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Abstract Annually resolved ice core records from

different regions over the Greenland ice sheet (GrIS)

are used to investigate the spatial and temporal vari-

ability of calcium (Ca2+, mainly from mineral dust) and

sodium (Na+, mainly from sea salt) deposition. Cores

of high common inter-annual variability are grouped

with an EOF analysis, resulting in regionally repre-

sentative Ca2+ and Na+ records for northeastern

and central Greenland. Utilizing a regression and

validation method with ERA-40 reanalysis data, these

common records are associated with distinct regional

atmospheric circulation patterns over the North

American Arctic, Greenland, and Central to Northern

Europe. These patterns are interpreted in terms of

transport and deposition of the impurities. In the

northeastern part of the GrIS sea salt records reflect

the intrusion of marine air masses from southeasterly

flow. A large fraction of the Ca2+ variability in this

region is connected to a circulation pattern suggesting

transport from the west and dry deposition. This pat-

tern is consistent with the current understanding of a

predominantly Asian source of the dust deposited over

the GrIS. However, our results also indicate that a

significant fraction of the inter-annual dust variability

in NE and Central Greenland is determined by the

frequency and intensity of wet deposition during the

season of high atmospheric dust loading, rather than

representing the variability of the Asian dust source

and/or long-range transport to Greenland. The vari-

ances in the regional proxy records explained by the

streamfunction patterns are high enough to permit

reconstructions of the corresponding regional deposi-

tion regimes and the associated circulation patterns.

1 Introduction

The atmospheric dynamics in specific regions of the

globe are dominated by pronounced atmospheric

modes such as the Antarctic Oscillation (AAO), the El

Niño Southern Oscillation (ENSO), and the North

Atlantic Oscillation (NAO) or Arctic Oscillation (AO)

(Gong and Wang 1999; Thompson and Wallace 2000;

M. A. Hutterli � C. C. Raible � T. F. Stocker
Physics Institute, University of Bern,
Sidlerstrasse 5, 3012 Bern, Switzerland

M. A. Hutterli (&)
Physical Sciences Division, British Antarctic Survey,
High Cross, Madingley Road, Cambridge CB3 0ET, UK
e-mail: mahut@bas.ac.uk

T. Crueger
Max-Planck-Institute for Meteorology, Hamburg,
Bundesstrasse 53, 20146 Hamburg, Germany

H. Fischer
Alfred-Wegener-Institute for Polar and Marine Research,
Bremerhaven, Columbusstrasse, 27568 Bremerhaven,
Germany

K. K. Andersen � M. L. Siggaard-Andersen
Niels Bohr Institute, University of Copenhagen,
Juliane Maries Vej 30, 2100 Copenhagen, Denmark

J. R. McConnell
Desert Research Institute, 2215 Raggio Parkway,
Reno, NV 89512, USA

R. C. Bales � J. F. Burkhart
University of California, Merced, 4225 N. Hospital Road,
Atwater, CA 95301, USA

123

Clim Dyn (2007) 28:635–647

DOI 10.1007/s00382-006-0211-z

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Publication Information Center

https://core.ac.uk/display/11759193?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Wallace and Thompsonu 2002; Philander 1990; Hurrell

et al. 2001; Barnston and Livezey 1987). The advent of

the NCEP/NCAR (Kalnay et al. 1996) and the ERA-

40 (Simmons and Gibson 2000) reanalysis products has

greatly facilitated research on such teleconnection

patterns between local variables and large-scale

atmospheric behavior. Due to the spatial and temporal

limitation of reliable instrumental input data, however,

these reanalysis data sets only cover the last ~50 years.

In order to investigate climate variability over

longer time periods, great effort has been put into the

reconstruction of time series of the strength of specific

circulation patterns beyond the instrumental record

using natural climate archives and documentary evi-

dence (Appenzeller et al. 1998; Luterbacher et al. 2002;

Cook et al. 2002; Casty et al. 2006; Raible et al. 2006;

Vinther et al. 2003).

Appenzeller et al. (1998) for example use snow

accumulation records from a western Greenland ice

core to reconstruct the NAO. In this region snowfall is

strongly influenced by the blocking of cyclones over

the North Atlantic during negative NAO phases, i.e.

when a reduced pressure gradient between Iceland and

the Azores prevails. While the NAO is clearly reflected

in this specific ice core accumulation record, it does not

dominate the inter-annual accumulation variability in

other parts of the Greenland ice sheet (GrIS) and does

not necessarily control the variability observed in other

ice core proxies (Hutterli et al. 2005; Mosley-Thomp-

son et al. 2005; Crüger et al. 2004). Thus, rather than

identifying a specific circulation pattern in ice core

records, Hutterli et al. (2005) reversed the question

and determined the synoptic atmospheric circulation

patterns that are responsible for the snow accumula-

tion variability in various regions of the GrIS based

purely on ERA-40 data. A similar approach was taken

by Fischer and Mieding (2005) for sea salt aerosol re-

cords from northeastern Greenland ice cores.

Here we largely extend these studies by investigat-

ing ice core Na+ and Ca2+ records from various regions

of the GrIS. These aerosol species are proxies for the

transport and deposition of sea salt aerosol and mineral

dust, respectively, onto the Greenland ice sheet. Air

masses of marine origin transport moisture and sea salt

aerosols to the GrIS. They are linked to cyclonic

activity over the nearby seas and snow deposition over

the ice sheet (Fischer and Mieding 2005; Hutterli et al.

