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1  Introduction 

 

Monitoring of the marine environment for 
radioactivity remains one of the more expensive 
and labour intensive monitoring activities due 
to the large sample volumes required and the 
complex and lengthy analytical procedures 
required to measure current concentrations of 
radioactive contamination. Because of these 
factors some consideration must be given to the 
design of monitoring regimes to ensure 
effective and cost efficient sampling that can be 
defended on the basis of scientific rationale. 
Under the Norwegian Marine Monitoring 
Programme (RAME), the Norwegian Radiation 
Protection Authority (NRPA) and other 
institutions have for the past decade been 
conducting marine monitoring for a variety of 
radionuclides at a series of stations along the 
coast of Norway and at other relevant sites 
(Brown et al, 1999; 2002, Gerland et al, 2003). 
Such monitoring activities have resulted in the 
generation and maintenance of relatively long 
time-series relating to the levels of some 
radioactive contaminants in the marine 
environment. In recent years, the development 
of oceanographic models that describe the 
transport and occurrence of such contaminants 
in the marine environment have supplemented 
empirical data generated by monitoring 
programmes and provide an important tool for 
the optimisation and assessment of monitoring 
regimes.  

 

This report details the results of an  
investigation of the applicability of advanced 
spatial analysis routines to the problem of 
optimising temporal sampling regimes for the 
monitoring of radioactive contaminants in the 
northern marine environment using 99Tc as a 
case study. The results of such application are 
presented and discussed and the methods are 
appraised in relation to both empirically derived 
data and data provided by an oceanographic 
model. The results of the project are also used 

to analyse the efficacy of current monitoring 
programs for the monitoring of current and  
future of levels of this isotope in the Norwegian 
marine environment. 

 

1.1 Technetium-99 (99Tc) 
99Tc is a fission product of uranium and is 
formed during nuclear reactions by the beta 
decay of 99Mo as presented in Figure 1. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99Tc, with a half-life of 213000 years and a 
specific activity of 630 kBq/mg, undergoes beta 
decay to form the stable isotope 99Ru. Since its 
discovery, artificially created by the 
bombardment of molybdenum with deuterons 
(Perrier and Segre, 1947), 21 isotopes of the 
element have been prepared, with atomic mass 
numbers between 90 and 110 (Long and 
Sparkes, 1988). All known isotopes of 
technetium are radioactive and although 
miniscule amounts of 99Tc have been found as a 
result of naturally occurring processes, namely 
the spontaneous fission of 238U (Kenna and 
Kuroda, 1964), by far the greatest source of 
99Tc is the operation of nuclear reactors and 
associated facilities in the nuclear industry. An 
estimated 25-30 tonnes of the isotope have been 
produced worldwide with ca. 1% of that 
amount (150-200 TBq) having been released to 
the environment (Aarkrog et al., 1986, Beasley 
and Lorz, 1986) prior to the 1990’s. Of the 
total amount released to the environment, ca. 

 
 

Figure 1. Decay scheme of 99Mo 
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85% has been released as a result of the 
activities of nuclear fuel reprocessing plants and 
the remaining ca. 15% has resulted from the 
testing of nuclear weapons (Dahlgaard, 1995). 
The long half-life of 99Tc, its high environmental 
mobility as the poorly sorbed, chemically 
stable, anionic pertechnate species (TcO4

-) and 
its infiltration of food chains as an analogue of 
sulphate (Cataldo et al., 1989, Bondietti and 
Francis, 1979) make the contamination of the 
environment with this isotope a matter of some 
concern and necessitates the establishment and 
maintenance of monitoring systems.  
 
 

1.2 99Tc discharges from 
nuclear  reprocessing 
facilities 

Past and continued sources of 99Tc to the Arctic 
marine environment are the nuclear fuel 
reprocessing facilities at Sellafield in the UK and 
Cap la Hague in France (Fig. 2). Both plants are 
engaged in the reprocessing of spent fuel from 
nuclear reactors. 

Although some nations have chosen to store 
spent nuclear fuel from their reactors, the 
United Kingdom and France reprocess spent 
fuel produced by their own reactors and the 
reactors of some other countries. The 
reprocessing process involves dissolution of the 
nuclear fuel in acids with subsequent isolation of 
the reusable uranium and plutonium by a 
variety of chemical means. Other radioactive 
isotopes, formed during usage of the fuel, are 
liberated from the solid fuel by the dissolution 
process and are regarded in general as waste 
products. Such isotopes include 90Sr, 137Cs and 
99Tc. Much of this waste can be concentrated 
and stored on-shore for future disposal or 
continued storage. However a proportion of 
this waste is discharged to the oceans. 

 

1.2.1 Historical discharges of 99Tc 
from the Sellafield and Cap la 
Hague facilities 

Discharges of 99Tc from these facilities have 
varied in magnitude over the past decades 
(Figure 2). During the 1980’s and into the early 
1990’s, the French facility at Cap la Hague 
dominated in terms of total 99Tc discharged. In 
the period 1982-1991, Sellafield discharged a 
total of 42.4 TBq of 99Tc (BNFL, 1982-1991) 
compared to a discharge of 102 TBq by the la 
Hague facility during the same period 
(Herrmann et al., 1995).  

 

 

 

 

 

 

 

 

 

 

 

 

 

In the period prior to the early 1980’s, 99Tc 
discharges were largely dominated by the 
Sellafield contribution although estimation of 
the magnitude of the discharges are complicated 
due to the fact that 99Tc was not reported as an 
individual radionuclide prior to 1978. Leonard 
et al. (1997a) estimate discharges of 99Tc 
between 1952 and 1968 to have been between 
5 and 10 TBq per annum rising to 40 TBq per 
annum between 1970 and 1977. Between 1980 
and 1994, 99Tc was stored on-site at Sellafield 
whilst the Enhanced Actinide Removal Plant 
(EARP) was commissioned and discharges of 
99Tc were of the order of 4-6 TBq per annum. 
The EARP plant was designed to treat high level 
nuclear wastes arising from the operation of 
BNFL’s Magnox reprocessing plant by 

 
Figure 2. Historical discharges of 99Tc from Sellafield 

and Cap la Hague. 
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removing actinide and caesium isotopes from 
the waste. 99Tc in the waste is present as the 
pertechnate ion and cannot easily be removed 
from the waste by the processes employed at 
the EARP plant (Busby et al., 1997). The net 
result of this fact has been that since 1994, 99Tc 
discharges from the EARP plant at Sellafield 
have increased 50-fold from the discharge levels 
of the early 1990’s, to a level of 150-190 TBq 
per annum in 1995 and 1996. 

 

1.3 Transport of 99Tc to the     
Norwegian Marine 
Environment 

Leonard et al. (1997b) compared levels of 99Tc 
in British coastal waters before and after the 
initiation of activities at the EARP plant and 
observed an increase in the levels of 99Tc in the 
waters of the Irish Sea from 1-4 Bq/m3 before 
operations at EARP commenced to in excess of 
30 Bq/m3 (northern Irish Sea) and 200 Bq/m3 
(off western Scotland) after EARP began 
processing nuclear waste at the Sellafield site. 
Such observations indicated that the 99Tc had 
migrated to the northern reaches of the Irish Sea 
in a relatively short period of time (approx. 3 
months). The 99Tc signal was then lost due to 
inflows of water from the Atlantic Ocean but 
reappeared in the North Sea having taken ca. 9 
months to traverse the distance between the 
point of discharge at Cumbria in the UK and the 
waters off the northern coast of Scotland.  

 

The findings of Brown et al. (1998) indicated 
that the  99Tc from the increased Sellafield 
discharges beginning in 1994 had reached 
Norwegian coastal waters some time before 
November 1996 and could be detected in 
waters off Northern Norway by December 
1997. Tc-99 is transported to Norwegian 
waters by the Norwegian Coastal Current via 
the North Sea. This current continues along the 
Norwegian coast before flowing further north 
as the West Spitsbergen Current, transporting 
any contaminant load into the Norwegian Arctic 
marine environment (Figure 3). 

The most recent data regarding levels of 99Tc in 
the waters and biota off mainland Northern 
Norway indicate an average level of 1.25 ± 
0.33 Bq/m3 in seawater and 321 ± 68 Bq/m3 in 
seaweed (d.w.). These values continue to 
demonstrate the contemporary elevated levels 
of this isotope in the Norwegian marine 
environment and provide the impetus for the 
maintenance of current monitoring activities 
pertinent to the occurrence of this isotope in 
this region. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.4 Monitoring of 99Tc in the      
Norwegian Marine 
Environment 

In 1999, sampling and analysis of waters and 
biota along the Norwegian coast by the 
Norwegian Radiation Protection Authority 
increased under the new marine monitoring 
programme (RAME) funded by the Norwegian 
Ministry of the Environment, the primary 
objectives of which are to monitor and 
document concentrations of and trends in 
radionuclide contamination in Norwegian 
waters. Previously, data have also been 
generated regarding levels of radioactivity 
within Norwegian waters by various institutes 
and organisations as part of such institutes 
monitoring/research activities. Such data used 

 

Figure 3. Oceanic currents involved in the transport of   

          99Tc to the northern marine environment. 
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in this report were generated by the Institute 
for Energy Technology (IFE), Norway as a 
result of monitoring activities conducted at 
Utsira in Southern Norway. 

