
 

ISSN 0020-1685, Inorganic Materials, 2006, Vol. 42, No. 8, pp. 924–931. © Pleiades Publishing, Inc., 2006.
Original Russian Text © L.A. Chuprov, P.G. Sennikov, K.G. Tokhadze, S.K. Ignatov, O. Schrems, 2006, published in Neorganicheskie Materialy, 2006, Vol. 42, No. 8,
pp. 1017

 

−

 

1024.

 

924

 

INTRODUCTION

Silicon tetrafluoride, SiF

 

4

 

, is a large-scale by-prod-
uct in the manufacture of phosphoric fertilizers and
some ore dressing processes [1]. On the other hand, sil-
icon tetrafluoride has recently received considerable
attention as one of the cheapest and most attractive pre-
cursors to silicon, which is being used increasingly in
industrial applications. Unfortunately, the procedures
proposed to date are inferior in efficiency and cost to
the existing industrial processes for silicon manufactur-
ing [2]. At the same time, in the approach recently
developed by Devyatykh et al. [3] for producing isoto-
pically enriched 

 

28

 

Si, 

 

29

 

Si, and 

 

30

 

Si—thermal decompo-
sition of an appropriate isotopically enriched silane—
silicon tetrafluoride is essentially the only silicon-con-
taining volatile precursor with consideration for the
known advantages of using volatile fluorides in centrif-
ugal isotopic enrichment processes. The key steps of
this approach are the synthesis and purification of sili-
con tetrafluoride, isotopic enrichment, conversion to
isotopically enriched silane, purification and decompo-
sition of the silane, and preparation of polycrystalline
silicon—from several grams for the rare isotopes 

 

29

 

Si
and 

 

30

 

Si to hundreds of grams and, in the future, several
kilograms for 

 

28

 

Si.

In devising processes for the synthesis and purifica-
tion of isotopically enriched SiF

 

4

 

 and SiH

 

4

 

, an impor-
tant issue is the ability to monitor a number of impuri-
ties in these substances, primarily those containing
hydrogen, oxygen, and carbon.

High-resolution (up to 0.01 cm

 

–1

 

) Fourier-transform
IR (FTIR) spectroscopy is used rather rarely to deter-
mine impurities in the gas phase, primarily because
only a limited number of laboratories have appropriate
vacuum instruments at their disposal. In contrast to
diode laser spectroscopy, this method provides infor-
mation about the chemistry and state (clustering, com-
plexing, adsorption) of impurities in a broad spectral
range, typically from 400 to 5000 cm

 

–1

 

. Its sensitivity
depends primarily on the integral absorption coefficient
of the analytical line or band and the intensity of the
absorption spectrum of the host substance and impuri-
ties in the spectral range in question. The sensitivity of
high-resolution IR spectroscopy is typically 10

 

–5

 

 to
10

 

−

 

3

 

 mol % and may rich in some cases 10

 

–7

 

 to
10

 

−

 

6

 

 mol % [4, 5].

A literature search revealed no reports on the use of
high-resolution FTIR spectroscopy for determining the
impurity composition of silicon tetrafluoride or silane.
At the same time, IR spectroscopic techniques employ-
ing nonvacuum diffraction instruments (with a resolu-
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Abstract

 

—The impurity compositions of silicon tetrafluoride and silane prepared from it have been determined
by high-resolution Fourier-transform IR spectroscopy. In the spectra of SiF

 

4

 

 samples differing in purity, we
have identified rovibrational bands arising from Si

 

2

 

F

 

6

 

O, SiF

 

3

 

OH, HF, SiF

 

3

 

H, SiF

 

2

 

H

 

2

 

, SiH

 

3

 

F, CH

 

4

 

, CO

 

2

 

, and
CO impurities. Their detection limits lie in the range 9 

 

×

 

 10

 

–5

 

 (CO

 

2

 

) to 3 

 

×

 

 10

 

–3

 

 mol % (Si

 

2

 

F

 

6

 

O). In the spectra
of SiH

 

4

 

 samples of different purity, we have detected CH

 

4

 

, CO

 

2

 

, SiF

 

3

 

H, SiF

 

2

 

H

 

2

 

, and SiF

 

4

 

 impurities. Their
detection limits lie in the range 8 

 

×

 

 10

 

–5

 

 (CO

 

2

 