2005). In contrast to snow accumulation records,

however, aerosol species are not necessarily linked to

air masses that are connected to snowfall over the ice

sheet. Due to the additional dry deposition of particles,

aerosol variables in ice core records can also document

the influence of circulation patterns independent from

precipitation events.

Another aspect of these aerosol records is that they

show a clear seasonal cycle with a maximum in winter/

spring and spring for sea salt and mineral dust,

respectively (e.g. Legrand and Mayewski 1997; Whit-

low et al. 1992; Steffensen 1988). Variations in the

amplitude of this pronounced seasonal maximum also

dominate the inter-annual variability in the chemistry

records, while the baseline values for off-season are

very low and do not contribute significantly to the in-

ter-annual variability (e.g. Legrand and Mayewski

1997). Thus, variability in the records of both aerosol

species are expected to represent the circulation pat-

terns encountered during winter and spring, i.e. when

the variability in atmospheric circulation is largest in

the North Atlantic region.

The objectives of our study are to gain a mechanistic

understanding of the influence of atmospheric

dynamics on aerosol transport and deposition onto the

GrIS, to identify those circulation patterns that are

responsible for inter-annual variability in these ice core

records, and to calibrate the latter for future climate

reconstructions. For this we derived regression models,

which link circulation patterns to regional ice core time

series that in turn represent considerable amounts of

common variability in a few ice cores.

2 Data and methods

2.1 Data

Two different types of data are used for this study: ice

core data from different drill sites on the GrIS and

reanalysis data.

The ice core data comprise 12 Ca2+ and 5 Na+ re-

cords from the GrIS (Fig. 1 and Table 1). The selection

criteria for choosing records are data quality (annually

resolved and stratigraphically dated with an estimated

error <1 year), time period covered (at least 1960–1993

to have an adequate overlap with the ERA-40

reanalysis data), and data availability. The analytical

accuracy is typically better than 10% of an individual

measurement. Details on sampling and analysis can be

found in the original publications as indicated in Ta-

ble 1. The high-resolution data was dated by assigning

the Na+ or Ca2+ peaks to spring (i.e. fractional year

n + 0.25) and assuming a linear depth-age relationship

between neighboring years. The annual mean of year n

was then calculated by averaging from fall of year n-1

(i.e. n-1 + 0.75) to fall of year n (i.e. n + 0.75) in order
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to ensure that the Ca2+ and Na+ peak of the winter/

spring season of year n only contributes to the mean of

year n.

The second data set used is the ERA-40 reanalysis

recently provided by the European Centre for Medium

Range Forecasts (ECMWF). ECMWF uses its opera-

tional forecasting model system with a horizontal res-

olution of T159 (1.125·1.125�) and 60 vertical levels to

generate the ERA-40 reanalysis data (Simmons and

Gibson 2000). We use the monthly means of the

streamfunction at 500 hPa. The streamfunction pattern

closely resembles the geopotential height. The latter,

however, also includes a small contribution from

thermodynamical effects, whereas the streamfunction

is a purely dynamical entity, which was the reason we

chose it. The streamfunction can be obtained from:

r2w ¼ @v

@x
� @u

@y
:

Here �2 denotes the Laplacian operator, Y the

streamfunction, and v and u the horizontal wind com-

ponents. Since we were interested in large-scale cir-

culation patterns and for reasons of numerical

efficiency we calculated the streamfunction from the

horizontal wind components on a T21 grid with grid

distances of about 5.6� in zonal and meridional direc-

tion by interpolating the original data accordingly.

2.2 Grouping of ice core data

To group the ice cores geographically the Ca2+ and Na+

series were first detrended. The logarithm of these

detrended time series are used to account for the log-

normal distribution of concentration data and nor-

malized such that the time series have zero mean and

unit variance. Thus it is guaranteed that all time series

have initially the same variance. We then derived the

first empirical orthogonal function (EOF) of various

starting groups of Ca2+ and Na+ series, respectively, for

the longest common time period. These starting groups

(including the group containing all available Ca2+ or

Na+ series) were somewhat subjectively chosen as first

guesses representing large coherent areas of the GrIS.

From each starting group we identified potential sub-

groups of spatially coherent records with consistently

positive (or negative) loadings of EOF1 and thus

common variability. The EOF procedure was then

repeatedly performed on each subgroup while remov-

ing individual cores with small loadings. This way a

Fig. 1 Map of the Greenland ice core records. In red are cores
where both, Ca2+ and Na+ records were available, blue only Ca2+.
Named cores were selected for the four regional groups resulting
from the EOF analysis (see Sect. 2). The four groups, which were
subsequently used for the regression/validation model, are also
depicted

Table 1 Locations and specifications of ice core records used
(X’s annotate available records, and in upper-case the records
defining the four groups in Table 2)

