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Bromophenols, both present in marine organisms and
in industrial flame retardants, disturb cellular Ca2+

signaling in neuroendocrine cells (PC12)
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Abstract

Bromophenols are present in polychaetes as well as in algae in marine environments including the North Sea. They are thought
to cause the typical sea-like taste and flavour. The ecological function of brominated phenols is not clear yet, but they may play
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a role in chemical defence and deterrence [Kicklighter, C.E., Kubaneck, J., Hay, M.E., 2004. Do brominated natural
defend marine worms from consumers? Some do, most don’t. Limnol. Oceanogr. 49, 430–441]. Some brominated ph
commercially used as industrial flame retardants as, e.g., 2,4,6-tribromophenol and are suspected to disrupt the hum
by showing tyroid hormone-like activity [Legler, I., Brouwer, A., 2003. Are brominated flame retardants endocrine disr
Environ. Int. 29, 879–885]. In this study 2-bromophenol (2-BP), 4-bromophenol (4-BP), 2,4-dibromophenol (2,4-DB
dibromophenol (2,6-DBP) and 2,4,6-tribromophenol (2,4,6-TBP), all of which are present in marine organisms, wer
Especially 2,4-DBP and 2,4,6-TBP showed a significant effect on the Ca2+ homeostasis in endocrine cells (PC 12). The reduc
of depolarization induced Ca2+ elevations by 2,4-DBP and 2,4,6-TBP and the increase of intracellular Ca2+ by both substance
partly released from intracellular stores, may suggest a link to the disrupting effect of endocrine systems by brominated
2,4-DBP was the most potent substance we tested in respect to inhibition of voltage dependent Ca2+ currents as revealed in who
cell patch clamp experiments. Brominated phenols disturb cellular Ca2+ signaling with differential efficacy, depending on t
number and position of bromine.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Bromophenols are present in marine organisms
and are thought to cause the typical sea-like taste
and flavour (Kotterman et al., 2003; Chung et al.,
2003a). Several bromophenols are present in marine
polychaetes as well as in algae like, e.g., the
brown macroalgaeSargassum siliquastrum, Padina
arborescens andLobophora variegata containing high
concentrations up to 7000 ng/g (2,4-DBP 1280 ng/g;
2,4,6-TBP 5870 ng/g) (Chung et al., 2003b). Bro-
mophenols including 2,4,6-TBP are found additionally
in mussels and in blubber of mammals (Vetter and
Janussen, 2005). The ecological role of brominated
phenols is not clear yet. However, they may play a
role in chemical defence and deterrence (Woodin et
al., 1997; Kicklighter et al., 2004). Some brominated
phenols, e.g., 2,4,6-TBP are also commercially used
and industrially produced as flame retardants and as
wood preservatives/fungicide. 2,4,6-TBP represents a
high volume flame retardant with a worldwide pro-
duction of 9500 t/year in 2001 (IUCLID, 2003). It is
suspected to disrupt the humoral system by showing
thyroid hormone like activity (Legler and Brouwer,
2003), whereas 2,4-DBP (weakly 2,4,6-TBP) binds to
the human estrogen receptor (Olsen et al., 2002). In
human milk 2,4,6-TBP is found in concentrations of
110 ng/g lipid (Ohta et al., 2004). 2,4,6-TBP is in addi-
tion to its synthesis generated by photolytic degradation
of tetrabromobisphenol A (Eriksson and Jakobsson,
1 me
r in
v rrels
(

the
h nat-
u ro-
m ctly
l We
c ous
s and
f ls 2-
B ally
o
s ec-
o hose
t a of
t nora-

drenalin as well as dopamine (Greene and Tischler,
1976). Cells of the adrenal gland have been used pre-
viously for many toxicological and pharmacological
studies, e.g., PCBs (Messeri et al., 1997; Westerink
and Vijverberg, 2002a) heavy metals (Weinsberg et al.,
1995; Westerink and Vijverberg, 2002b) and alkaloids
(Lee and Kim, 1996; Gafni et al., 1997; Bickmeyer et
al., 1998, 2004; Kim et al., 2001; Smith et al., 2002).
The aim of the present study was to investigate the
interactions of naturally as well as industrially impor-
tant chemicals, which are suspected to interact with the
humoral system (Legler and Brouwer, 2003), with cel-
lular signaling. This approach may additionally in part
elucidate one possible role of brominated phenols in
marine organisms.

