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Abstract

Plant macrofossils from the “Mamontovy Khayata” permafrost sequence (71°60'N, 129°25'E) on the Bykovsky Peninsula reflect climate
and plant biodiversity in west Beringia during the last cold stage. 70 AMS and 20 conventional '*C dates suggest sediment accumulation
between about 60,000 and 7500 '“C yr B.P. The plant remains prove that during the last cold-stage arctic species (Minuartia arctica, Draba
spp., Kobresia myosuroides) coexisted with aquatic (Potamogeton vaginatus, Callitriche hermaphroditica), littoral (Ranunculus reptans,
Rumex maritimus), meadow (Hordeum brevisubulatum, Puccinellia tenuiflora) and steppe taxa (Alyssum obovatum, Silene repens, Koeleria
cristata, Linum perenne). The reconstructed vegetation composition is similar to modern vegetation mosaics in central and northeast
Yakutian relict steppe areas. Thus, productive meadow and steppe communities played an important role in the Siberian Arctic vegetation
during the late Pleistocene and could have served as food resource for large populations of herbivores. The floristic composition reflects an
extremely continental, arid climate with winters colder and summers distinctly warmer than at present. Holocene macrofossil assemblages
indicate a successive paludification possibly connected with marine transgression, increased oceanic influence and atmospheric humidity.

Although some steppe taxa were still present in the early Holocene, they disappeared completely before ~2900 '*C yr B.P.

© 2005 University of Washington. All rights reserved.
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Introduction

The world’s broadest shelves, with depths less than 100
m, occur between the Taymyr Peninsula and Alaska (Fig. 1).
Due to Pleistocene marine regressions (Clark and Mix,
2002; Lambeck and Chappell, 2001), the now-submerged
shelf areas were part of a huge arctic landmass named
Beringia between the Lena and Mackenzie rivers (Hulten,
1937).

Beringia is considered a key region in the understanding
of Cenozoic palacoecology (Hulten, 1937). In contrast to
other Arctic regions, the northeast Siberian and northwest
American lowlands remained non-glaciated during the last
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cold stage (Clark et al., 1993; Schirrmeister et al., 2002a;
Siegert et al., 2002; Svendsen et al., 1999, 2004) and were
covered with rather rich vegetation (Andreev et al., 2002;
Elias et al., 1997; Goetcheus and Birks, 2001) that supported
large populations of herbivores (Guthrie, 1990; Schirrmeister
et al., 2002a; Sulerzhitsky and Romanenko, 1997; Vartanyan
et al., 1993). Beringia was the major glacial refuge of arctic
plants (Abott and Brochmann, 2003; Hulten, 1937; Nimis
et al., 1998). The land bridge facilitated species exchange
between Eurasia and North America (Hulten, 1937) until the
opening of the Bering Strait about 5 myr ago (Marincovich
and Gladenkov, 1999) and periodically thereafter during
glacial sea-level regressions.

The character of environment prevailing in Beringia
during the Pleistocene is controversial. Numerous bones of
large grazers like mammoth, bison, horse and wooly
rhinoceros, outcropping from permafrost deposits along
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Figure 1. Location of the Mamontovy Khayata site and of the meteorological stations Tiksi and Yansk with respect to the modern shoreline and to the 100-m
isobath, which indicates the mean extent of the continent during the last cold stage. The dark-shaded signature shows the most important extrazonal distribution
areas of steppe vegetation in Northeast Yakutia (after Yurtsev). Satellite image available at: http://www.daac.gsfc.nasa.gov/DAAC_DOCS/geomorphology/

GEO_HOME_PAGE.html.