Monitoring within the RAME programme is 
conducted via regular sampling at a number of 
sites within the Norwegian Arctic waters, 
participation in cruises and sampling during 
field expeditions on Svalbard. The aim of these 
activities is to obtain information regarding the 
occurrence and behaviour of 99Tc and other 
radionuclides in the Norwegian Arctic marine 
environment.  

 

Although recent years have witnessed 
reductions in the amounts of 99Tc discharged 
from European reprocessing installations, the 
long half-life of this isotope and its occurrence 
in food chains necessitates monitoring of levels 
of the isotope for some time to come.  

 

 

2 Geostatistical 
Methods 

 

The method selected in this study is a suite of 
procedures commonly termed “geostatistics” in 
deference to their original development within 
the field of geological sciences. Empirically  
described  by  Krige (1951)  and  theoretically  
grounded  by  Matheron (1963) some years 
later,  geostatistical  methods  were  initially  
exclusively employed  in  the  field  for  which  
they  were  developed which was  ore  reserve  
estimation. In  the  past  two  decades however 
the  methods  have  been  increasingly  applied  
to  the  problem  of  pollution  assessment  and  
the  mapping  of  environmental  variables,  the  
surge  in  interest and their growing acceptance 
being  reflected  in  the  increase in  the  amount  
of  literature  on  the application  of  
geostatistics in the field of environmental 
monitoring.  Geostatistical methods are 
primarily concerned with the estimation of the 

value of a variable at a particular point (or 
within a certain volume) in space or time based 
on information provided by actual data for 
sampled points and certain characteristics of the 
relationship exhibited by different points for 
values of the variable. The outcome of the 
process is typically a set of estimates for 
unsampled points and an associated uncertainty 
with those estimates.  

Traditional methods of estimation and 
interpolation have relied on two distinct 
approaches: the “area of influence” method and 
classical statistical treatments. The former 
utilises both the spatial position of the known 
samples and the value of the variable at those 
points, the latter adheres to classical statistical 
theory   by assuming the known sample values 
to be random observations drawn from a given 
population, no regard being given to the spatial 
location of the samples. Both methods have 
proven to be far  from  ideal  for  a  number  of  
reasons. The  “area of influence” method, 
typically demonstrated in polygonal estimation,  
is  unable  to  produce  confidence  limits  or  a  
measure  of  the  reliability  of  the  produced  
estimates. Although classical statistics are in a 
position to produce such  uncertainty values,  
the  spatial or temporal location  of  the known 
samples  is  ignored  in  the  estimation 
procedure,  an  omission  which  was  deemed  
undesirable  by  the  geologists  using  the  
techniques for the purpose of reserve valuation, 
ultimately leading to the development of 
geostatistical methods and the underlying 
theoretical principles – the Theory of 
Regionalised Variables. 

 

2.1 Theory of Regionalised 
Variables 

A fundamental concept underling geostatistical 
theory and practice is the concept of the 
“Regionalised Variable”. A random variable 
(RV), being a variable that varies in a 
probabilistic manner between individual 
samples, differs from a regionalised variable 
(ReV) in that the latter is a random variable that 
varies in value according to its location within 
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some predetermined area or time, i.e. an ore 
body, or survey region. Journel and Huybregts 
(1978) define the two components of a 
regionalised variable as: 

 

I. an observation of the variable at point 
or time wi within the greater area or 
time w, is a realisation of a random 
variable Z(wi) for the point wi. This 
component is random in that the set of 
random variables for every point 
confined by w is a random function, 

II. the random variables for  two locations, 
wi and wi+h (separated by  a vector or 
time h) are not considered 
independent. i.e. Z(wi) and Z(wi+h) are 
spatially or temporally correlated. 

The description of regionalized variables 
provided above is a mathematical expression of 
the phenomena intuitively recognised by many 
practitioners of environmental monitoring, that 
samples separated by great distances or time 
spans are usually more dissimilar than samples 
separated by smaller distances or time spans. 
Such a phenomenon is not recognised within 
classical statistical approaches but is inherently 
incorporated within the geostatistical methods 
and is one that has led to its increasing 
implementation in the field of environmental 
monitoring. The characteristics of regionalised 
variables as described above can be incorporated 
into the concept of a “Random Function” (RF). 
At each point wi in two dimensional space, or 
time ti in the time dimension, the observed data 
value is considered to be a realisation of a 
certain random variable Z(ti) (or Z(ti)) defined 
for point wi or time ti. The set of all random 
variables {Z(x or ti)}; x or ti in the space or time 
domain is a random function or RF. Given that 
this report concerns itself with the temporal 
dimension, the discussion following will only 
concern itself with ti. For a given pair of points 
ti and ti+h separated by time h, the corresponding 
ReV’s Z(ti) and Z(ti+h) are not generally 
independent. This non-independence is the 
structured component of the ReV. The total set 
of observations z(ti) at times ti over the whole 
period is considered to be the realisation of the 

RF. As  only a single realisation is usually 
available some assumptions must be made as to 
the 2nd order stationarity (the time-invariance of 
the data’s’ probability distribution) of the data 
so that data for different times can be viewed as 
multiple realisations of the same ReV. The 
assumptions as they relate to geostatistical 
methods and practice are known as the Intrinsic 
Hypothesis. 

 

2.2 The Intrinsic Hypothesis 

Geostatistical methods involve the analysis of 
the spatial or temporal correlation of the 
variable in question and the production of 
estimates for unsampled locations or times 
based on the extent and nature of the spatial or 
temporal correlation. The former is achieved 
using a technique known as semi-variogram 
analysis, the latter employing an estimation 
procedure commonly known as kriging. Both 
these methods rely on the data set being used 
fulfilling the underlying intrinsic hypothesis. 
This hypothesis is generally satisfied if:  

I. The expectation value of the difference 
between two points, ti and ti+h, 
separated by time h, should be zero, 

II. The variance of the differences between 
points separated by time h is only a 
function of the magnitude of h or 
alternatively;    

    

                    Var[Z(ti+h) - Z(ti)] = 2γ h              [1] 

  

where γ is the semi-variogram value which is 
introduced later. 

 

The initial assumption of the intrinsic hypothesis 
is best explained with the use of an example. A 
number of samples, all separated by a time h, 
are analysed for a variable denoted q. If the 
difference in the value of q exhibited by samples 
separated by h is only a function of h, then the 
distribution of the differences depends on h and 
hence the mean and variance of the distribution 
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also depend on h. The mean difference, a*(t), 
between points (denoted w) can be established 
by:     

 

           a*(h) = nhwqwq 1)](()([∑ +−     [2] 

 

where n is the number of points. 

The term a*(h) can also be deemed the 
‘expected’ difference between samples 
separated by the time, h. If this value is zero 
then no difference is expected between samples 
separated by h. In practical terms this means 
that for a period determined by the magnitude 
of h, all samples should exhibit similar values 
for the variable q. If this is not true then a trend 
is said to exist within the area, or the expected 
difference between two points does not equal 
zero.  

 

The second part of the intrinsic hypothesis 
concerns itself with the concept of “stationarity 
of difference”. If the above example is 
implemented again, the variance of the 
distribution of the differences between samples 
separated by a time h may be given by 2γ (h), 
also called the variogram value. This value 
should only be a function of the magnitude of h 
and not the point within the study period at 
which h occurs. If the variogram value for 
points separated by a time h relies on the 
location within the time series for which that 
value is calculated, the second requirement of 
the intrinsic hypothesis is not fulfilled. 

 

The extent to which the fulfilment of the 
conditions of the intrinsic hypothesis affects the 
implementation of geostatistical procedures 
remains unclear from the examples provided in 
the literature. Although many researchers 
include a statement of the intrinsic hypothesis in 
their articles (McBratney and Laslett, 1993, 
Einax and Soldt, 1995), none give any 
indication of their having tested their data for 
fulfilment of the conditions. The presence of a 
trend in a data set is often given as a reason for 
the implementation of advanced data 

modifications to remove or model the trend 
(Flatman and Yfantis, 1984). Clarke (1979), in 
one of the standard texts on the subject, states 
that trends in a data set are not a problem 
insofar as they may manifest themselves at 
distances which are great enough that they do 
not pose a problem for local estimation (ie. at 
distances greater than the range of correlation).  

Clarke also states that there is no statistical test 
for stationarity, and that stationarity within a 
data set may only be assumed and not proven. 
Stationarity is a function of the random 
component of the spatial structure, not the data 
itself, and a test would therefore require 
multiple realisations of the random function, a 
feat  not possible in practice. Typically, a state 
of “quasi-stationarity” is deemed acceptable 
where stationarity is present locally or over the 
area or time for which estimation will be made.  