) to 1 

 

×

 

 10

 

–3

 

 mol % (SiF

 

4

 

).
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tion of several cm

 

–1

 

) were used in a number of studies
[6–9] for semiquantitative analysis of SiF

 

4

 

. In the case
of hexafluorodisiloxane, Si

 

2

 

F

 

6

 

O, whose analytical band
at 839 cm

 

–1

 

 has a full width at half maximum of about
10 cm

 

–1

 

, this approach is justified if the content of this
impurity is no lower than 10

 

–2

 

 to 10

 

–1

 

 mol % [6]. At the
same time, in the case of light impurities, such as H

 

2

 

O,
HF, CO

 

2

 

, and CO, whose bands have a rather complex
rovibrational structure, the data reported by Sviderskii
et al. [8] and Nikonov et al. [9] appear questionable,
especially those for water.

In this paper, we examine the possibility of using
high-resolution (up to 0.01 cm

 

–1

 

) FTIR spectroscopy
for determining the impurity composition of isotopi-
cally unmodified silicon tetrafluoride and silane pre-
pared from it.

EXPERIMENTAL

We analyzed the IR spectra of SiF

 

4

 

 and SiH

 

4

 

 sam-
ples differing in purity. Note that, to assign impurity
bands with more confidence, we also measured the IR
spectra of concentrates of high- and low-boiling impu-
rities taken from a fractional column. In addition, we
used silane samples prepared by a fluoride-free process.

The IR absorption spectra of silicon tetrafluoride and
silane were measured in the range 400 to 4500 cm

 

–1

 

 on a
Bruker IFS-120 HR high-resolution vacuum (residual
pressure, 

 

≤

 

3.9

 

 Pa) FTIR spectrometer, with the gas cells
constantly kept in the cell compartments. In most mea-
surements, we used a multipass gas cell with a 975-cm
pathlength (for studies of silane) and a gas cell with a
20-cm pathlength (for silicon tetrafluoride) made of
stainless steel 12Kh18N10T, with indium-gasketed
CaF

 

2

 

 and ZnSe windows. Through the leak-in system,
passing through a vacuum flange, the cells were con-
nected to turbo and roughing pumps, which ensured a
residual pressure in the cells no higher than 130 Pa. The
gas pressure in the cells was varied from 1.3 

 

×

 

 10

 

3

 

 to
78 

 

×

 

 10

 

3

 

 Pa and was monitored by an MKS Baratron
722A pressure sensor with an accuracy of 0.5%. Spec-
tra were measured with a resolution of 0.01 to 0.1 cm

 

–1

 

using liquid-nitrogen-cooled MCT and InSb detectors.
The signal was acquired over 250–900 scans. Before
measurements, we recorded the absorption of evacu-
ated empty cells. The results were subsequently used as
a background spectrum, 

 

I

 

0

 

. Determination of H

 

2

 

O and
CO

 

2

 

 required more careful, longer time preparation of
the experimental setup. In view of this, the instrument
and cells were pumped for several days.

In assigning absorption bands and lines of impuri-
ties in the gas phase, we used earlier data for SiF

 

4

 

 and
SiH

 

4

 

 [10, 11], HITRAN Database resources [12] (HF,
H

 

2

 

O, CO, CO

 

2

 

, and CH

 

4

 

 molecules), and earlier data

for hexafluorodisiloxane, trifluorohydroxysilane, and
fluorosilanes [13–21].

In quantitative determination of impurities, we used
the standard Bouguer–Lambert–Beer equation:

 

(1)

 

Here, 

 

p

 

 is the partial pressure of the impurity (mm Hg),

 

B

 

 is the integrated intensity of the spectral line or band
(cm

 

–1

 

),

 

 R

 

 = 6.236 

 

×

 

 10

 

4

 

 mm Hg cm

 

3

 

/(mol K) is the gas
constant, 

 

T

 

 is the absolute temperature (K), 

 

c

 

0

 

 =
2.9979 

 

×

 

 10

 

10

 

 cm/s is the velocity of light in vacuum,

 

A

 

 is the integral absorption coefficient (IAC) of the line
or band (cm

 

2

 

/(s molecule)), 

 

l

 

 is the optical pathlength
(cm), and 

 

N

 

A

 

 = 6.022 

 

×

 

 10

 

23

 

 mol

 

–1

 

 is the Avogadro
number.