the arctic coasts and riverbanks (Guthrie, 1990; Kuznetsova
et al., 2003; Orlova et al., 2000; Pitulko et al., 2004;
Schirrmeister et al., 2002a; Sulerzhitsky and Romanenko,
1997), suggest that during the cold stages the exposed
landmass between the Old and New Worlds must have been
covered by productive steppe-like vegetation (Guthrie,
1990, 2001; Nehring, 1890; Tugarinov, 1929). This pre-
sumption is supported by disjunct arctic and subarctic
steppe plant occurrences, which are considered to be relicts
of a formerly closed and more northerly extended distribu-
tion area of those species (Andreev and Galaktionova, 1981;
Yurtsev, 1982, 2001). In addition, the analogies of arctic
cold-stage pollen spectra and modern surface pollen samples

from relict steppe occurrences in Greenland (Bocher, 1954)
and on Wrangel Island (Yurtsev, 1982) indicate steppe-like
palaeoenvironments (Iversen, 1973; Yurtsev, 1982).

The climate during the last cold stage of the northern
Siberian lowlands has been generally thought to be colder
than present throughout the year, with a mean July temper-
ature close to 0°C (Frenzel et al., 1992; Velichko, 1984). The
low pollen concentrations and the absence of local tree and
shrub taxa in last cold-stage sediments have been taken as
evidence of severe climate and of sparse and low-productive
vegetation, similar to the present arctic desert (Cwynar and
Ritchie, 1980; Kozhevnikov and Ukraintseva, 1997; Ritchie,
1984). Climate modelling supports this interpretation and
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indicates LGM temperatures across northern Eurasia lower
than present, because of continental glaciation and decreased
summer insolation (Clark et al., 1999; Kageyama et al., 2001,
Kutzbach et al., 1993).

The controversy-productive steppe or sparse arctic
desert-remained unsettled because macropalaeobotanical
evidence of steppe plants in the arctic lowlands during the
glacial epoch was missing (Yurtsev, 1982). Anderson et al.
(1994) and Birks and Birks (2000) highlighted the
limitations of palynological methods for the reconstruction
of the arctic palacovegetation, as a result of very low local
pollen production of most arctic species. Moreover, most
herbaceous plants cannot be identified to the species or even
the genus level. In contrast, fossil leaves, seeds and fruits
can often be precisely identified. Studies of plant DNA
fragments in bulk samples from Pleistocene permafrost
(Willerslev et al., 2003) resulted in a taxonomical resolution
until now no better than achieved by pollen analysis. This
approach has, however, a great potential if applied for
unidentifiable macrofossils.

In Beringia, cold-stage plant macrofossils were studied
from sediments of the shelves of the Bering and Chukchi
seas (Elias et al., 1997) and, most spectacular, from an in
situ tephra-buried land surface on the Seward Peninsula
(Goetcheus and Birks, 2001). None of the records from
central Beringia contained remains of steppe taxa that could
indicate the former existence of a mammoth steppe
(Guthrie, 1990), although indicators of rather dry habitats
were found. Beyond the limits of the Beringian lowlands,
steppe plants were identified very sporadically on the
Taymyr Peninsula (Kienast et al., 2001) and in the Yukon
Territory (Zazula et al., 2003). Both records are, however,
far from the formerly exposed Beringian shelf. Located in
mountainous regions, they might reflect local palacoenvir-

onmental conditions and thus might not be representative of
the Beringian palacovegetation.

In this paper, we describe in detail the local vegetation that
occurred at the Bykovsky Peninsula (71°60'N, 129°25'E,
[Fig. 1]) during several time segments from the last cold stage
and the Holocene. The reconstruction is based on the analysis
of plant macrofossils from the permafrost sequence
“Mamontovy Khayata” (Yakutian: “Mammoth hill,” hereafter
Mkh). The implications for climate and biodiversity of the
westernmost Beringian lowlands are discussed.

Study area

The Bykovsky Peninsula is situated at the Laptev Sea
coast south-east of the Lena River delta in the foreland of
the Kharaulakh mountain range (Fig. 1). In consequence
of its position at the western margin of the Ust-Lena Rift,
intense seismic activities, mainly vertical block tectonics,
characterize this region (Drachev et al., 1998). Forming
the foothills of the Verkhoyansk mountain range, the
Kharaulakh Range elevates up to 1000 m.