 

2.3 The Semi-variogram 

The extent and form of the spatial, or in this 
case temporal, correlation of the data set is 
investigated using semi-variogram analysis. The 
semi-variogram is a graphical representation of 
how the similarity between variable values 
varies as a function of the distance (and 
direction) or time separating them. The 
theoretical semi-variogram is a plot of one half 
of the variance of the differences in variable 
values (y axis) as a function of the distance, or 
“lag”, separating pairs of points (x axis), the 
general equation for the semi-variance being:  

 

 

where γ(h) is the semi-variance, n(h) is the 
number of points separated by the time or 
distance h (the “lag”) and [z(xi+h) – z(xi)] is the 
difference between the values of variables 
separated by the lag h. 

                                                                                  
As only a limited number of pairs are available 
in a practical study, an experimental semi-
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variogram is plotted using the available data and 
a theoretical model is fitted to the resulting 
plot. The curve fitted to the data can be seen to 
usually consist of two distinct parts, an initial 
rising segment and a second, level region 
(Fig.4). The point at which the curve levels off 
is used to calculate both the sill (y axis) and the 
range of correlation (x axis).   

 

 

 

 

 

 

 

 

 

 

 

The sill is the maximum semi-variance 
exhibited by the data set and the range of 
correlation is the lag (or separation distance or 
time) at which the sill value is reached. Pairs of 
points separated by a distance or time greater 
than the range of correlation are considered to 
be spatially or temporally uncorrelated. A 
sample can be taken as representative of an area 
or time defined by the range of correlation. The 
range of correlation provides a mathematical 
means of measuring the “area of influence” 
described in other estimation methods. The 
semi-variance value indicated by the sill can be 
divided into two components, B and A-B in Fig. 
The “nugget effect”, often-denoted Co, (B in 
Fig.4) represents the random variance in the 
data. The semi-variance, represented by A - B 
in Figure 4 is the structured component of the 
data set’s variance.    

The experimental semi-variogram only provides 
information on the data set used to construct 
the plot. In practice it is often not possible to 
compute semi-variances for the exact lags 
plotted in the semi-variogram, especially if the 
data has not been taken from a regular grid. The 

specification of a lag “tolerance” is therefore 
common practice. As an example, for a defined 
lag of “x” with a lag tolerance of “+\- 2” then 
pairs of points of “x+1” and “x-1” would both 
be included in the set used for calculation of the 
lag.  

As it is not possible to sample every possible 
point and in order to describe the entire period 
(and lag distances for which a semi-variogram 
value has not been computed), it is necessary to 
fit a mathematical model to the data to produce 
the theoretical semi-variogram. A number of 
models are frequently used to describe the 
theoretical semi-variogram and some of these 
are briefly described below.  

 

The most commonly used model in 
geostatistics, the spherical model, is indicative 
of a high degree of spatial or temporal 
continuity. It is linear near the origin before 
flattening out as it approaches the sill at the 
range of correlation. It is described by the 
equation: 

                     γ(h) = 1.5h/a – 0.5(h/a)3             [4] 

 

where a is the range of correlation and h is the 
lag distance or time. 

 

The exponential model reaches the sill 
asymptotically, being linear near the origin, and 
may be described by the equation: 

 

                     γ(h) = 1 – exp(-3h/a)                   [5] 

Gaussian models are used to model extremely 
continuous variables. Exhibiting parabolic 
behaviour near the origin, the Gaussian model 
reaches the sill asymptotically, the range being 
accepted as the point at which the curve reaches 
95% of the sill value: 

 

                         γ(h) = 1 – exp(-3h2/a2)            [6] 

 

 
Figure 4. Schematic representation of a typical semi- 

variogram structure. 
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Power models are a collection of models 
described by a general equation: 

 

                                γ(h) = hn + Co                 [7] 

 

where 0 < n < 2, h is the lag distance and Co is 
the nugget of the semi-variogram. 

A significant feature of many data sets is a state 
of anisotropy. A data set is said to be isotropic if 
the properties of the semi-variogram remain 
constant for all the directional variograms. A 
directional semi-variogram is a semi-variogram 
plotted for one direction only, i.e. N-S or E-W. 
If the range of correlation or sill of a semi-
variogram model differs between directional 
components, then it is said to be anisotropic. If 
the only difference between directional semi-
variograms is the length of a, the range, then 
the anisotropy is geometric. Zonal anisotropy 
occurs when the directional semi-variograms 
differ in relation to the value of the sill. 
Correction for geometric anisotropy involves 
incorporating the different range lengths into an 
ellipsoid describing the zone of influence 
around any sample point, as opposed to the 
circle of influence exhibited by points in an 
isotropic data set. Zonal anisotropies cannot be 
removed in this way and the different semi-
variogram structures for the various directions 
must be accounted for in any subsequent 
estimation procedures. Given that a temporal 
series only extends in one direction, the 
concept of anisotropy in the case presented in 
this report is therefore redundant. 

 

 

 

 

 

 

 

 

 

A second significant feature of many semi-
variograms is a parabolic ascension of the semi-
variogram at some point an example of this 
being shown in Figure 5. Clarke (1979) 
demonstrates the use of this feature in the 
identification of trends within a data set and 
concludes that as long as the trend does not 
occur near the range of correlation then it may 
safely be ignored. This view is supported by 
Royle and Hosgit (1974), who cite an example 
of a sand and gravel deposit which displayed a 
parabolic upward curve, this feature being used 
as proof of the existence of a trend within the 
data. These workers also conclude that unless 
the parabolic nature of the semi-variogram 
occurs before or near the range of correlation it 
poses no difficulty to further stages in the 
geostatistical process if estimation is restricted 
to distances or times which are not affected by 
the trend. In some cases, insufficient point-pairs 
at greater lag distances result in unreliable 
estimates of the semi-variogram value which 
may produce a trend like effect for large lags. It 
is therefore common practice to limit the semi-
variogram to lag distances that are only half the 
maximum lag exhibited by the data set in 
question. 

 

2.4 Semi-variogram Analysis: 
Lognormal Data Sets  

The treatment of data sets with log-normal 
distributions in the construction and modelling 
of semi-variograms has been the subject of 
much discussion. Gilbert and Simpson (1983) 
and Litaor (1995) both recommend the 
logarithmic transformation of lognormal 
distributions in order to better approximate a 
normal distribution, both presenting un-
substantiated evidence that geostatistical 
procedures perform better on normally 
distributed data. McBratney and Laslett (1993) 
hypothesise that the nugget (the random 
component of the spatial correlation) may be 
over emphasised in semi-variograms of 
lognormal data due to the high values at the 
upper end of the distribution being confused 
with ‘random noise’ in the semi-variogram 
structure. 

 
Figure 5. Semi-variogram fitted with Gaussian model 

displaying evidence of trend at longer lag periods. 
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2.5 Geostatistical Estimation:   
Kriging 

The estimation method known as kriging 
employs a weighted moving average inter-
polation procedure. Weights are assigned to 
known samples, the assignation of weights being 
governed by the information provided in the 
semi-variogram. Generally the closest neigh-
bouring samples are attributed the greatest 
weights although in a data set exhibiting 
geometric anisotropy, a sample a distance away 
from an unknown point may be attributed a 
heavier weighting than a nearer sample 
depending on the ranges of influence in the two 
directions of the anisotropy. Kriging may either 
produce estimates for points in space or time 
(punctual) or for three dimensional volumes 
(block kriging). Block kriging is usually 
implemented in the estimation of ore bodies or 
similar phenomena, punctual kriging being used 
in environmental studies. The function for point  

kriging is: 

 

where z*(to) is the estimate value at the unknown 
location or time to, λj being the weight assigned 
to the known sample z at (tj). The weights are 
assigned according to the following equation,  

 

subject to a number of constraints: 

(ti, tj) being the time separating points ti and tj, 
(tj, to) being the time between the unknown 
point to and the known point ti, μ being a 
Lagrange multiplier. A distortion free distri-
bution of weights is forced by using the 
following constraint: 

 

 

 

One of the most often cited advantages of 
kriging as an estimation method is the 
production of a measure of the error or 
uncertainty associated with the estimates 
produced by the kriging process and it is this 
parameter that shall be utilised in this study. As 
such it is worth taking a closer look at the 
parameter and the factors that contribute to it. 