Knowing the partial pressure of an impurity and the
total pressure in the cell, one can calculate the percent-
age of the impurity:

 

C 

 

= 

 

p

 

/

 

p

 

total

 

 

 

×

 

 100%. (2)

 

Here, 

 

C

 

 is the molar percent of the impurity, 

 

p

 

 is its par-
tial pressure, and 

 

p

 

total

 

 is the total pressure in the cell.

HF, H

 

2

 

O, CO, CO2, and CH4 impurities, for which
reliable values of analytical lines are available, were
determined to within 5% accuracy. For Si2F6O, SiF3OH
[14], and fluorosilanes [21], we used the IAC values
determined earlier for the entire rovibrational band by
first-principles quantum-chemical calculations. This
significantly increased the pooled error of determina-
tion, which was at least 50% according to our estimates.
The detection limits for the above impurities were esti-
mated using the 3σ criterion.

Silicon tetrafluoride was prepared by decomposing
sodium hexafluorosilicate and was purified by low-tem-
perature fractional distillation [22]. Silane was synthe-
sized by reacting silicon tetrafluoride with calcium
hydride and was then purified by low-temperature frac-
tional distillation [22].

RESULTS AND DISCUSSION

Figures 1 and 2 show wide-scan IR absorption spec-
tra of silicon tetrafluoride and silane. As seen, the spec-
tra of both compounds contain very strong intrinsic
absorption bands in the ranges 950–1350 and 1750–
2100 cm–1 for SiF4 and 1700–2400 and 700–1200 cm–1

for SiH4. These bands are due to fundamental modes,
composite modes, and overtones. The absorption lines
of individual impurities lie on the wings of the strongest
bands or heavily overlap with them and are, therefore,
rather difficult to identify even at the maximum resolu-
tion in this study (0.01 cm–1). Consider in greater detail

p
RTc0

AlNA
-------------B.=
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the spectral ranges containing impurity-related absorp-
tion lines.

3950–4150 cm–1. This spectral range includes the
R branch of the absorption band of the ν1 fundamental
transition of molecular hydrogen fluoride—one of the
major impurities in SiF4 and SiH4. According to Kras-
nov et al. [23], the absorption band of HF is centered at
3960 cm–1. As seen in Fig. 3, the spectrum of SiF4
before purification shows well-resolved lines at
4109.94, 4075.29, 4038.96, and 4000.99 cm–1, which
correspond to an HF content of (5.0 ± 0.5) × 10–4 mol %.

3600–3900 cm–1. This spectral range is of interest
primarily because it contains absorption lines belong-
ing to the stretching modes ν1 and ν3 of molecular
water. The content of molecular water in silicon tet-
rafluoride, a substance highly reactive with moisture, is
the subject of much controversy. At the same time,
according to preliminary studies of gas-phase SiF4
hydrolysis [14], supplemented later by experiments

with heavy water (the results will be presented in a sub-
sequent communication), a mixture of silicon tetrafluo-
ride and water may be stable for a rather long time. It
can be concluded therefore that the portion of the spec-
trum of water shown in Fig. 4, recorded after the cell
and instrument had been treated as described in the
EXPERIMENTAL section, is indeed due to the molec-
ular water in silicon tetrafluoride, (6 ± 1) × 10–3 mol %
in this sample. In none of the SiH4 samples studied did
we find H2O levels above the detection limit in our mea-
surements, 1 × 10–3 mol %.

According to low-resolution IR spectroscopic stud-
ies of impurities in silicon tetrafluoride [24], the spec-
tral range under consideration may contain a band
peaked at 3762 cm–1. As shown in detailed experimen-
tal and theoretical studies [14], this band is due to
stretches of the OH group of trifluorohydroxysilane,
SiF3OH, forming according to the simplified scheme

SiF4 + H2O  SiF3OH + HF.
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Fig. 1. Absorption spectrum of SiF4 in the range 750–

4250 cm–1 (p(SiF4) = 7.8 × 104 Pa, l = 20 cm, 0.05-cm–1

resolution) showing fundamental and composite absorption
bands; the arrows mark impurity absorptions. Inset: absorp-
tion band of Si2F6O.
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Fig. 2. Absorption spectrum of SiH4 in the range 750–

4250 cm–1 (p(SiH4) = 6.5 × 103 Pa, l = 20 cm, 0.1-cm–1 res-
olution) showing fundamental and composite absorption
bands; the arrows mark impurity absorptions.
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The formation of this intermediate in silicon tetrafluo-
ride hydrolysis is typical of unpurified SiF4. The SiH4
samples showed no impurity-related absorption in the
spectral range in question.