Site Location Method,
sample
resolution

Ca2+ Na+

B18a 76.62�N 36.40�W IC, 3–5 cm X X
B20a 78.83�N 36.50�W IC, 3–5 cm X X
B21a 80.00�N 41.13�W IC, 3–5 cm x X
B29b 76.00�N 43.50�W CFA, 1 cm X
D2c 71.75�N 46.16�W CFA, 1 cm X
D3c 69.80�N 44.00�W CFA, 1 cm X
Das1d 66.00�N 43.99�W CFA, 1 cm x x
Humboldt (HU)e 78.53�N 56.83�W CFA, 1 cm X
NASA-U (NU)e 73.84�N 49.50�W CFA, 1 cm X
NGRIP (NGR)f 75.10�N 42.32�W IC, 5 cm X x
Summit99g 72.55�N 38.31�W CFA, 1 cm x
UAK1c 65.50�N 43.99�W CFA, 1 cm x

The sample resolution and measurement technique only applies
for the data used in this study

IC Ion chromatography, CFA Continuous Flow Analysis
(Röthlisberger et al. 2000)
a Fischer and Mieding 2005; Mieding 2005; Fischer 1997
b Sommer 1996
c Burkhart et al. 2006
d McConnell et al. 2002a
e Anklin et al. 1998
f NorthGRIP Members 2004; Vinther et al. 2006; Andersen
unpublished data 2006
g McConnell et al. 2002b

M. A. Hutterli et al.: The influence of regional circulation patterns 637

123



number of final groups was identified, each containing

a set of ice core records that all have considerable

loadings, i.e. common variability. The principal com-

ponent PC1 of each group for the period 1960–1993 is

then the time series representing the largest amount of

common inter-annual variability of the ice cores. It is

assumed that these PC1s represent a common climate

signal of the specific region of the GrIS, because the

potential glaciological and analytical noise of the ori-

ginal records is removed by this technique.

Applying the EOF procedure, three groups of ice

cores with common Ca2+ and one group with common

Na+ variability are identified from the originally 12

Ca2+ and 5 Na+ records (Fig. 1). Details of the 8 Ca2+

and 3 Na+ ice core records used in the four groups are

given in Table 1 and the records are shown in Fig. 2. In

Table 2 the four groups, the ice cores they contain, and

the name used hereafter for the corresponding regional

time series (i.e. the PC of the first EOF) are listed. The

fact that the Summit99 record is not part of a group is

in line with earlier results for accumulation records

indicating that records from an area of similar meteo-

rological influence away from ice divides and domes

are likely to show the strongest common variability and

are thus best used to reconstruct circulation patterns

(Hutterli et al. 2005).

2.3 Regression technique

The regression technique used here identifies the

atmospheric circulation pattern and its seasonal and

spatial extent, for which the inter-annual variability has

the strongest correlation with a given proxy time series.

The monthly means of the streamfunction at the

500 hPa level, which describe the upper troposphere

circulation, and the four regional aggregated ice core

time series (NE-Ca, NE-Na, C-Ca, NW-Ca, Table 2)

have been used for the statistical regression. Our

method is based on the calibration of the regional Ca2+

and Na+ time series against one or more selected

principal components (PCs) of the streamfunction

EOFs. The regression technique repeatedly applies an

EOF analysis and searches for the streamfunction PCs

that have the highest correlation with PC1 of one ice

core group while systematically varying both, the spa-

tial boundaries of the streamfunction field and the

length and timing (i.e. the season) over which it is

averaged. Thus, this regression algorithm identifies

both the spatial extent and the season for which the

streamfunction pattern is most strongly related to the

inter-annual variability of one ice core group. The

procedure is repeated for each of the ice core groups

resulting in the objective identification of the distinct

streamfunction patterns presented in Sect. 3. Only

those streamfunction PCs that considerably contribute

to the estimation (>25% explained variance, if only

one PC is used, >10% explained variance, for addi-

tional PCs) have been used for calibration.

After the PCs with the highest correlation values

were found, the relationship is validated. Validation is

a necessary procedure to prove the calibration. For

that reason we reconstruct the proxy time series (here
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Fig. 2 The Ca2+ and Na+ records used in the regression-
validation model resulting in the groups 1–4 (see also Table 2
and Fig. 1)
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PC1 of the ice core group) using the streamfunction

PCs with data of a period that has not been used for

calibration. If time series have a sufficient length,

validation can easily be done by dividing the time

series into two parts. One part is used for calibration,

the other for reconstruction and vice versa. Since the

time series used here are too short for this method, we

applied the cross-validation technique, a method spe-

cifically developed for short time series (Michaelsen

1987). In this method, one time step—the validation

time step—is removed from the entire series and a

calibration between ice core and streamfunction is

performed with the reduced time series. Afterwards

this relationship is used to estimate the value of the ice

core record for the validation time step. This method is

performed in a stepwise way, finally leading to an en-

tirely validated regional ice core time series explaining

a portion of the variance of the ‘real’ ice core time

series. By varying the temporal and spatial extent of

the streamfunction, we searched for a reconstruction

with the highest amount of explained variance. In this

study, we only accepted regression models describing

about 30% of the ice core records’ variance after val-

idation. The calibration and validation procedure used

has been applied earlier and is described in more detail

by Crüger and von Storch (2002) and Crüger et al.

(2004). They searched for circulation (streamfunction)

as well as for thermodynamic (temperature) patterns

related to ice core accumulation. However, thermo-

dynamics proved to have no significant effect on snow

deposition and is expected to be even less important

for aerosol deposition. Accordingly, in this study the

procedure has been simplified in such a way that we

only looked for circulation patterns that are linked to

the ice core records.