The production of this indicator of the estimate 
reliability (known as the “kriging standard 
deviation”) is achieved as demonstrated by the 
following example. A time t, for which we wish 
to estimate the value of the variable q, is 
surrounded by many other points for which the 
value of q is known. A semi-variogram for the 
data set which contains these points has been 
calculated and a theoretical model has been 
fitted. When the value of q at t is estimated an 
error is incurred:  

 

error = qt – qt* 

 

where qt is the actual value of the variable q at t 
and qt

* is the estimate of the value of the 
variable q at t. If the estimating procedure is 
unbiased (i.e. no trend present and a normal 
distribution of errors) then repeated estimations 
of qt

* will have an average error of 0. The 
spread, or standard deviation, of these errors 
gives an indication of the reliability of the 
estimating procedure for the time t. For the 
purpose of this example, the estimation error 
variance will be denoted ‘e*var’. The variance of 
the errors can be calculated (theoretically) as 
the mean squared deviation from the mean 
error. This is equal to: 

variance of errors  =  (error – mean error)2 
                        n 

n being the number of estimations performed. 
However, as the estimating procedure is 
unbiased, the mean error will be equal to 0, the 
variance of the errors reducing to: 
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variance of errors= (qt – qt*)2 

                        n 

Practically, the kriging variance is given by: 

 

         [ ]11)(
1

0
2 μγλσ +−=∑

=

n

k
iik tt  

 As the value n represents the number of 
samples (whose values of q are known) used to 
estimate qt

* , the semi-variogram value will be 
known for each of the samples that constitute 
the set n, as the time that separates t from each 
of the samples is already known (the lag value 
h). As the semi-variogram value is half the 
variance of the differences in the variable q 
exhibited by pairs of samples separated by a 
time h, multiplication of the semi-variogram 
value by 2 will give a measure of the reliability 
associated with an estimate made based on a 
sample a time h away from the unknown point. 
Although the above example presents the 
situation pertaining to kriging standard 
deviations a little simplistically, a consideration 
of the issue will indicate that the standard 
deviations depend on two factors only: the 
spacing of the known data points and the semi-
variogram value. It is this feature of the process 
that makes it amenable to the design of 
sampling schemes. 

 

The discussion of geostatistical theory presented 
in the previous section has, by necessity, 
maintained a relatively low level of 
mathematics. More detailed presentation of the 
mathematical foundation of geostatistics and the 
associated procedures may be found in Journel 
and Huybregts (1978), David (1977) and Krige 
(1951).  

 

2.6 Sampling Design for 
Geostatistical Surveys 

The design of sampling schemes for 
geostatistical surveys has received some 
attention in the literature, the vast majority of 

this literature pertaining to two-dimensional 
(time or location vs. a measured parameter) 
data sets although some of the findings do 
provide insight into how the techniques may be 
applied to temporal environmental series. 
Wang and Qi (1998), using artificially 
generated sample sets, ascertained that a regular 
grid system exhibited the best estimation 
performance. McBratney and Laslett (1993) 
recommend a random approach to sampling 
when the data displays a short range of 
correlation, nearest neighbour sites close to the 
unknown having strong spatial correlation. 
Geostatistical procedures appear well suited to 
the spatial analysis of soil properties and 
constituents for a number of reasons. Many soil 
properties, including radionuclide levels, are 
controlled by the underlying geology. Such 
parameters, in contrast with those such as 137Cs 
soil levels (governed primarily by meteoro-
logical variables), are more likely to be spatially 
correlated, nearby samples being more similar 
than samples separated by large distances. This 
finding is of some consequence in the appraisal 
of the methods for temporal analysis of 99Tc or 
other marine radiological contaminants as the 
occurrence of the nuclides is governed by 
underlying processes, most importantly, 
oceanographic processes. The application of 
geostatistics to radiological surveys is mostly 
confined to the terrestrial environment and for 
analysing distributions in space rather than 
time. Gilbert and Simpson (1983) investigated 
the application of geostatistical procedures for 
the spatial analysis of fallout patterns around 
nuclear test sites in the U.S., Badr et al (1996) 
utilising semi-variogram analysis to confirm 
geological control over soil gas radon 
concentrations. Geostatistical procedures have 
also been applied to the analysis of a number of 
other environmental parameters including soil 
pH (Yost et al, 1982), conductivity (Russo and 
Bressler, 1981), sodium levels (Burgess and 
Webster, 1980) and sand content (Vauclin et al, 
1982).  

Srivastava and Isaaks (1989) established that 
geostatistical methods performed better than 
other methods of estimation for a number of 
parameters and hypothesised that this was due 
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to the implementation of a customised statistical 
measure of distance rather than a geometrical 
description. Litaor (1995) observed, in 
comparing isopleth maps produced by 
geostatistics with those produced by a least 
squares method, that the kriging method 
eliminated some features visible in the other 
maps. He ascribed the differences to the 
smoothing effect of the process, kriging 
typically overestimating low values and 
underestimating high ones. The assessment of 
the performance of kriging in relation to other 
methods has been routinely performed in the 
mining industry. Barnes (1977) compared 
geostatistics to a polygonal and inverse distance 
procedures for ore evaluation, the geostatistical 
method performing favourably. Knudsen et al 
(1978) contrasted geostatistics with more 
conventional estimation methods, kriging 
outperforming the other methods over the 
chosen parameters. McBratney and Laslett 
(1993) point out that the implementation of 
geostatistics is often justified on the basis that 
the values in a data set are more similar the 
closer they are in space. Their argument is that 
other estimation procedures can highlight and 
use this feature and that an empirical 
comparison of geostatistics in relation to other 
methods has not been carried out in an 
environmental setting. Dowdall and O’Dea 
(1999) analysed the performance of geo-
statistical methods over conventional inter-
polators for natural radionuclides in a terrestrial 
environment and confirmed that the former 
outperformed the latter for a number of 
parameters. 

 
Although geostatistical procedures appear to be 
gaining acceptance in the field of environmental 
monitoring, its only application to radionuclides 
appears to have been within the area of spatial 
analysis of natural and anthropogenic radio-
nuclides in the terrestrial environment. There is 
little or no indication in the available literature 
of its having being applied to the monitoring of 
radionuclides in the marine environment or the 
temporal dimension. While geostatistical 
methods appear to offer a number of significant 
advantages over more conventional estimation 

techniques and seem to offer potential 
regarding the analysis of the temporal distri-
bution of radionuclides in the marine environ-
ment, a number of points are worth 
considering. The application of geostatistics 
remains relatively new in the field of environ-
mental monitoring and has not been 
implemented long enough to gain wide 
acceptance.  

 
Geostatistical methods are quite general in 
relation to scale, examples in the literature have 
ranged from centimetres to kilometres but it 
should be realised that as the spacing between 
samples increases, the advantages of treating a 
variable as regionalised become less and 
geostatistical results begin to approach those of 
classical statistics. A large number of unresolved 
issues appear to exist in the field. There remains 
no true measure of the goodness of fit of any 
theoretical model applied to the raw semi-
variogram, the most appropriate model often 
being chosen on the basis of trial and error. The 
assumption that the applied model describes 
spatial variability over the full region or period 
must always be made. Disagreement appears to 
exist on the correct treatment of log normally 
distributed variables and data sets exhibiting 
trends nor can the assumptions of the intrinsic 
hypothesis be verified in any meaningful way for 
any data set.  

Despite these caveats, the implementation of a 
geostatistical procedure, after a meaningful and 
thorough examination of a data set, can offer 
advantages over other estimation procedures. 
At the very least, the use of such methods 
allows for a more in-depth analysis of a surveys’ 
results than would be provided through the 
blind use of some of the more conventional 
methods. The computational requirements of 
geostatistics and the lengthy analysis involved, 
in combination with the problems listed above 
may serve to deter researchers in the 
environmental field from the adoption of such 
methods. Possible evidence for this is the large 
amount of published material in the statistical 
and mathematical journals and the relative lack 
of material in the earth science and 
environmental area. When geostatistics are 
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used, the implementation often appears to 
suffer due to either a lack of exploratory 
analysis of the data or via the use of commercial 
software with little regard for the quality of the 
final outputs. The use of geostatistical methods 
in the design of sampling schemes has again 
been limited to the spatial terrestrial 
environment although there is no evidence to 
suggest that it cannot be applied to temporal 
problems. 

 

2.7 Optimisation of Sampling  
Regimes 

The monitoring of marine radioactivity is both 
labour intensive and relatively expensive due 
mainly to the levels currently being observed in 
the marine environment, the large samples that 
must be taken and the lengthy analytical 
procedures required to conduct the analysis. 
This is particularly true for 99Tc analysis with 
respect to both sampling and analysis. Because 
of these constraints, it is worth devoting some 
time to the design of a sampling plan and while 
obvious considerations include available 
resources and the purpose of the monitoring 
activity, some consideration must be given to 
the statistical or mathematical reasoning behind 
the chosen plan.  

