented in this study has to be checked in terms of
a sensitivity analysis regarding other methodological
alternatives. The classification technique CART is one
of the most frequently applied decision tree algorithm
although other such methods are available. In further
studies the CART results should therefore be com-
pared with other habitat maps calculated with the aid

of decision tree algorithms like CHAID (Chi-squared
Automatic Interaction Detector) or QUEST (Quick,
Unbiased, Efficient Statistical Tree). Provided that
predictive habitat maps are to be calculated for the
abundance of chosen benthic indicator organisms
multivariate regression could be applied as well.
Furthermore, more emphasis should be laid on the
calculation of raster maps by means of other geo-
statistical methods. In this study a univariate kriging
method (ordinary kriging) was used to produce valid
surface estimations. In future investigations bi- and
multivariate kriging methods should be applied. Such
methods account for secondary information that can
be implemented in the estimation process. This might
be especially commendable for the calculation of a
sediment map for the sea floor of the North Sea since
the sediment distribution is one of the most important
predictors to characterise the sea floor in terms of its
biological properties. Existing measurement data on
grain size ranges should be combined with available
sedimentological maps to first calculate grain size
maps and then to aggregate such maps with the aid of
existing sedimentological classification systems to an
overall sediment map of the North Sea. Attempts to
achieve this goal were started within the MarGIS-
project using detailed and high resolution sediment
data generated and made available by the BSH
(Federal Maritime and Hydrographical Office), GEUS

Parameter Time interval Number of sites Values/site Mean coefficient
of variation (%)min max

Ammonium January–March 45 2 4 39.5
July–September 34 2 3 38.7

Nitrate January–March 30 2 3 29.2
July–September 58 2 3 36.9

Phosphate January–March 53 2 7 25.9
July–September 60 2 3 33.3

Salinity January–March 233 2 32 1.14
April–June 353 2 35 0.48
July–September 221 2 21 0.70
October–December 66 2 17 1.03

Silicate January–March 61 2 7 23.0
July–September 44 2 4 43.4

Temperature January–March 260 2 32 14.0
April–June 331 2 35 4.60
July–September 241 2 21 3.26
October–December 66 2 17 9.79

Table 5 Variation of mea-
surement values between
1995 and 2000 for four
monthly time intervals
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(Geological Survey of Denmark and Greenland) as
well as by other international and national institutes
and authorities (Jerosch et al. 2005).
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