3 Results

The regression analysis and validation led to stream-

function patterns representing spring–summer (NE-

Ca), winter–spring (NE-Na, C-Ca) and winter–summer

(NW-Ca). This finding is approximately in line with the

current understanding of the seasons with the highest

variability (for Ca2+ mainly the spring, for Na+ the

winter season).

For NE-Ca (defined by 2 ice cores), two stream-

function patterns were identified, representing the time

from March to August and covering the area from

Alaska, northern Canada to Svalbard (Fig. 3). Al-

though the timing of the seasonal correlation identified

by our automatic regression analysis extends into the

summer months with low Ca2+ concentrations, the

months of the highest Ca2+ variability (generally

March–May) are included, providing independent

support of the validity of our regression method. The

Fig. 3 EOF-patterns linked to NE-Ca for the case of positive Ca2+

concentration anomalies: streamfunction in units of 105 m2/s2

averaged from March to August. a Second EOF, EOF2Y(NE-Ca),
representing 13% of the streamfunctions’ variability, explaining
30% of the record. b First EOF, EOF1Y(NE-Ca), representing
26% of the streamfunctions’ variability and describing 14% of the
NE-Ca record. Shown is the full spatial extent of the pattern as
determined by the regression model. Arrows indicate the local
wind direction and wind speed anomaly (proportional to the length
of the arrow) and are displayed to facilitate the interpretation of
the pattern

Table 2 Four groups of ice core records with common variability
identified with the EOF analysis and the names used hereafter
for the corresponding time series, which are the first principal
components, PC1, of each group

Group Species Cores (loadings for PC1) Name of
PC1

1 Ca2+ B18 (0.79), B20 (0.79) NE-Ca
2 Na+ B18 (0.87), B20 (0.66), B21 (0.80) NE-Na
3 Ca2+ B29 (0.53), D2 (0.60), D3 (0.74),

NGR (0.66)
C-Ca

4 Ca2+ Hu (0.73), NU (0.73) NW-Ca

In brackets the loading of each ice core record to PC1 is shown.
The loading represents the correlation between the single ice
core time series and PC1 and its square is the variance of the ice
core time series explained by the PC. The mean of these vari-
ances is the explained variance of the EOF. Thus, the loadings
are a measure of the contribution of the single cores to the EOF
variability
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second EOF of the streamfunction Y [EOF2Y(NE-

Ca)], representing 13% of the streamfunctions’ vari-

ability, explains 30% of the variability in the NE-Ca

record (Fig. 3a). The streamfunction patterns can be

interpreted as follows: The flow is tangent to the

streamfunction contours with increasing streamfunc-

tion values on the right hand side of the flow. Increased

wind speed is indicated by more closely spaced contour

lines. To facilitate the interpretation of the stream-

function patterns some arrows indicating the direction

and the speed of the local wind are displayed in the

figures. The pattern of EOF2Y(NE-Ca) represents a

westerly flow over the northern parts of Greenland.

The first EOF [EOF1Y(NE-Ca), Fig. 3b] represents

26% of the streamfunction variability and describes

14% of the variability in the NE-Ca record. This pat-

tern is characterized by a weak cyclonic flow over

Greenland, indicating transport from the south–east/

east to the drill sites.

Similar to NE–Ca, also for the NE-Na record (de-

fined by three ice cores) one EOF has been identified

indicating marine air masses from the Greenland sea

being advected to the region (Fig. 4) but with much

stronger flow regime around the drill sites for the

February–March period. This fifth EOF [EOF5Y(NE-

Na)] describes 30% of the variability in the NE-Na

record (9% explained variance of the streamfunction

field). The timing of February–March is earlier than

that of NE-Ca (March–August), which is consistent

with the seasonality in the ice core data.

In the central Greenland region, the C-Ca record

(defined by four ice cores) is related to the pattern

EOF2Y(C-Ca) explaining 22% of the variance of the

streamfunction. It shows a cyclonic flow south of

Greenland and a blocking situation over north–eastern

Europe (Fig. 5). Thus, the air masses are transported

from the south/south–east to the ice core drill sites.

The identified period from December–February and

especially the spatial pattern of the flow regime is

unexpected. However, extending the season in the

regression analysis to the expected season of maximum

dust input (i.e. spring) does not change the stream-

function pattern significantly nor does the validation

fail. Although the explained variance of the ice core

data falls from 39.4 to about 29% for December–April,

the timing is thus not in contradiction with that ob-

served in ice cores.

The two cores defining the NW-Ca record have very

low common variability (PC1 explaining only 53% of

the variability of one core, compared to 50% if the

cores were totally independent). This could be ex-

pected from their different meteorological and glacio-

logical conditions, i.e. high accumulation regime with

wet deposition dominating at NASA-U compared to

low accumulation rate with significant contribution

from dry deposition at Humboldt. Despite this, we

performed our regression analysis, finding a similar but

less pronounced circulation pattern (not shown) as for

C-Ca. The pattern represents the time from January to

June. NW-Ca is not included in the following discus-

sion, as it does not provide any additional information.