2. Materials and methods

PC 12 cells from the DSMZ (German collection of
microorganisms and cell cultures, Braunschweig, Ger-
many) were kept in culture medium containing RPMI
1640, 10% fetal calf serum, 5% horse serum, and 100
units penicillin/streptomycin per ml. Cells were culti-
vated in an incubator at 37◦C, 90% humidity and 5%
CO2. Cells grew on collagen coated cover slips and/or
in collagen coated dishes. Medium was changed every
three days and the cells were subcultured when neces-
sary.
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998), which is the most abundant brominated fla
etardant. Even in vineyards, 2,4,6-TBP is found
ine and cellars probably via treated wooden ba
Chatonnet et al., 2004).

The potency of bromophenols to interact with
umoral system has led us to the question, if the
rally occurring as well as industrially produced b
ophenols interact with basic signal pathways, dire

inked to exocytosis and secretion of hormones.
hose endocrine cells, which are part of the nerv
ystem but not protected by a blood brain barrier,
ocussed on interactions of the brominated pheno
P, 4-BP, 2,4-DBP, 2,6-DBP and 2,4,6-TBP (natur
ccurring and of industrial origin) with cellular Ca2+

ignals. Ca2+ functions as an ubiquitous cellular s
nd messenger mediating hormonal release. We c

he rat cell line PC12 from a phaeochromocytom
he adrenal gland, which produces and secretes
.1. Fluorometric measurements of intracellular
a2+ levels

Cells were incubated with buffer (in mM: 12
aCl, 2.5 KCl, 1 MgCl2, 2 CaCl2, 1.3 NaH2PO4,
0 Glucose, 26 Na HEPES) containing 5�M Fura

I acetoxymethylester for 30 min at room tempe
ure (22± 2◦C). The incubation buffer was remov
nd cells were washed for 20 min. Fluorescenc
ells was monitored by an imaging system (Visitr
uchheim, Germany) with a CCD camera mounte
n inverted microscope (Zeiss Axiovert 100). Ab
0 PC12 cells were simultaneously measured, s
ated using “the region of interest” function of t
oftware (Metafluor, Meta Imaging Series). Fluor
ence was obtained through an UV objective (Z
eoFluar 20X). Data were obtained from division

wo images, one obtained at 340 nm, the other at 38
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excitation. For determination ofRmin andRmax, Fura
II loaded cells were permeabilised with 10�M iono-
mycin. Ca2+ buffer was used for determination ofRmax
and buffer without CaCl2 but with additional 10 mM
EGTA for determination ofRmin in calibration experi-
ments. InFigs. 2–4ratio values are presented on the
y-axis; the calcium concentration changes are indi-
cated for a relevant area as space bar. Fluorescence
ratios were converted into Ca2+ concentrations by the
formula according toGrynkiewicz et al. (1985). All
experiments were carried out at day one or two after
plating of cells in collagen coated dishes (30 mm).

2.2. Experimental design

The recording chamber mounted on an inverted
microscope had a volume of 2 ml and the pumping
speed of the peristaltic pump was adjusted to 3 ml/min
exchanging the chamber volume in less than a minute.
To depolarize the cells, 80 mM KCl was used (instead
of 80 mM NaCl) in the experimental buffer. The
depolarization of the cellular membrane potential
therefore increased gradually in less than a minute
during perfusion. Cells were depolarized three times
for 1 min during the course of a single experiment.
Usually about 30 cells were measured simultaneously.
In another set of experiments cells were exposed
to Ca2+ free buffer (CaCl2 removed and EGTA
added) followed by application of bromophenols and
subsequent re-supplementation of Ca2+ leading to
s