 

2.7.1 Power Analysis 

The approach most often adopted in the design 
of temporal monitoring programs, in 
combination with practical considerations of 
local conditions, limitations and possibilities, is 
the Power Analysis. The concepts of statistical 
power are covered in detail in a number of texts 
(Kraemer and Thiemann 1987, Cohen 1988, 
Lipsey 1990; Muller and Benignus 1992). 
Briefly, the power of a test is the probability of 
rejecting the null hypothesis given that the 
alternative hypothesis is true. Power depends 
on the type of test, increases with increasing 
sample size or frequency, effect size, and higher 
a -level, and declines with increasing sampling 
variance. Effect size is the difference between 
the null and alternative hypotheses, and can be 

measured either using raw or standardized 
values. Raw measures, such as the difference 
between means or slope in a regression analysis, 
are closer to the measurements that researchers 
take and so are easier to visualize and interpret. 
Standardized measures, such as d-values or 
correlation coefficients, are dimensionless and 
incorporate the sampling variance implicitly, 
removing the need to specify variance when 
calculating power. 

 
Although a full discourse on the theory and use 
of Power Analysis is beyond the scope of this 
report, the basic concepts are introduced 
below. A statistical hypothesis test provides a 
measure of the probability of a result occurring 
if the null hypothesis is false. If the probability is 
lower than a pre-specified value (alpha, usually 
0.05), it is rejected. The ability to reject this 
null hypothesis depends upon:  

 

1. Alpha (α): Usually set to be 0.05. This 
being the probability of a type I error, 
that is the probability of rejecting the 
null hypothesis given that that the null 
hypothesis is true.  As an example, it is 
the probability of deciding that an 
increase of 99Tc in the marine 
environment has been found when it 
has not actually occurred. 

2. Sample frequency: A higher sampling 
frequency leads to more accurate 
parameter estimates, which leads to a 
greater ability to determine changes in 
the parameter of interest. The more 
often the observation is made, the 
greater the chance of observing the 
change. 

 
3. Effect Size: The size of the change in 

the population. The larger the change, 
the easier it is to find. 

However, the argument that the above 
statements may not be strictly correct is 
propounded by Cohen (1988) who points out 
that "all null hypotheses, at least in their 2-tailed 
forms, are false." Essentially this means that the 
change that is being sought or checked for (eg. 
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increase in 99Tc concentrations) will always be 
present – it might just be present in such small 
quantities that it is below the level of change 
deemed worthy of determining by the designers 
of the monitoring program.  

 
Power analysis permits the designer of the 
program to make sure that the sampling 
frequency is enough to observe the change with 
a certain probability and if that change is of a 
level of significance to be interesting. The size 
of the change being sought is known as the 
"effect size" (a doubling of 99Tc concentrations 
for example). Several methods exist for 
deciding what effect size we would be 
interested in. Different statistical tests have 
different effect sizes developed for them, 
however the general principle is the same.  

 
Ideally, power analysis is carried out a priori, 
which is during the design stage of the 
monitoring program. Given the three factors α, 
sample size and effect size, a fourth variable can 
be calculated, denoted β. Where α is the 
probability of a type I error (i.e. rejection of a 
correct null hypothesis) β is the probability of a 
type II error (acceptance of a false null 
hypothesis). The probability of correctly accep-
ting the null hypothesis is equal to 1-α, which is 
fixed, the probability of incorrectly rejecting 
the null hypothesis is β. The probability of 
correctly rejecting the null hypothesis is equal 
to 1 – β , which is called “power”. The power 
of a test refers to its ability to detect what it is 
being looked for. A power analysis program can 
be used to determine power given the values of 
α, sample size or frequency and effect size. If 
the power is deemed to be insufficient, steps 
can be taken to increase the power, in this case 
via an adjustment of the sampling frequency. 

Power calculations can be done using the tables 
or charts provided in many articles and texts 
(e.g., Kraemer and Thiemann 1987, Cohen 
1988, Lipsey 1990). However these often 
require some hand calculations before they can 
be used, including interpolation between the 
tabled values, and can give inaccurate results in 
some situations. Computer software has the 

potential to make power analysis more 
accurate, interactive and easy to perform. 

 

2.7.2 Kriging Error Minimisation 

As introduced earlier, the parameter known as 
the kriging standard deviation has the potential 
to offer a means of optimising a sampling 
scheme assuming that a sampling scheme is 
required to provide estimates of levels of a 
contaminant at specific intervals over a certain 
time period. It is intended to take a certain 
number of samples and estimate the values for 
the desired time points using kriging. The 
desired uncertainty in the estimates is known 
and a semi-variogram has been determined. As 
the uncertainty in the kriged estimate is only a 
function of the variograms parameters (known 
already) and the sampling spacing, various 
sampling schemes can be tested to observe their 
effect on the kriging uncertainty. As a number 
of points will be estimated, there will be a 
range of uncertainties and some statistic relating 
to the distribution of the uncertainties must be 
selected as the governing criterion. The effect 
of sampling frequency on the magnitude of the 
chosen criterion can then be tested a priori and a 
sampling scheme selected. Changes in circum-
stance regarding the monitoring of the contami-
nant can then be easily accommodated and the 
design modified as required. It is this process 
that has been investigated in this study and for 
which results are reported. 
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3 The Data Sets 

 
The data sets used in this study consisted of 
three radiometric environmental time series. 
Two of these consisted of 99Tc values for sea-
water samples and the third consisted of 99Tc 
values for seaweed samples. The time series 
were drawn from two locations along the 
Norwegian Coast. The first of these, Hillesøy 
(Fig. 6), is located in northern Norway (69.63N 
17.95E). Seawater samples from this location 
have been taken by the Norwegian Radiation 
Protection Authority as part of its marine moni-
toring program since July 1997 and the time 
series used in this study begins on the 23rd of 
July 1997 and ends on the 30th of May 2003. As 
part of that program seaweed samples are also 
drawn from the same location and the time 
series utilised stretches from the 23rd of July 
1997 to the 27th of February 2003. In both cases 
the sampling interval is approximately 30 days. 
The second seawater time series was drawn 
from Utsira (Fig. 6) in southern Norway 
(59.32N 4.90E) as part of monitoring activities 
conducted by IFE.  

 

 

 

 

 

 

 

 

 

 

 

This series begins on the 4th of July 1985 and 
(for the purposes of this study) ends on the 1st 
of April 1993. The sampling period for this  
 
time series is also approximately 30 days. 
Summary statistics for all series are provided in 
Table 1 and representations of all the series are 

provided in Fig.’s 7 - 9. 99Tc was measured in 
50 l water samples and 10 g seaweed samples 
using a radiochemical procedure described by 
Chen et al (2001). Uncertainties for seawater 
measurements are of the order of 15% or 
greater, the uncertainty for seaweed being 
lower due to the greater analytical signal 
presented to the detector.  
 
Both of the Hillesøy data sets pass the 
Kolmogorov-Smirnov (K-S) test for normality 
(Hillesøy water: p = 0.8149, Hillesøy seaweed: 
p = 0.4577), the Utsira data being best 
described by a lognormal distribution as re-
flected in its skewness and kurtosis co-
efficients. The Utsira set is strongly affected by 
a number of high data points at the beginning of 
the series. Evidence of trend is visible in the 
Hillesøy and Utsira seawater series, the evi-
dence being less apparent for the seaweed 
series.   

 Utsira Hillesoy 

 

99Tc in 

seawater 

(Bq/m3) 

99Tc in 

seawater 

(Bq/m3) 

99Tc in 

seaweed 

(Bq/kg) 

n 71 65 57 

Mean 0.81 1.09 245.9 

Std. 

Deviation
0.54 0.37 92.1 

Minimum 0.2686 0.37 0.37 

25th 

percentile
0.415225 0.85 197 

Median 0.6005 1.05 257.5 

75th 

percentile
1.136 1.285 309.25 

Maximum 3.081 2 423 

Skew 1.64 0.412 -0.156 

Table 1. Summary statistics for both the Utsira and 

Hillesoy data sets. 

 

 
Figure 6. Locations of Hillesoy and Utsira.
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3.1 Semi-variography 

Semi-variograms for the three data series being 
studied were constructed using Variowin 2.2 
(Pannatier, 1996). Maximum lag periods in all 
cases were limited to half the maximum 
temporal separation of the data points to ensure 
enough points for calculation at the larger lag 
distances. The experimental semi-variograms 
for all three time series display strong temporal 
correlation (Fig.’s 10 – 12), the semi-variance 
for groups of samples separated by the shorter 
distances being less than that exhibited for 
groups separated by longer periods. For the 
Utsira time series the data was not transformed, 
as the temporal structure was clear without 
smoothing of the data. In all three cases 
Gaussian models were used to describe the 
temporal correlation, data for the theoretical 
models applied to the experimental semi-
variograms being contained in the captions to 
the relevant figures.  