Figure 6 shows the regional ice core time series and

the corresponding PCs of the streamfunction patterns

obtained from the regression model. The best fit is

obtained for C-Ca, for which the explained variance of

the cross-validated reconstruction is 39% compared

Fig. 4 EOF-pattern linked to NE-Na for the case of positive Na+

concentration anomalies: Streamfunction in units of 105 m2/s2

averaged over February/March: 5th EOF, EOF5Y(NE-Na),
representing 9% of the streamfunctions’ variability, explaining
30% of the record. Shown is the full spatial extent of the pattern
as determined by the regression model. Arrows indicate the local
wind direction and wind speed anomaly (proportional to the
length of the arrow) and are displayed to facilitate the
interpretation of the pattern

Fig. 5 EOF-pattern linked to C-Ca for the case of positive Ca2+

concentration anomalies: Streamfunction in units of 105 m2/s2

averaged over December-February: 2nd EOF, EOF2Y(C-Ca),
representing 22% of the streamfunctions’ variability, explaining
39.4% of the record. Shown is the spatial extent of the pattern as
determined by the regression model. Arrows indicate the local
wind direction and wind speed anomaly (proportional to the
length of the arrow) and are displayed to facilitate the
interpretation of the pattern

640 M. A. Hutterli et al.: The influence of regional circulation patterns

123



with 32% for NE-Ca and 30% for NE-Na. Note that

the validation generally yields smaller amounts of ex-

plained variance than the calibration without valida-

tion (i.e. the PC’s), because of the reduced information

during the validation procedure.

4 Discussion

The circulation patterns explaining the largest fraction

of the variances of the four regional time series were

found in winter (NE-Na), winter/spring (C-Ca) and

spring/summer (NE-Ca, NW-Ca,), i.e. the seasons

when Ca2+ and Na+ concentrations in Greenland ice

cores peak (Beer et al. 1991; Fischer and Wagenbach

1996; Fischer 1997; Mayewski et al. 1987; Steffensen

1988). It should be noted that the seasons are not very

stringently constrained, first because the months of the

annual Ca2+ and Na+ concentration peaks will vary

from year to year, and that in the ice core records used

the timing of peaks is associated with an uncertainty of

a few months. However, the fact that the regression

model found seasons consistent with observations by

using the annual Ca2+ and Na+ indicates that a large

fraction of the inter-annual variability in the regional

time series is indeed not noise but represents a climatic

signal.

Previous research indicated that the dominant frac-

tion of mineral dust deposited over Greenland origi-

nates almost exclusively from desert areas in Asia

(Bory et al. 2002, 2003). The EOF2Y(NE-Ca) pattern

(Fig. 3a) and the implied westerly flow over the

northern parts of Greenland linked with higher Ca2+

values, is consistent with the expected transport of dust

from these sources to Greenland (e.g. Kahl et al. 1997).

The EOF1Y(NE-Ca) pattern (Fig. 3b), which ex-

plains 14% of the variance of the NE-Ca record, is

similar to the pattern EOF5Y(NE-Na) (Fig. 4). Both

patterns indicate that high concentrations are linked

with transport from the south–east/east to the drill

sites. At first sight this would suggest a North-Atlantic/

Greenland sea marine source for both Ca2+ and Na+.

While sensible for Na+, which is of primarily marine

origin, in the case of Ca2+ this is surprising and seem-

ingly inconsistent with an exclusively Asian dust

source. A regional dust source contributing any sig-

nificant amount to the dust deposited over Greenland

is also unlikely due to the fact that Ca2+ concentrations

in snow do not depend on altitude (Fig. 7a) in the dry

snow zone of the GrIS. An altitude dependence would

be expected for regional dust sources, as seen in Bory

et al. (2003), because much of the dust mass is pro-

gressively deposited when transported from low alti-

tude sources onto the ice sheet. Unlike Ca2+, Na+

concentrations clearly show this dependency, consis-

tent with its source in the neighbouring seas (Fig. 7b).

In this study we used total Ca2+ rather than non-

sea-salt Ca2+ (nssCa), thus a fraction of the Ca2+ is of

sea salt origin. However, the sea salt fraction of Ca2+

(ssCa) contributes less than 7% to the total Ca2+ for

the cores where Na+ was available using the well

established sea water ratio of ssCa[ppb]/

ssNa[ppb] = 0.038 (Sverdrup et al. 1942). More rele-

vant for the present study investigating variabilities

rather than absolute values, is the standard deviation

of ssCa. The latter is on the order of only 0.1 ppb

compared to 4.8–10.1 ppb for total Ca2+. Thus, ssCa

can not be responsible for the 14% variance in NE-

Ca explained by EOF1Y(NE-Ca). An additional

indication that ssCa does not contribute significantly

to the total Ca2+ variability comes from the fact that

EOF1Y(NE-Ca) and EOF5Y(NE-Na) represent dif-

ferent periods of the year, indicating that Ca2+ and

Na+ are decoupled, i.e. are not transported together

(a)

(b)

(c)

Fig. 6 Ice core PC1 (red) and streamfunction PCs (black)
obtained from the regression models. a NE-Ca (solid black
PC1w, dashed black PC2w), b NE-Na, c C-Ca
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in the same air masses, consistent with the different

timing of the Ca2+ and Na+ peaks observed in ice

cores.

We suggest that the variability in NE-Ca related to

EOF1Y(NE-Ca) reflects inter-annual variability of wet

deposition at the corresponding ice core sites during

spring as opposed to variability in the dust source and/

or long-range transport.

Dry deposition of dust dominates the concentrations

in the snow during periods of very low accumulation,

and particularly in spring when the dust loading is high.