2800–3200 cm–1. This spectral range includes rovi-
brational components of stretching modes of light
hydrocarbons, C1–C4. The strongest lines belong to the
stretching mode ν3 of methane [12]. Several of our sil-
icon tetrafluoride samples contained CH4, at a level no
higher than 1 × 10–3 mol %, even in impurity concen-
trates.

Rovibrational lines of methane impurity in silane
are difficult to reveal because the stretching band ν3 of
methane overlaps with the ν2 + ν3 and ν3 + ν4 absorption
bands of SiH4. In view of this, to identify the absorption
bands of methane impurity in silane we used the spec-
trum, taken under the same conditions, of silane pre-
pared by a fluoride-free process.

Figure 5 shows a portion of the spectrum of silane
prepared by a fluoride-free process and containing CH4

at a level no higher than a few times 10–6 mol %
(according to gas chromatography data) (curve 1), a
portion of the spectrum of silane prepared from SiF4
with no subsequent purification (curve 2), and the dif-
ference spectrum of curves 1 and 2 (curve 3). The
resultant spectrum is in perfect agreement with the ref-
erence spectrum for this portion of the ν3 band of silane
[12]. According to our data, the methane content of the
sample is (8 ± 4) × 10–3 mol %, in good agreement with
the gas chromatography results.

2100–2400 cm–1. This spectral range is rather infor-
mative for assessing the impurity compositions of sili-
con tetrafluoride and silane because it includes the fol-
lowing absorption bands of typical impurities:

2349.5 cm–1, the ν3 band of carbon dioxide, CO2 [12]; 

2316.7 cm–1, the ν1 band of trifluorosilane, SiF3H
[15, 16];

2251.6 cm–1, the ν1 band of difluorosilane,
SiF2H2 [17];

0
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Fig. 3. Portion of the R branch of the rovibrational absorp-
tion band νHF in the spectrum of SiF4 before purification

(p(SiF4) = 2.6 × 103 Pa, l = 975 cm, 0.01-cm–1 resolution)
and positions of analytical rotational lines (4000.99,
4038.96, 4075.29, and 4109.94 cm–1).
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Fig. 4. Rovibrational absorption bands of H2O (ν1 and ν3),
CO2 (Fermi-resonance bands), and SiF3OH (ν12 at

3762 cm–1) impurities in SiF4 before purification; p(SiF4) =

5.8 × 103 Pa, l = 975 cm, 0.01-cm–1 resolution.
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2216.8 cm–1, the ν1 band of fluorosilane,
SiFH3 [18–20];

2143 cm–1, the band of carbon monoxide, CO [12].
In addition to these impurities in silicon tetrafluo-

ride, this spectral range includes the ν1 band of SiH4,
centered at 2188 cm–1. This, in turn, impedes determi-
nation of impurities in silane. Figure 6 shows a portion
of the spectrum of an SiF4 sample containing all of the
above impurities.

In the case of silane, of all the above impurities only
CO2 is sufficiently easy to identify, owing to the absorp-
tion in the range 2350–2400 cm–1, where the absorption
in silane is very weak. The analytical range
2150−2350 cm–1 of fluorosilanes overlaps almost
entirely with the strong absorption lines of silane. As a

result, only the absorption in trifluorosilane, SiF3H,
may be identified with certainty. Using the above-men-
tioned procedure—subtraction of the spectrum of
silane prepared by a fluoride-free process from that of
“fluoride” silane—we obtained the ν1 band of trifluo-
rosilane with a well-defined R–Q–P profile (Fig. 7).
The SiF3H content of silane samples prepared from sil-
icon tetrafluoride varied from (8 ± 6) × 10–2 to (1 ± 0.7) ×
10−2 mol %.

1500–1700 cm–1. This spectral range includes
absorption lines of the ν2 bending mode of water mole-
cules, whose behavior in SiF4 and SiH4 was mentioned
above. At the same time, it lies within the transmission
window of silicon tetrafluoride, so that the absorption
lines in this range can be used as analytical. Note, how-
ever, that the MCT detector used in this spectral range
ensured a notably smaller signal-to-noise ratio in com-
parison with the range 3600–3900 cm–1 (InSb detector)
at the same signal intensity.