The Bykovsky Peninsula represents the remnants of a
late Pleistocene accumulation plain (Siegert et al., 2002).
The highest elevations of the Bykovsky Peninsula, about 40
m high, are composed of Ice Complex sediments and
represent the land surface during the last cold stage. “Ice
Complex” stands for very ice-rich and perennially frozen
fine-grained deposits, penetrated by thick polygonal ice-
wedge systems (Fig. 2) and formed under extremely
continental climate in terrestrial accumulation plains, mainly
in the lowlands and river valleys of north Siberia during the
cold stages of the late Pleistocene (Schirrmeister et al.,
2002b; Siegert et al., 2002).

Figure 2. Polygonal surface in the tundra of the recent Lena River Delta as a result of netlike distributed ice wedge systems underneath. Similar structures
occurred at the exposed Laptev Sea shelf during the last cold stage. Photo: L. Kutzbach.



286 F. Kienast et al. / Quaternary Research 63 (2005) 283—-300

The permafrost in the study area occurs continuously and
penetrates up to 500650 m in depth (Grigoriev, 1993). At
the zone of zero annual amplitude, the permafrost temper-
ature is between —8 and —13°C (Grigoriev, 1993). Due to
the position of the Bykovsky Peninsula in a zone of
subsidence, the constitutive Ice Complex is very thick
(Ivanov and Katasonova, 1978). Numerous thermokarst
depressions and thermoerosional channels as a result of
intense permafrost degradation characterize the modern
geomorphology of the Bykovsky Peninsula.

Modern temperatures vary from 7°C in July to —30°C
in January. The mean annual temperature is —12°C
(http://www.washingtonpost.com/wp-srv/weather/longterm/
historical/data/tiksi_russia.htm). Although mean annual
precipitation is only 190 mm, the climate is humid due
to low evaporation. The climatic humidity is reflected by
zonal soils, mainly gelic gleysols and gelic histosols
(FAO-UNESCO, 1988).

According to the Circumpolar Arctic Vegetation map
(CAVM Team, 2003), the vegetation on the peninsula is
graminoid tundra, more precisely nontussock sedge, dwarf
shrub, moss tundra. In polygonal mires and in thermokarst
depressions, it consists mainly of wetland communities
dominated by Eriophorum vaginatum, E. scheuchzeri,
Carex ensifolia ssp. arctisibrica and C. aquatilis. At the
raised, well-drained polygon borders, Betula exilis, Salix
pulchra, S. glauca, Ledum decumbens, Vaccinium vitis-
idaea and V. uliginosum ssp. microphyllum occur. The
dominating plants are characteristic species of the formal
vegetation units (syntaxa) Oxococco-Sphagnetea Br.Bl. and
Tx. 1943 and Scheuchzerio-Caricitea nigrae Nordh. 1936,
which thus can be considered as representative of the
Bykovsky Peninsula.

Site Mkh is noted for the finding of thousands of late
Pleistocene mammal bones and large quantities of mam-
moth ivory (Kuznetsova et al., 2003; Schirrmeister et al.,

2002a), including the first described mammoth carcass ever
(Adams, 1807), and is a key site of the reconstruction of late
Pleistocene environments in the Siberian Arctic. Multi-
disciplinary work included comprehensive age determina-
tions (Schirrmeister et al., 2002b), cryolithological and
sedimentological studies (Schirrmeister et al., 2002b;
Siegert et al., 2002), isotope analyses on groundice (Meyer
et al., 2002), studies of insects (Kuzmina, 2001), pollen
(Andreev et al., 2002), mammals (Kuznetsova et al., 2003),
testate amoebae (Bobrov et al., 2004) and ostracodes
(Wetterich et al., submitted for publication).

Material

Exposed at the Laptev Sea coast, the Ice Complex of the
Bykovsky Peninsula was made accessible by coastal erosion
and wave action. The Mkh site is a cliff rising to 40 m a.s.l.
and is composed of numerous subprofiles, so-called
thermokarst mounds (Fig. 3). Several of these laminated
sediment blocks, which consist of calcareous silty sands
interbedding with organic-rich layers and horizons of
palaeosoils with fine grass roots (Fig. 4) have been studied.