However, because of the much higher efficiency of wet

versus dry deposition of aerosols to the snow surface,

sporadic precipitation events will very efficiently

scavenge dust particles from the air. This may thus

strongly modulate aerosol deposition during the spring

peak season and introduce significant inter-annual

variability to the dust concentration in the ice.

However, this variability can have two opposite ef-

fects on ice core aerosol records: If the snowfall orig-

inated from air masses void of, or depleted in the

aerosol in question, it can decrease average concen-

trations in ice cores by diluting the deposited material

when looking at averages longer than the single pre-

cipitation event. This will lead to a negative correlation

of aerosol concentration in snow with accumulation

rate, which is typically seen at very low accumulation

sites, where dry deposition is responsible for most of

the aerosol mass deposited (e.g. Wolff et al. 2006; Le-

grand 1987). If the precipitation originates from air

masses rich in the aerosol in question, i.e. bringing an

above average amount to the surface, this will lead to

elevated concentrations in the snow and thus to a po-

sitive correlation of the ice core record with accumu-

lation rate. Such a behavior is also supported by the

high scavenging ratios of mineral dust aerosol by polar

snow (Davidson et al. 1996).

A positive wet deposition anomaly leading to in-

creased NE-Ca implies more efficient Ca2+ deposition

onto the ice sheet in single precipitation events com-

pared to spring seasons with no or less snowfall. This

also means that there must be some (Asian) dust

present in the air masses over the GrIS. This is not

unreasonable given that the dust deflated from the

Takla Makan Desert, West China, which is thought to

be the source supplying most if not all of the mineral

particles during the dusty spring season to Greenland,

is usually entrained to elevations >5,000 m before

being transported by the westerly jet stream over the

remote North Pacific Ocean (Sun et al. 2001; Bory

et al. 2002, 2003). It can thus be assumed that the

comparatively small dust particles arriving at high

altitudes over the GrIS region will lead to relatively

homogeneous background dust concentrations in the

lower atmospheric layers over the Arctic in spring. The

above-mentioned observed absence of an altitude

dependence of Ca2+ concentrations over the GrIS

further supports this scenario.

The accumulation rates of ~10cm weq/a in NE-

Greenland (Bales et al. 2001; Dethloff et al. 2002) are

typical for a regime where both, dry deposition and wet

deposition are important. Accordingly, our results

suggest that the inter-annual variability of the Ca re-

cord associated with EOF2Y(NE-Ca) in this area is

dominated by dry deposition and the inter-annual

variability associated with EOF1Y(NE-Ca) by wet

deposition.

The hypothesis that the EOF1Y(NE-Ca) pattern is

related to wet deposition is confirmed by the significant

correlation (95% significance level, r = 0.34) between

Fig. 7 Altitude dependence of a nss Ca2+ and b Na+concentra-
tions in north to central Greenland snow pits and shallow ice
cores (lines are linear regressions). Data are from the AWI
North Greenland traverse 1993–1995 (Fischer 1997), the EGIG

traverses 1990–1992, Site A, and Summit, central Greenland (Laj
et al. 1992; Savarino 1996; Whitlow et al. 1992; Fischer et al.
1996). Shown are temporal averages ranging from 5 up to
500 years
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March–August ERA-40 snowfall in the NE-Ca region

and the corresponding PC of EOF1Y(NE-Ca). On the

other hand, no significant correlation of ERA-40

snowfall and the PC of EOF2Y(NE-Ca) was found, in

line with dry deposition. Given that the latter pattern

explains a larger fraction (30%) of the variability of

NE-Ca than EOF1Y(NE-Ca) (14%), it is not surprising

that NE-Ca itself is not correlated with spring snowfall

either. The correlations do not change significantly

using snowfall minus snow evaporation instead, which

corresponds more closely to accumulation rather than

precipitation, and when using annual snowfall aver-

ages. Although dry deposition is important in NE

Greenland, the amount of wet deposition in spring

apparently is enough to counteract the negative cor-

relation between annual snow accumulation (the latter

being dominated by summer through winter precipi-

tation when atmospheric dust is low) and annual Ca2+

concentrations typical for very low accumulation sites

(Legrand 1987; Alley et al. 1995; Kreutz et al. 2000;

Wolff et al. 2006).

The easterly/south-easterly flow towards the NE of

the GrIS related to EOF5Y(NE-Na) point to a sea salt

source in the Greenland sea (Fig. 4). This is consistent

with previous results showing a significant correlation

of snow accumulation in the NE of the GrIS and cy-

clonic activity over the Greenland sea (Hutterli et al.

2005; Crüger et al. 2004), given that sea salt aerosols

and water vapor tend to be closely coupled by sharing a

common source region and transport (Fischer and

Mieding 2005). This coupling also implies that most of

the sea salt aerosols will subsequently be wet depos-

ited, leaving only a small fraction of the original aer-

osol mass available for potential dry deposition. The

conditions are exactly opposite in the case of dust

storms, which are intrinsically linked with dry condi-

tions, a prerequisite for entraining dust. Most dust

particles produced after a dust storm are dry deposited

within a relatively short period of time. The smallest

particles may, however, remain in the atmosphere for a

few weeks and can be transported over large distances

(Ginoux et al. 2001).