s
o la-
t rism
(

2

amp
a the

computer program Signal 2 (CED). All experiments
were carried out at day one or two after plating of cells
in collagen coated dishes (30 mm). The bath solution
contained: 135 mM tetraethylammonium-chloride
(TEA-C1), 10 mM N-(2-hydroxyethyl)piperazine-
N-2-ethane-sulfonicacid (HEPES), 1.2 mM MgCl2,
10 mM BaCl2, 2�M tetrodotoxin (TTX) (pH was
adjusted to 7.2 with TEA-OH). Currents through Ca2+

channels were recorded with patch pipettes of roughly
5 M� resistance. The pipette solution comprised of
135 mM CsCl, 10 mM HEPES, 10 mM ethyleng-
lycol-bis-(2-aminoethylether)-N,N,N′-tetraacetic acid
(EGTA), 2 mM MgCl2, 2 mM Na2-ATP (adjusted to
pH 7.2 with TEA-OH). Ca2+ channel currents were
evoked from a holding potential of−70 to +10 mV
for 200 ms every 30 s or by increasing voltage steps
(+10 mV) starting from−90 mV up to +60 mV for
current-voltage (IV) relationship.

2.4. Substances

All chemicals were obtained from Sigma–Aldrich,
Merck, Fluka and Molecular Probes.

3. Results

3.1. Concentration–effect relationship of K+

induced Ca2+ elevations by 2-BP, 2,6-DBP, 4-BP,
2,4-DBP and 2,4,6-TBP
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tore operated Ca2+ entry.
Results are presented as mean± S.E.M. unles

therwise stated. Statistics (ANOVA) and calcu
ions were performed using computer software P
Graphpad) and Igor (WaveMetrics).

.3. Whole cell voltage clamp experiments

Recordings were done using the EPC-7 patch cl
mplifier (List electronics) and analyzed with

Fig. 1. Chemical s
From the large group of brominated phenols
hose five molecules, found in relatively high conc
rations in marine organisms (Fig. 1) and looked fo
nteractions with the cellular Ca2+ homeostasis. Th

ost abundant compounds are 2,4-DBP, 2,6-DBP
,4,6-TBP as shown byWhitfield et al. (1999)and
otterman et al. (2003).

Initially, the experimental series was started w
-BP, which showed no significant effect on+

nduced Ca2+ elevations in the concentrations of

of used compounds.
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Fig. 2. (Left) Changes of the ratio F340/380 nm which represent intracellular Ca2+ changes following depolarization with high potassium
(K+) in the presence of 300�M 4-BP. Averaged trace of about 30 cells measured simultaneously, space bars represent S.E.M. (Right) The
dose–response relationship between 4-BP and intracellular Ca2+, calculated from≥3 independent experiments for each concentration. Asterisks
indicates statistical significance (p < 0,001, ANOVA).

and 300�M, nor did the substance itself induce any
change in basal free intracellular Ca2+ concentration
in the applied concentrations (data not shown).

2,6-DBP also showed no effect on intracellular Ca2+

concentration, neither during K+ induced Ca2+ signals
nor without at concentrations of 30 and 300�M. An
additional bromination of 2-BP in 6-position was not
effective in respect to disturbance of Ca2+ signaling
(data not shown). A bromination at the 4-position (4-
BP) showed a reduction of depolarization induced Ca2+

elevations in concentrations of 300�M and higher. The
position of the bromine clearly affected the potency of
the substance to disturb cellular Ca2+ signals (Fig. 2).

2,4-DBP reduced K+ induced Ca2+ elevations sig-
nificantly at a concentration of 30�M (p < 0,001,
ANOVA), but showed no clear effect on intracellular
Ca2+ levels without stimulation. 300�M eliminated
K+ induced Ca2+ elevations and elevated intracellu-
lar Ca2+ levels, before stimulation with high K+. There
was neither a significant effect of 3�M 2,4-DBP on K+

induced Ca2+ elevations nor on basal intracellular Ca2+

concentrations (Fig. 3). Additional bromination of 4-
BP in 2-position showed a clear increase of efficacy to
disturb cellular Ca2+ signaling in comparison to 4-BP.