0
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Fig. 5. Rotational components of the rovibrational absorp-
tion band ν3 of SiF4 impurity in SiH4 (p(SiH4) = 1.3 ×
103 Pa, l = 975 cm, 0.01-cm–1 resolution): (1) SiH4 sample
prepared from SiF4 with no subsequent purification,
(2) SiH4 sample prepared by a fluoride-free process and
containing CH4 at a level no higher than a few times

10−6 mol %, (3) difference spectrum of curves 1 and 2.
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Fig. 6. Rovibrational bands of CO2 (ν3), SiF3H (ν1), SiF2H2
(ν1), SiFH3 (ν1), SiH4 (ν1), and CO (ν1) impurities in a con-
centrate taken from the top part of a fractional column;
p(SiF4) = 4.7 × 103 Pa, l = 975 cm, 0.01-cm–1 resolution.
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1015–1045 cm–1. This range can be used for deter-
mination of silicon tetrafluoride impurities in silane
owing to the very strong band at 1031.4 cm–1. The IAC
of this band has been recently refined by Burtsev et al.
[25]. The detection limit of SiF4 might be lower by at
least one order of magnitude, but this is prevented by
the overlap of the analytical band at 1031.4 cm–1 with
the bending bands ν2 and ν4 of silane.

800–880 cm–1. The strongest band in this spectral
range is the ν14 band (centered at 839 cm–1) of hexaflu-
orodisiloxane, Si2F6O, a product of partial silicon tet-
rafluoride hydrolysis [6, 13] (Fig. 8). This substance is
among the most important oxygen-containing impuri-
ties in silicon tetrafluoride and was found in all of the
silicon tetrafluoride samples studied here. In the spectra
of the silane prepared from silicon tetrafluoride, this
impurity was not detected.

The table summarizes the analytical results for the
impurities in silicon tetrafluoride and silane samples

differing in purity. Note that high-resolution FTIR
spectroscopy is currently the only tool for simultaneous
determination of H2O, Si2F6O, and SiF3OH in SiF4 and
SiH4 at impurity concentrations low enough for practi-
cal applications. This technique offers a rather low
detection limit of CO2 and enables determination of a
number of fluorine-containing impurities, which is cru-
cial for the successful implementation of the technol-
ogy in question. Unfortunately, in the case of fluorosi-
lanes the error of determination is rather large, first,
because of the strong intrinsic absorption in SiF4 and
SiH4 in the spectral ranges in question and, second,
because of the use of IACs found by quantum-chemical
calculations [14, 21], which are known to be still infe-
rior in accuracy to experimental techniques. On the
other hand, according to our results the total content of
fluorine in the form of fluorine-containing molecules
(excluding difluorosilane) in the silane sample is
0.12 mol %, which is in reasonable agreement with
chromatography data (0.17 mol %) [23]. Moreover, IR

0

2350

Wavenumber, cm–1

2315 2280

0.4

1.2
A

bs
or

ba
nc

e

0.8

1

2

8 × 10–2 mol % SiF3H

1 × 10–2 mol % SiF3H
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l = 975 cm, 0.01-cm–1 resolution.
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spectroscopy offers the possibility of identifying the
chemical nature of impurities.

CONCLUSIONS

High-resolution FTIR spectroscopy can be used to
analyze the impurity composition of silicon tetrafluo-
ride and silane prepared from it. Using this technique,
we detected a variety of impurities in SiF4 samples of
different purity: SiF3H, SiF2H2, SiH3F, CH4, CO2, CO,
and the products of partial SiF4 hydrolysis under the
action of moisture (HF, SiF3OH, Si2F6O, and molecular
water). H2O and SiF3OH impurities in silicon tetrafluo-
ride were detected with certainty for the first time. The
detection limits of these impurities lie in the range 9 ×
10–5 (CO2) to 3 × 10–3 mol % (Si2F6O). In SiH4 samples
of different purity, we detected CH4, CO2, SiF3H,
SiF2H2, and SiF4 impurities. Their detection limits lie
in the range 8 × 10–5 (CO2) to 1 × 10–3 mol % (SiF4).
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