In contrast to NE Greenland, the C-Ca region, with

accumulation rates exceeding 20 cm weq/a, is domi-

nated by wet deposition. Following the above argu-

ments it would seem reasonable that the regression

model only found the one pattern EOF2Y(C-Ca),

suggesting a relationship to moist marine air masses

from the west as it is the case for EOF1Y(NE-Ca) and

EOF5Y(NE-Na). However, given that the cores are

close to or west of the ice divide, air masses arriving

at the C-Ca region from the east will have lost a

significant part of their original moisture content on

their way. Indeed, in contrast to EOF1Y(NE-Ca) the

PC of EOF2Y(C-Ca) is negatively correlated with the

corresponding ERA-40 snowfall (r = -0.30; 92% con-

fidence level). A composite analysis indicates that for

years with values >1r above the mean of PC of

EOF2Y(C-Ca), seasonal average ERA-40 snowfall is

~33% lower than for the years with PC values <1r
below the mean. This suggests that in this high

accumulation regime snowfall leads to a dilution ra-

ther than an enhancement of Ca2+ concentrations in

snow.

However, there is no correlation (r = 0.008) be-

tween C-Ca and the ERA-40 snowfall in the corre-

sponding region either for seasonal or for annual snow

accumulation records. A negative correlation would be

expected, if individual snowfall events were to dilute

the annual Ca2+ concentrations. The lack of such a

relationship supports previous results suggesting that

the concentrations of impurities in snow at these high

accumulation sites are independent of the accumula-

tion rate (e.g. Alley et al. 1995; Kreutz et al. 2000;

Burkhart et al. 2004).

If it is neither accumulation rate nor transport of

dust, then what process causes the close link between

the inter-annual variability in Ca2+ concentrations and

the EOF2Y(C-Ca) pattern (Fig. 5), i.e. the positive

correlation of C-Ca with PC of EOF2Y(C-Ca)? One

possible explanation is that the intensity of a precipi-

tation event, i.e. the total amount of snowfall, modu-

lates the average Ca2+ concentrations of the snow

deposited during the event: This would be the case

when a relatively low intensity precipitation event

scavenges and deposits essentially all dust present in

and below the cloud. This is expected from the high

scavenging ratios of mineral dust aerosol by polar snow

(Davidson et al. 1996) and is in particular true for fog

deposition events, which can efficiently deposit soluble

species leading to high concentrations (Bergin et al.

1995, 1996). Higher intensity precipitation events will

then result in lower than average aerosol concentra-

tions in snow. It is thus plausible that precipitation

events associated with a positive EOF2Y(C-Ca) pattern

(i.e. dryer air masses from the east) are generally of

lower intensity compared to events during a negative

EOF2Y(C-Ca) pattern with moist air masses from the

west. This would then explain both the positive cor-

relation of C-Ca with the PC of EOF2Y(C-Ca) and the

lack of a correlation with ERA-40 snowfall. In addi-

tion, the lower accumulation during positive EO-

F2Y(C-Ca) patterns will lead to a higher relative

contribution (i.e. less dilution) of dry deposition, and

higher sublimation rates, both further increasing sur-

face snow Ca2+ concentrations.
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We thus suggest that the large fraction (39%) of the

inter-annual Ca2+ variability in Central Greenland is

caused by the variability in intensity of snowfall events

in spring, which in turn may be linked to the frequency

of fog deposition events.

5 Summary and conclusions

Our results suggest that a large fraction of the inter-

annual variability measured in ice core aerosol records

result from the complex modulation of aerosol con-

centrations in snow by dry and wet deposition, the

latter being driven by distinct regional circulation

patterns. Dry deposition is a continuous and relatively

simple process leading to an aerosol flux onto the ice

sheet, which essentially scales with local atmospheric

concentrations (assuming a relatively constant deposi-

tion velocity).

Contrary to previous assumptions, our results sug-

gest that depending on the timing and intensity of the

precipitation, wet deposition can either lead to no

change or a decrease in annual aerosol concentrations

in ice cores or to an increase. Snowfall during the

seasons of low or no Ca2+ and Na+ aerosol loading (i.e.

summer through winter) will generally dilute annual

average concentrations in snow leading to negative

correlations of ice core aerosol concentrations and

accumulation rate. At a given atmospheric aerosol

loading, the average concentration of a precipitation

event will inversely scale with its intensity (amount of

precipitation deposited during a specific event). Thus,

low intensity snowfall and particularly also fog depo-

sition events during the high aerosol spring season tend

to increase aerosol concentrations in snow, whereas

high intensity events potentially dilute them.

Because average accumulation rates are determined

by both, the frequency and the intensity of precipita-

tion events, simple relationships between accumulation

rate and ice core aerosol concentration can in general

not be expected [except in the absence of wet deposi-

tion during the high aerosol season, which is e.g. the

case for extremely low accumulation rates found on the

East Antarctic Plateau (e.g. Wolff et al. 2006)].