The substance 2,4,6-TBP reduced K+ induced Ca2+

influx in the concentration of 300�M significantly.

F t intrac
t 2,4-DB P.
A

ig. 3. (Left) Changes of the ratio F340/380 nm which represen
he presence of 3�M (upper drawing) and 300�M (lower drawing)
sterisks indicate statistical significance (p < 0,001, ANOVA).
ellular Ca2+ changes following depolarization with high potassium (K+) in
P. (Right) Reduction of Ca2+ elevation in % of controls by 2,4-DB
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Fig. 4. (Left) Changes of the ratio F340/380 nm which represent intracellular Ca2+ changes following depolarization with high potassium (K+)
in the presence of 30�M (upper drawing) and 300�M (lower drawing) 2,4,6-TBP. (Right) Reduction of Ca2+ elevation in % of controls by
2,4,6-TBP. Asterisks indicate statistical significance (p < 0,001, ANOVA).

Fig. 4 demonstrates the reduction of depolarization
induced Ca2+ elevation by 2,4,6-TBP and clearly
demonstrates, that 2,4,6-TBP itself increases intracel-
lular Ca2+ levels at a concentration of 300�M.

3.2. 2,4-DBP and 2,4,6-TBP increase
intracellular Ca2+ concentrations partly by a
release from intracellular stores

An elevation of intracellular Ca2+ levels was
observed using 2,4,6-TBP and 2,4-DBP (Fig. 4) and
may be caused by three possibilities: (1) The drug
depolarises the cell by an unspecific membrane perme-
abilisation (a possible Ca2+ entry path). (2) The sub-
stance itself increases the open probability of voltage
operated or other Ca2+ entry channels. (3) Intracellu-
lar calcium stores like mitochondria or the endoplasmic
reticulum release Ca2+ into the cytosol after application
of chemicals- or the reuptake into the stores is inhib-
ited. Both mechanisms would lead to a store operated
Ca2+ entry from the extracellular solution.

These three possibilities were investigated in
the following experiments. Whole cell patch clamp

experiments were performed to address (1) and
(2).

Point (1): after application of the drug, no increase of
a “leakage current” at potentials of−80 to−30 mV was
observed. An unspecific permeabilisation of the cell
membrane by 2,4-DBP could therefore be excluded.
Point (2): we used a pipette solution, which prevents a
“run down” of Ca2+ currents (Bickmeyer et al., 1993).
Current through voltage operated Ca2+ channels was
measured using Ba2+ as a charge carrier to increase
current amplitudes and to prevent from Ca2+ induced
inactivation of Ca2+ channels.Fig. 5shows a current-
voltage relationship (IV) with and without 2,4-DBP.
2,4-DBP inhibited voltage dependent Ba2+ currents
through Ca2+ channels in a dose dependent manner.

After establishment of the whole cell configuration
there was an increase of voltage dependent Ba2+ cur-
rents through Ca2+ channels for 3 min (−70 to +10 mV,
200 ms). This process was dependent on used pipette
solution (Bickmeyer et al., 1993). Following this initial
phase there was a spell of time of minimum 30 min with
a stable condition. Indeed, most control experiments
revealed 60 min of a “steady state” (data not shown).
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Fig. 5. Original traces (left) of whole cell patch clamp recordings, time course (right) and current–voltage relationship (IV) (bottom) of voltage
operated Ca2+ channel currents with and without 300�M 2,4-DBP. Table: normalized current amplitudes (mean± S.E.M.), elicited by voltage
steps from−70 to +10 mV.

The application of 2,4-DBP was 15 min after estab-
lishment of the whole cell configuration and the time
course of current amplitudes is shown inFig. 5. 2,4-
DBP inhibited inward currents maximally after about
5 min of exposure, but induced no unspecific membrane
permeabilisation. This result corroborates the results of
the inhibition of voltage dependent calcium entry by
2,4-DBP shown by fluorometric measurements.