The semi-variograms indicate that 99Tc levels 
are relatively homogeneous from month to 
month and for separatory periods up to 
approximately 1 year but tend to vary 
substantially with separatory periods on the 
yearly scale. All three series exhibit evidence of 
trend in the data at the longer lag periods. This 
trend manifests itself within the semi-
variograms as the rising portion of the 
experimental semi-variogram after lag periods 
of about 1 year. This trend is easily explained as 
within any one-year period 99Tc values display 
little variation but from year to year levels have 
either increased (as for Hillesøy) or decreased 
(as for Utsira). The trend for the two Hillesøy 
series appears to occur at shorter lag periods 
than for the Utsira series and this may be caused 
by the Utsira being less sensitive (by virtue of 
location or oceanographic considerations) to 
processes causing the trend on what appears to 
be a yearly scale for the Hillesøy sets. As the 
trend does not manifest itself in any of the series 
before the sill value is reached, it plays little 
role in local estimation of values (i.e. estimation 
of values separated by less than the range of 
correlation from the weighted points). Due to 
this fact no attempt was made to detrend the 
data using the appropriate linear function. 
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Figure 7 .Time series of  99Tc in seawater from Hillesøy 
(start date: 23rd of July 1997). 
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Figure 8. Time series for 99Tc in seawater from Utsira 
(start date: 4th of July 1985). 
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Figure 9. Time series for 99Tc in seaweed from Hillesøy (start 

date: 13th of July 1997). 
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3.2 Cross-validation 

In order to ascertain the validity of the applied 
models with respect to the correlation range 
and to optimise some of the conditions for the 
subsequently applied estimation procedure, a 
cross validation exercise was conducted within 
GEO-EAS (Englund and Sparks, 1988). This 
involved sequentially eliminating one point 
from the data set, estimating its value from the 
remaining data using the temporal structure 
determined in the semi-variographic analysis 
and the estimation procedure, then reinserting 
the point and eliminating the next. The 
elimination/estimation procedure was repeated 
until all known points in the relevant data sets 
had been estimated by the chosen procedure. 
Comparison of the produced estimated values 
with the corresponding actual values and 
statistics related to the set of  errors in the 
estimates allowed optimisation of the estimation 
process in relation to search radii and the 
numbers of known points required for 
estimation to be executed . 

 

Cross-validation as a tool for determining 
appropriateness of applied models and 
estimation parameters is often used in 
geostatistical analysis but certain pertinent 
aspects of the procedure are often overlooked. 
Cross-validation techniques cannot determine 
the “quality of fit” of any model applied to the 
experimental semi-variograms as a cursory 
analysis of the kriging system shows that the sill 
parameter of the semi-variogram does not play 
a role in the assignation of kriging weights. 
Therefore the results of the analysis cannot be 
used to optimise the model in relation to the sill 
and by extension, the nugget value. Neither can 
cross-validation be applied reliably to sparse or 
unevenly spaced data sets. As the data in this 
study follows a semi-regular spacing pattern and 
the analysis was only used to adjust the range 
parameter and the search conditions for 
estimation, adoption of the procedure as 
described in the text above was deemed valid.  

 

 

 
Figure 10. Semi-variogram for 99Tc values in seawater  
(Hillesøy). Lag (x) axis – days, γ(h) axis –   (Bq/m3)2. 
Model parameters –  Gaussian, range  - 235 days, sill – 
0.081, nugget – 0.034. 

 
Figure 11. Semi-variogram for 99Tc values in seaweed 
(Hillesøy). Lag (x) axis – days, γ(h) axis – 
(Bq/kg)2. Model parameters –  Gaussian, range - 
167 days, sill – 3075, nugget – 420. 

 
Figure 12. Semi-variogram for 99Tc values in seawater 
(Utsira). Lag (x) axis – days, γ(h) axis – (Bq/m3)2. 
Model parameters - Gaussian, range – 174 days days, 
sill –0.057, nugget – 0.03. 
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         Figure 13. Cross-validation results for the seaweed series from Hillesøy. 
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                 Figure 14.  Reproduction of the seaweed time-series for Hillesøy using the cross-validation procedure. 
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              Figure 15. Distribution of over and under estimation errors for the cross-validation of the Hillesøy 

       seaweed data set. 
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Figure 16. Cross-validation results for the seawater time series from  Hillesøy 
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         Figure 17.  Reproduction of the seawater time-series for Hillesøy using the cross-validation procedure. 
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      Figure 18. Distribution of over and under-estimation errors for the cross-validation of the Hillesøy seawater data set. 
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        Figure 19. Cross-validation result for the seawater series from Utsira. 
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Figure 20.  Reproduction of the seawater time-series for Utsira using the cross-validation procedure. 
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As can be seen from the data (Fig.’s 13 - 21), 
the results of the analysis are variable while 
remaining acceptable. The best results were 
observed for the seaweed data set from Hilles-
øy. Strong correlation was observed between 
the actual and estimated values and the time 
series itself is accurately reproduced (Fig.’s 13 
and 14). The distribution of the estimates indi-
cates no global under or over estimation (Fig. 
15). The accuracy of the estimates for the sea-
weed data can to some extent be explained by 
examination of the semi-variogram for this 
time-series. The nugget value, representative of 
the inherent randomness of the data, is 
relatively small compared to the sill value, 
which approaches the total semi-variance of the 
data. That this nugget value is small is most 
probably due to the fact that the analytical signal 
for seaweed is relatively high which reduces the 
associated uncertainty in the values (which con-
tribute to the nugget parameter) and the data 
set itself is inherently smooth  relative  to  the  
water  series (due to  the uptake  mechanisms  
of  the  organism  which  smooth  out  the  fluc-
tuations  in  the corresponding water signal). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The lack of extreme values relative to the 
general data set means that the smoothing effect 
of the kriging process is less and the data is 
better reproduced at the extreme ends of the 
distribution, increasing the correlation between 
the actual and estimated values and resulting in 
a more even distribution of the estimation 
errors across the data.  Results of the analysis 
for the Hillesøy seawater series are less 
impressive (Fig.’s 16 – 18) than for the seaweed 
series, some evidence of over and under-
estimation being present although this would 
appear to be primarily limited to the two ends 
of the statistical data distribution. The majority 
of these points are for low and high values in 
close proximity to each other but the distri-
bution of the errors remains even. The distri-
bution of the time series estimates remains 
quite good. The uncertainties associated with 
the estimates are also proportionally higher than 
those associated with the seaweed data due to 
the greater contribution of the nugget compo-
nent to the overall semi-variance of the data.  
The results for the Utsira data set (Fig.’s 19 - 
21) are comparable to those for the Hillesøy 
seawater data although the extreme values 
encountered in this data set lead to isolated but 
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Figure 21. Distribution of over and under estimation errors for the cross-validation of the Utsira seawater data set. 
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significant errors for some data points. These 
erroneous estimates are reflected in the re-
production of the distribution where it is clear 
that the earlier high values in the data are signi-
ficantly underestimated. For this reason, an 
argument may be made for the elimination of 
what may be statistical outliers in the data but as 
no information was available as to 99Tc levels 
prior to the start of this time-series the decision 
was made to remain as faithful to the empirical 
data as possible. 

 
The cross-validation analysis serves to demon-
strate that no significant bias exists in the esti-
mation parameters employed and that realistic 
estimates can be obtained using the data to 
hand, the semi-variogram results and the 
estimation parameters employed in the study. 
The parameter of interest with respect to using 
such an estimation procedure for the opti-
misation of a sampling plan is the uncertainty in 
the estimates produced as part of the kriging 
procedure. This uncertainty is not the differ-
rence between the actual and the estimate value 
but rather the uncertainty returned by the 
process known as the kriging standard devi-
ation. Optimisation of sampling regimes with 
respect to sampling frequency must therefore 
be conducted using this parameter as the 
decision criteria. 

 

4 Optimisation of  
Sampling: Kriging  
Error Minimisation 

 
In order to demonstrate how minimisation of 
the kriging standard deviation could be 
employed as an aid to sampling regime design, 
it is worth considering the following scenario 
that although hypothetical will use the locations 
and data utilised in this study. The scenario 
suggested is that it is desired to obtain monthly 
values for 99Tc in seaweed and water at Hillesøy 
and monthly values for 99Tc in water from 
Utsira. 

The temporal structures of the data sets are 
known from the actual samples. Information is 
required about how often samples must be 
taken at the locations in order to produce 
monthly values for 99Tc in the relevant matrices 
for the purpose of monitoring trends in the 
levels of this isotope in the marine environ-
ment. Using the data to hand, the study 
simulates the effect of changes in sampling 
frequency on the quality of estimates produced. 
For example, using the Hillesøy data, the 
seawater time series covers a period of approxi-
mately 2100 days with samples having been 
taken every month approximately. In order to 
simulate a reduced sampling fre-quency, data 
was deleted until the chosen frequency was 
obtained. An attempt was made to keep the 
retained data as evenly distributed over the time 
period as possible. For each reduced data set, 
monthly values were estimated (every 30 days) 
and the uncertainty distribution was checked. 
Various parameters were then used to describe 
the effect of sampling frequency. 