One of the main outcomes of our study is that

mineral dust and sea salt aerosol deposition is mainly

influenced by regional circulation and precipitation

patterns over Greenland, while our method did not

identify large-scale (hemispheric) circulation patterns

to control aerosol transport onto Greenland in a sta-

tistical significant way. Only in the case of mineral

dust in Northeastern Greenland the inter-annual

variability of the regional Ca2+ record is associated

with transport related to larger scale westerly circu-

lation (Fig. 3a). Ca2+ in Greenland ice cores pre-

dominately derives from mineral dust and the

strongest of the associated circulation patterns is in

agreement with findings from several sites on the

interior GrIS showing dust sources in central Asia

(Bory et al. 2002, 2003). Easterly flow towards the ice

core sites in northeastern Greenland indicated by

both the second strongest circulation pattern for Ca2+

(Fig. 3b) and the circulation pattern associated with

Na+ variability (Fig. 4) suggests common mechanisms

of deposition of these species onto the GrIS. How-

ever, they are not deposited synchronously, and are

thus not scavenged from the same air masses. Cor-

relation analyses with ERA-40 snowfall fields suggest

that dust deposited in conjunction with westerly flow

is most likely dry deposited. It may reflect inter-an-

nual variability in the long-range transport and pos-

sibly dust source variability in central Asia. In

contrast, the easterly circulation pattern is likely

connected to mainly wet deposited dust. The intensi-

ties of wet deposition events in this area are generally

low enough to lead to a positive correlation of dust

concentration with the seasonal snow accumulation

associated with the EOF1Y(NE-Ca) stream function

pattern. The same is also true for EOF5Y(NE-Na).

In northeastern Greenland, inter-annual Na+ vari-

ability is associated with an easterly/southeasterly flow

suggesting a Na+ source in the Greenland sea followed

by a predominantly wet deposition of the sea salt

aerosols (Fig. 4). It has not been possible to verify a

circulation pattern for Na+ in central Greenland, as we

only have one Na+ record with sufficient resolution.

For the central part of the GrIS, where wet depo-

sition dominates, only one single significant circulation

pattern associated with Ca2+ variability could be found.

This pattern suggests a south-easterly transport asso-

ciated with elevated Ca2+ values and low accumulation

rates. Based on the latter and in conjunction with the

missing correlation of accumulation rate and C-Ca, we

suggest that the precipitation intensity (amount of

precipitation in a single event) is causing the observed

inter-annual Ca2+ variability in this region as opposed

to average precipitation rates (which would lead to a

negative correlation).

From our results we therefore conclude that a high

fraction (39%) of the interannual C-Ca variability is

determined by the variability of precipitation intensity

associated with the EOF2Y(C-Ca) streamfunction

pattern and might potentially be dominated by the

frequency of fog events.
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Although the sources of dust found on the interior

GrIS are known to be situated in Central Asia, the

study presented here shows that inter-annual variabil-

ity in ice core dust concentration is strongly modulated

by regional atmospheric circulation patterns and pre-

cipitation events. Numerical deposition models

describing the complex interplay of atmospheric cir-

culation and the various deposition processes (includ-

ing fog and snow sublimation) and corresponding in

situ measurements are needed to improve our under-

standing of the inter-annual variability of ice-core

aerosol records.

It should be mentioned that the variability in dust

and sea salt sources are modulated by near surface

variables such as wind speed, relative humidity and sea

ice cover, which were not investigated. It is therefore

conceivable that part of the unexplained fraction of the

inter-annual variability in our ice core records stems

from the variability in the source strengths.

Further, it is interesting to note that the variance in

the regional records explained by the streamfunction

patterns EOF2Y(NE-Ca), EOF5Y(NE-Na) and EO-

F2Y(C-Ca) is of the same order or higher than the

maximum explained variance of the NAO in ice core

accumulation records (32%, NASA-U, Appenzeller

et al. 1998). Thus a reconstruction of both, deposition

regimes and potentially fog deposition frequency, and

the inter-annual variability of the regional circulation

patterns, could be attempted.

In similar future studies, the aerosol spring peak

area rather than annual averages could be used to

improve fractions of explained variances by reducing

the noise introduced by the inter-annual variability of

accumulation during the seasons of low atmospheric

aerosol loading. For this, however, more seasonally

resolved ice core records are needed.
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The contribution of snow, fog, and dry deposition to the
summer flux of anions and cations at Summit, Greenland.
J Geophys Res 100(D8):16275–16288

Bory AJ-M, Biscaye PE, Svensson A, Grousset FE (2002)
Seasonal variability in the origin of recent atmospheric
mineral dust at NorthGRIP, Greenland. Earth Planet Sci
Lett 196(3–4):123–134

Bory AJ-M, Biscaye PE, Piotrowski AM, Steffensen JP (2003)
Regional variability of ice core dust composition and
provenance in Greenland. Geochem Geophy Geosys
4(12). DOI 10.1029/2003GC000627

Burkhart JF, Bales RC, McConnell JR, Hutterli MA (2006)
Influence of the North Atlantic Oscillation on anthropo-
genic transport recorded in Northwest Greenland ice cores.
J Geophys Res (in press)

Burkhart JF, Hutterli MA, Bales RC, McConnell JR (2004)
Seasonal accumulation timing and preservation of nitrate in
firn at Summit, Greenland. J Geophys Res 109(D19302).
DOI 10.1029/2004JD004658

Casty C, Raible CC, Stocker TF, Wanner H, Luterbacher J
(2006) European climate pattern variability since 1766. Clim
Dyn (in press)

Cook ER, D’Arrigo RD, Mann ME (2002) A well-verified,
multiproxy reconstruction of the winter North Atlantic
Oscillation index since AD 1400. J Clim 15(13):1754–
1764
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Dorn W, Jung-Rothenhäusler F, Fischer H, Kipstuhl S,
Miller H (2002) Recent Greenland accumulation estimated
from regional climate model simulations and ice core
results. J Clim 15:2821–2832
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