To address point 3 above, we performed fluoromet-
ric measurements of intracellular Ca2+ levels. After
removal of Ca2+ from the extracellular solution, a
substance-induced cytosolic Ca2+ elevation is caused
by Ca2+ release from intracellular stores. 2,4-DBP
(300�M) and 2,4,6-TBP (data not shown) elevated
intracellular Ca2+ levels in the absence of extracellular
Ca2+. After re-supplementation of Ca2+ to the extra-

cellular solution a store operated Ca2+ entry can be
measured (Fig. 6).

This demonstrates that one reason of induced Ca2+

elevation by 2,4-DBP and 2,4,6-TBP is the release of
Ca2+ from intracellular stores.

4. Discussion

Bromophenols are found in very high concentra-
tions in sponges and algae like the brown macroalgaeS.
siliquastrum andP. arborescens (Chung et al., 2003b).
Most but not all brominated metabolites are believed
to be palatable to predators and they are not effective
antibacterial agents either (Kicklighter et al., 2004).
Interestingly some polychaetes (Notomastus lobatus,
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Fig. 6. Changes of the ratio F340/380 nm, which represent intracel-
lular calcium changes following depolarization with high potassium
(K+), removal of Ca2+ from the extracellular (−Ca++), addition of
300�M 2,4-DBP to the Ca2+ free solution (DBP− Ca++) and resup-
plementation of Ca2+ to the buffer (DBP + Ca2+).

Thelepus crispus) accumulate and contaminate sed-
iments with bromophenols, which influence benthic
communities and therefore ecosystems (Lincoln et al.,
2005). Some structurally identical bromophenols are
used industrially as flame retardants and fungicides
and are suspected to disrupt the humoral system (Olsen
et al., 2002; Legler and Brouwer, 2003). For instance
2,4,6-TBP impairs cell differentiation and prolifera-
tion and induces neuronal cell differentiation (Rı́os et
al., 2003) in a human neuroblastoma cell line (SH-
SY5Y). 2,4-DBP has been described as endocrine dis-
ruptor, which binds to the estrogen receptor (Olsen et
al., 2002). We demonstrate that especially 2,4-DBP
and 2,4,6-TBP show another mechanism of action,
namely a disturbance of the cellular Ca2+ homeosta-
sis in endocrine cells.

Secretion of hormones is controlled by Ca2+ influx
into the cells. The reduction of depolarisation induced
Ca2+ elevation may be a link to the disrupting effect
of endocrine systems by bromophenols. Direct proof,
that voltage dependent Ca2+ entry is inhibited by 2,4-
DBP is shown in whole cell patch clamp experiments.
2,4-DBP and 2,4,6-TBP obviously not only inhibit volt-
age dependent Ca2+ entry but induce an elevation of
intracellular Ca2+ levels in the absence of extracellular
Ca2+, indicating Ca2+ release from intracellular cal-
cium stores. Intracellular stores like mitochondria or
the endoplasmic reticulum may release Ca2+ into the
cytosol or the reuptake into the stores is inhibited by

bromophenols. Both mechanisms induce a store oper-
ated Ca2+ entry from the extracellular solution. Since
2,4-DBP induces intracellular Ca2+ release, a reduction
of voltage dependent Ca2+ entry may partly be caused
by Ca2+ dependent inactivation of calcium channels.
Therefore we used barium ions as charge carrier in
patch clamp experiments, minimizing the effect of
Ca2+ dependent inactivation of voltage operated Ca2+

channels, but nevertheless, voltage operated currents
were reduced by 2,4-DBP.