 

4.1 Hillesøy Seawater Data 

In actuality, some 65 seawater samples had been 
taken over the 2100 day period at Hillesøy. This 
data was filtered to produce data sets with 
different numbers of samples as evenly spaced 
sample distributions and the monthly values 
were then estimated using the parameters 
described in the previous sections. Various 
statistics of the uncertainty distribution (the 
uncertainties as produced by the estimation) 
were then used to establish criteria for decisions 
regarding sampling frequency. 

 
The impact of reduced seawater-sampling 
frequency at Hillesøy on the average kriging 
standard deviation of monthly 99Tc estimates are 
displayed in Fig. 22. As can be seen, the 
uncertainty associated with the estimates is at its 
minimum for sample numbers approaching the 
actual number taken and begins to increase with 
reduced sample frequency.  As can be seen 
from  
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Figure 22. Variation in average kriging standard deviation as a function of sampling frequency for seawater from 
Hillesøy. 

 

 
Figure 23. Representations of 99Tc activity over time for seawater from Hillesøy based on the estimation 
procedure using 15 and 45 of the original data points compared with the actual data set. Error bars are the 
analytical uncertainty for the actual data and the kriging standard deviations for the estimates. 
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the graph however, the increase in uncertainty 
does not begin to rise dramatically until less 
than 30 samples were taken over the 2100 days, 
indicating that using the estimation procedure 
as described, monthly estimates of 99Tc activity 
in seawater could be produced with half the 
number of samples taken, where the average 
uncertainty in the estimate would be 
comparable to the uncertainty in the data set 
resulting from 60 samples over the period.  

 

As can be seen from Fig. 23, reduced sampling 
accompanied by an appropriate estimation of 
monthly values provides essentially the same 
information as provided by the more intensive 
“real” situation. With 15 samples taken over the 
period (sampling approximately every 4 
months) some detail is lost, mostly where 
estimates could not be produced due to no 
known points lying within the kriging search 
radius (in which samples for local estimation 
must occur). The series produced by sampling 
every 6 weeks is substantially better, no 
increases in activity being missed by the 
produced series relative to the actual data. In 
many cases it can be seen that the uncertainty in 
the estimate is slightly larger than the 
uncertainty reported for the actual data but this 
difference is not extreme in any case. The 
smoothing effect of the kriging procedure is 
clearly evident in the data although even quite 
small features of the actual data are reproduced 
in the estimated data set. 

 

Alternatively, the maximum kriging standard 
deviation could be used in a situation where 
information was required that could not have an 
uncertainty of greater than a certain value. 
Figure 24 displays variations in the maximum 
kriging uncertainty as a function of sampling 
frequency. The ascent is much sharper in this 
curve although the results indicate that little is 
to be gained for sample numbers greater than 
40.  

 

 

 

4.2 Hillesøy Seaweed Data 

57 seaweed samples had been taken over a 1960 
day period at Hillesøy. This data was filtered as 
for the seawater data from the same location to 
produce different evenly spaced sample 
distributions and the monthly values were then 
estimated.  Figure 25 displays the effect of 
sampling frequency on the quality of the 
estimates produced by the kriging procedure. 
The results for the seaweed data set indicate 
that for the 1960 day period utilised, there is 
little to be gained with respect to estimate 
quality for sample numbers greater than 
approx. 50 (sampling every 40 days). Figure 26 
reproduces the actual data series for a total of 
20 samples and 40 samples over the period. As 
for the seawater data, it can be seen that the 
essential features of the actual series are 
reproduced using 40 samples but significant 
degradation is observed for the series that only 
uses 20 samples. 

 

4.3 Utsira Seawater Data 

71 seawater samples had been taken over a 
2700 day period at Utsira. This data was filtered 
as for the seawater data from the same location 
to produce different evenly spaced sample 
distributions and the monthly values were then 
estimated.  Figure 27 displays the effect of 
sampling frequency on the quality of the 
estimates produced by the kriging procedure. 
The analysis for the Utsira data indicates a 
marked cut-off in the uncertainty of the 
estimates at the 30 sample mark. 

 

Reproduction of the time series based on a 
reduced number of samples (Fig. 28) is not as 
good as for the Hillesøy sets, less detail being 
displayed with respect to short scale variations 
in the levels of 99Tc.  
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Figure 24. Variation in maximum kriging standard deviation as a function of sampling frequency for seawater from   
Hillesøy. 

 

 
Figure 25. Variation in average kriging standard deviation as a function of sampling frequency for seaweed from Hillesøy. 
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Figure 26. Representations of 99Tc activity over time for seaweed from Hillesøy based on the estimation procedure using 20 and 40 of 
the original data points compared with the actual data set. Error bars are the kriging standard deviations for the estimates. Note: 
uncertainty data for actual series not provided. 
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Figure 27. Variation in average kriging standard deviation as a function of sampling frequency for seawater from Utsira. 
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4.4 Analysis of Empirical Data 
Relative to Oceanographic 
Model Data 

The above analyses, while providing an 
indication of how sampling frequency can affect 
the quality of estimates produced by the kriging 
procedure is inherently flawed for a number of 
reasons. None of the data sets are absolutely 
evenly distributed over the time periods 
involved therefore the selection of samples to 
be included in the reduced data sets may affect 
the outcome. Secondly, kriging is an “exact” 
interpolator in that if a point to be estimated 
coincides with a known point, the known data is 
honoured and returned as the estimate. Finally, 
due to uneven data spacing some points could 
not be estimated especially for the much- 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

reduced sets. These points were omitted from 
the statistics and may affect the overall 
outcome. 

 
The above discussion has demonstrated that, for 
the given example of producing monthly values 
for 99Tc (or, theoretically, any long-lived 
radionuclide), it is possible to produce a series 
of monthly data with associated uncertainty 
using a set of samples taken on less than a 
monthly basis provided that: 

 
• a level of temporal correlation exists 

for the data, 
• the semi-variogram has been calculated 

and correctly modelled and that the 
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Figure 28. Representations of 99Tc activity over time for seawater from Utsira based on the estimation procedure using  
30 and  50 of the original data points compared with the actual data set. Error bars are the analytical uncertainty for 
the actual data and the kriging standard deviations for the estimates.  
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data conforms to certain constraints 
(regarding the intrinsic hypothesis), 

 

• the kriging estimation procedure has 
been optimised. 

 

Determination of how many samples should be 
taken can then be based on the desired level of 
uncertainty in the estimated data points and the 
frequency for which estimated points are to be 
produced. The problem remains however that 
knowledge of the semi-variogram structure 
must be obtained in some way prior to the 
optimisation of the sampling. In the design of 
monitoring schemes for, for example, deter-
mination of contaminant levels in soil, this is 
not such a problem as a one off exploratory 
sampling campaign can be performed prior to 
the design of the monitoring scheme. With 
temporal monitoring this is more difficult as 
acquiring a data set for semi-variography may 
necessitate years of sampling. It is possible that 
literature data may be used or that time series 
from other sites may be used although both of 
these approaches require a high level of 
presumption regarding the extrapolation of data 
from one site to another. Assuming that the 
temporal correlation exhibited by a data set is 
to some extent a function of the processes 
involved in the occurrence of the contaminant 
at the location being studied, it may be possible 
to calculate the semi-variogram from modelled 
data without relying on the prior existence of a 
large data set. To test this approach, use was 
made of modelled 99Tc data. The North 
Atlantic-Arctic Ocean Sea Ice Model 
(NAOSIM) (Gerdes et al., 2001; Karcher et al., 
2003, 2004), developed at the Alfred Wegener 
Institute for Polar and Marine Research, is a 3D 
hydrodynamic coupled ice-ocean model, which 
covers the Arctic Ocean, the Nordic Seas and 
the North Atlantic north of 50° N. The model 
is driven by daily atmospheric data from the 
NCEP/NCAR reanalysis dataset covering the 
period from 1948 to 2002. The NAOSIM 
model run used for the present study features a 
10 m vertical division of the upper ocean (33 
levels in total). Hydrographic initial  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Figure 29. Simulated dispersion and transport of 99Tc along the 
Norwegian coast for the periods July 1985 and July 2002. 
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conditions for the latest model runs are based 
on the most recent version of the Polar Science 
Centre Hydrographic Climatology (PHC), 
while run-off from major rivers into the model 
domain, including diffuse run-off and run-off 
from the Norwegian coast, are included. The 
model resolution is approximately 28 km. After 
1970, the model is subjected to an input of  99Tc 
near the location of the nuclear reprocessing 
facilities in Sellafield. Simulated results from the 
model for the dispersion and transport of 99Tc 
along the Norwegian coast for two time points 
of relevance to this study are depicted in Figure 
29.  While the 99Tc release data are provided as 
yearly means from 1970 to 1994, monthly 
mean data are provided for the period 
thereafter. Simulated concentrations at Hillesøy 
between the beginning of 1971 and the end of 
2002 are depicted in Figure 30. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As this model incorporates the hydrodynamic 
processes that govern the occurrence of 99Tc in 
seawater at Hillesøy and Utsira, it was decided 
to ascertain to what extent the model data 
replicated the temporal structure as exhibited 
by the actual data values. To achieve this, the 
modelled data sets were subjected to semi-
variographic analysis as for the actual data. For 
the Hillesøy data set the semi-variograms were 
established over the time period for which 
actual data was available this corresponds to the 
period between July 1997 and May 2002 as this 
is the extent to which the model data has been 
calculated. The calculated semi-variograms and 
fitted models are displayed in Figure’s 31 and 
32.  