2,4-DBP was the most potent substance we tested.
Interestingly 2-BP and 2,6-DBP were least potent. Not
only the grade of bromination, but the position of the
bromine substituents, especially bromination in the 4-
position in conjunction with the 2-position, seemed to
be responsible for the efficacy of the drug to disturb
Ca2+ signaling. In 2,4,6-TBP, the additional bromina-
tion in the 6-position seemed to increase intracellular
calcium elevations without other stimuli. 4-BP as well
as 2-BP and pentabromophenol have been shown to
be nephrotoxic (Lau et al., 1984; Rush et al., 1984;
Bruchajzer et al., 2002; Szymanska et al., 1995) in
the context of our results possibly in part by interac-
tion with cellular calcium stores. Bradykinin, which via
G-proteins increases intracellular Ca2+, plays an impor-
tant role in the kidneys regulating fluid and electrolyte
transport (Hébert et al., 2005).

Brominated phenols are suspected to interact with
the humoral system of man and mice; we show a
clear disruption of cellular calcium signaling, which is
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mental approach using brominated pyrrole alkal
rom marineAgelas sponges (Bickmeyer et al., 2004
ickmeyer, 2005) some brominated marine meta

ites, depending on number and position of brom
eem to interact with cellular Ca2+ signaling. The na
rally produced bromophenols may serve their pro
rs as antifeedant or allelochemicals by bad taste a
s by disturbance of developmental processes. 2
BP inhibits the development of copepods in the
icromolar concentration range (Wollenberger et al
005), possibly by alterations of cellular calcium s
aling. The antifeedant activity may be caused by

ntensive odour, which is probably as effective in wa
s in air, leading to, e.g., musty and corked odou
ine (Chatonnet et al., 2004).



44 T. Hassenklöver et al. / Aquatic Toxicology 76 (2006) 37–45

2,4,6-TBP is found in blubber of marine mammals
(Vetter and Janussen, 2005), in human milk (Ohta et al.,
2004), is produced as flame retardant as well as fungi-
cide and is (from natural sources) found in high con-
centrations in marine algae (Kicklighter et al., 2004).
Additionally bromophenol-rich feed can be used in
aquaculture to enhance the sea-like flavour of fish and
other seafood (Ma et al., 2005). The most abundant
flame retardant tetrabromobisphenol A is additionally
a major source of 2,4,6-TBP by photolytic degrada-
tion (Eriksson and Jakobsson, 1998). Therefore bro-
mophenols such as 2,4,6-TBP should be in the focus of
ecological as well as toxicological studies to increase
awareness of their impact on human and wildlife safety.

Acknowledgements

We thank K.-W. Klings for expert technical help, Dr.
A. Kraberg for critically reading the manuscript and
two anonymous referees for constructive criticism.

References

Bickmeyer, U., M̈uller, E., Wiegand, H., 1993. Development of neu-
ronal calcium currents in a primary cell culture of the spinal cord
and spinal ganglia. NeuroReport 4, 131–134.

Bickmeyer, U., Weinsberg, F., M̈uller, E., Wiegand, H., 1998. Block-
ade of voltage-operated calcium channels, increase in sponta-
neous catecholamine release and elevation of intracellular cal-

ran-
445.

B i-
e
44,

B olt-
45,

B and
ett.

C Iden-
sty,
262.

C n of
ood

C 03b.

24.

Eriksson, J., Jakobsson, E., 1998. Decomposition of tetrabromo-
bisphenol A in the presence of UV-light and hydroxyl radicals.
Organohalogen Compd. 35, 419–422.

Gafni, J., Munsch, J.A., Lam, T.H., Catlin, M.C., Costa, L.G., Molin-
ski, T.F., Pessah, I.N., 1997. Xestospongins: potent membrane
permeable blockers of the inositol 1,4, 5-trisphosphate receptor.
Neuron 19, 23–33.

Greene, L.A., Tischler, A.S., 1976. Establishment of a noradren-
ergic clonal line of rat adrenal pheochromocytoma cells which
respond to nerve growth factor. Proc. Natl. Acad. Sci. U.S.A. 73,
2424–2428.

Grynkiewicz, G., Poenie, M., Tsien, R.Y., 1985. A new generation of
Ca2+ indicators with greatly improved fluorescence properties.
J. Biol. Chem. 260, 3440–3450.
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