For both sets of data, the semi-variograms are 
comparable with respect to the range of 
correlation and the sill although nugget 
parameters exhibit some difference between 
modelled and actual data.    
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Figure 30. Modelled and actual data for Hillesøy and Utsira 99Tc values. 
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The nugget values for the semi-variograms 
produced for the model data are closer to zero 
that for the actual data. As the nugget is 
representative of the unstructured or random 
component to the overall semi-variance (i.e. 
samples taken at exactly the same time will have 
slightly different values), it is likely that 
analytical error, sampling error and the other 
uncertainties with respect to the analytical 
procedure contribute largely to this value. The 
modelled data on the other hand does not 
include such uncertainties and is therefore more 
likely to produce a lower random contribution. 
The range however, which is the parameter of 
most interest in the design of the sampling plan, 
for the semi-variogram of modelled data, is 
quite comparable to that produced by the actual 
series. The comparability of the semi-
variograms produced may indicate that in the 
case of designing a sampling scheme at a 
location where no previous data exists, it may 
be possible to employ models that describe the 
processes affecting the temporal structure of the 
data to make an a priori assessment of the semi-
variogram.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Furthermore, the model provides the possibility 
to investigate whether a monitoring regime is 
capable of reflecting certain hypothetical 
discharge or accidemt scenarios by using 
different discharge datasets in the model run.  

 

In order to observe the temporal structure as 
exhibited by the modelled Hillesøy data over 
long range time-scales (years instead of 
months), a semi-variogram was constructed 
covering the entire range of the models data. 
This is presented in Figure 33. 

 

As can be seen from Fig. 33, long range 
modelled data indicates that 99Tc values in 
seawater cannot be considered to be random up 
to separatory periods of approximately two 
years and a second long term correlation begins 
to come into effect after approximately six 
years. Such long range correlation does not 
negate the validity of the short term structure 
exhibited by the short range semi-variograms 
but appears to indicate phases to the temporal 
structure of 99Tc concentrations in seawater at 
Hillesøy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 31. Semi-variogram for modelled 99Tc values in seawater (Utsira) over the time scale of the actual data. Lag (x) axis – days, 

γ(h) axis – (Bq/m3)2. Model parameters –  Gaussian, range - 178 days, sill – 0.017, nugget – 0.0008. 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 32. Semi-variogram for modelled 99Tc values in seawater (Hillesøy) over the time scale of the actual data. Lag (x) axis – days,  
              γ(h) axis – (Bq/m3)2. Model parameters –  Spherical, range - 210 days, sill – 0.095, nugget – 0.0. 
 

 
Figure 33. Semi-variogram for modelled 99Tc values in seawater at Hillesøy. Lag (x) axis – days, γ(h) axis – (Bq/m3)2.  
              Model parameters –  Gaussian, range - 700 days, sill – 0.1, nugget – 0.0008. 
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Trend or non-stationarity is evident in the data 
as the sills do not remain constant; the sill is 
attained after separatory periods of some 
months then the semi-variance rises again to a 
sill for periods of two  to three years and the 
final apparent sill is attained for periods of 
approximately ten years. It is not known what 
processes govern the various stages exhibited by 
the long range semi-variogram although it is 
probable that there may dominant processes for 
each step. A hypothetical example could be that 
seasonal factors are contributing to the 
behaviour at the monthly scale, perhaps 
oceanographic considerations on the tri-yearly 
scale and changes in the source terms on the 
scale of decades.  

 

 

5 Discussion 

 

For the monitoring of concentrations of 99Tc (or 
any other radionuclide or contaminant) in the 
marine environment, there are essentially four 
approaches that may be adopted in determining 
the number of samples to be taken to achieve 
the desired objectives; in this case obtaining an 
overview of trends in concentrations of the 
contaminant species in the marine environment. 
Random sampling makes no assumptions about 
the distribution or movement of the analyte 
species and tends to involve the taking of more 
samples than other sampling approaches. 
Systematic sampling also makes no assumptions 
regarding the factors introduced above. 
Judgemental sampling regimes do make 
assumptions regarding movement and distri-
bution with time or space. Combination 
sampling is the implementation of a sampling 
regime based on the use of any combination of 
the previous three types of regime. The data 
used in this study can be described as a 
combination of judgemental and semi-
systematic sampling given that some infor-
mation about the processes governing the 
distribution of the analyte were known prior to 
the initiation of the regime and the sampling is 

conducted on an approximately systematic 
basis.  

The goal of the current sampling regime is to 
describe the variation in 99Tc concentrations in 
the marine environment with time. As discrete 
samples are taken, some form of interpolation is 
necessary to describe the concentration of the 
contaminant at points intermediate between the 
discrete sampling points. The interpolator used 
is typically a straight line relationship between 
discrete points. This study adopts the approach 
that the quality of the results produced by the 
interpolation can be used as the foundation for 
determining the optimum sampling frequency. 
In planning any sampling regime, it is 
advantageous that the sampling frequency 
should involve minimum estimation or 
interpolation error for periods during which 
samples were not taken or minimum sampling 
effort for a given accuracy. Two approaches for 
matching sampling frequency to estimation or 
interpolation accuracy may be used: a classical 
approach, which ignores the temporal 
dependence between observations, and utilises 
classical “random” statistics (in this case Power 
Analysis) and a geostatistical approach, which 
exploits, in this instance, the temporal 
dependence displayed by the variable in 
question. To demonstrate the use of a 
geostatistical procedure, the temporal 
variability of 99Tc concentrations in seawater 
and seaweed from two different locations was 
determined and this information was then used 
to determine how well different sampling 
regimes could reconstruct monthly values, by 
interpolation, for the concentration of 99Tc in 
the sampled matrices. The criteria used to 
determine the efficacy of the sampling regimes 
was the average kriging error, the sampling 
regime producing the minimum error being 
deemed the most effective. 

The results of the study indicate that that using 
a geostatistical estimation approach towards the 
production of monthly estimates of 99Tc 
concentrations, there is little to be gained (with 
respect to the uncertainty associated with the 
estimates for unsampled times) by sampling at 
frequencies greater than approximately every 
40 to 60 days depending on the matrix and 
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location involved. Some difference was 
observed between sites with respect to 
optimum sampling frequency and this could be 
related to how the sites physical location affects 
the temporal structure of the data. 

 

In relation to the actual sampling regime 
currently employed, it would appear that, 
taking into consideration the practicalities of 
such sampling, that the current approach 
(sampling approximately every 30 days) 
provides a relatively effective regime for the 
monitoring of the isotopes concentrations, in 
relation to the information provided for the 
effort expended in the sampling and analysis. 
The results of the analysis indicate that more 
frequent sampling would not significantly 
improve the quality of information that may be 
provided by an implemented estimation 
procedure in relation to concentrations of the 
isotope for unsampled dates. The frequency of 
sampling as it currently stands also provides a 
useful level of leeway in that periods where 
samples may be missed (due to weather, sea 
conditions etc.) would be unlikely to 
significantly impact the overall quality of 
estimates produced using the remaining 
samples. The results of the analysis provide a 
useful rationale for the currently implemented 
regime in that the sampling frequency 
employed can be defended on the basis of a 
scientific analysis.  

 

The use of the oceanographic model as the basis 
for the design of a sampling regime based on, in 
this case, geostatistical procedures, appears to 
offer certain distinct advantages. The first and 
most obvious of these would be the fact that 
such a model can provide information prior to 
any sampling having been conducted. It is of 
course accepted that any model used for such 
purposes must have had an acceptable level of 
validation performed to ensure its applicability 
but such validation would appear to be only 
necessary for one location. If that location does 
not differ significantly from an oceanographic 
standpoint from a second location, then it 
would appear that there is no reason such a 

model could not be used to design sampling 
regimes for the second location. For both 
locations used in this study, the model 
reproduced the temporal structure of the data 
acceptably with respect to the semi-variograms 
parameters of most importance to the 
procedures implemented. The ability to devise 
sampling regimes on an a priori basis confers 
significant advantages with respect to designing 
monitoring programs. It would appear that it 
may be possible to establish, in the early phases 
after a hypothetical release, the optimum 
sampling frequency required to determine with 
a given confidence level when a contaminant 
signal has reached a particular point. This could 
possibly be achieved by inputting the release 
scenario parameters to such a model, running 
the model to simulate a period of time sufficient 
to determine the temporal structure and then 
devising a sampling regime that is sufficient to 
reduce the interpolation uncertainty to a 
satisfactory level. 
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