Reworking and redeposition of material may strongly
affect results and interpretation of palacoenvironmental
reconstructions. Siegert et al. (2002) and Schirrmeister et
al. (2002b) published results of sedimentological, minera-
logical and geomorphological studies of the Mkh sequence
with special attention to the redeposition problem. Grain
size distribution and heavy mineral composition indicate
that the Mkh deposits are of local origin, and that their
transport by the Lena River can consequently be excluded
(Siegert et al., 2002). In fact, the neighboring ridges of the
Kharaulakh Mountains acted as main source area for the
sediments of the Mkh sequence (Siegert et al., 2002). The
sedimentological and cryolithological structure of the

thermokarst
~" mound

Figure 3. Subprofiles of the sequence Mamontovy Khayata. The thermokarst mounds arose after ice wedge melting in the course of thermoerosion of the Ice

Complex. Photo: H. Meyer.
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Figure 4. One of the sampled thermokarst mounds. The sediment structure
is not disturbed by thermoerosion. Photo: L. Schirrmeister.

sequence is described in detail in Schirrmeister et al.
(2002b).

Ice Complex deposits were subaerially exposed and
transferred into permafrost quasi synchronously with their
accumulation. They are rich in well-preserved plant macro-
fossils, which were used as bioindicators in the present
study. Frequency and intensity of storms are assumed to
have been highly decreased under extremely continental
cold-stage conditions due to northward extension of the
stable Siberian-Mongolian high pressure system, connected
with the exposition of north Siberian shelves (Borisov,
1965). Therefore, seeds and fruits were transported presum-
ably not very far and rather by melting water than by wind.
The Bykovsky Peninsula is considered as rest of a proluvial
fan consisting of material, transported from the hill country
at the foot of the Kharaulakh Range by seasonally active
rivers (Siegert et al., 2002). Thus, we assume that the
taxonomic composition of the fossil seed bank in the Ice
Complex reflects the local palacovegetation at the lowland
of today’s Bykovsky Peninsula and, partly, of the Khar-
aulakh foreland.

Methods
Sampling and preparation in the lab

Between 1 and 15 liters of frozen material per sample,
depending on accessibility, was taken for plant macrofossil

analysis from several thermokarst mounds, covering the
whole Ice Complex sequence. Additionally, Holocene
deposits on the top of the Ice Complex and from an
adjacent thermokarst depression (“alas”) were sampled in
order to detect detailed features of the glacial and
interglacial vegetation.

The samples were air-dried and most of them remained
further untreated in the field. Some samples, however, were
enriched in plant remains by removal of the fine mineral
fraction by wet sieving through 0.2-mm meshed fabric (Sher
et al., 2000).

In the lab, the samples were suspended in water, wet
sieved, using mesh sizes of 2, 1, 0.5 and 0.25 mm, and dried
at room temperature. For dispersion of organic aggregates,
clotty sample parts were shortly exposed to diluted H,O,
(1,5%, less than 3 min). When sediment and plant remains
stick together very strongly, it is more gently to expose the
sample to diluted H,O, than to try to remove the minerals
mechanically or by seething with KOH. H,O, firstly attacks
dissolved organic compounds, which are the main adhesive
agent in these aggregates. The resulting bubbling supports
the gentle suspension of aggregate. We only used the
method when the sample parts were strongly aggregated.

Dating

70 AMS and 20 conventional radiocarbon dates (see
details in Schirrmeister et al., 2002a,b) suggest that the
sediments of the Ice Complex sequence and the overlying
Holocene peat accumulated without long breaks from about
60,000 to 7500 '*C yr B.P. The age/height model (Fig. 5)
shows that even dates more than 40,000 '*C yr B.P. and
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Figure 5. Age-height relation of the sequence Mamontovy Khayata.
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consequently exceeding the reliability limit of the radio-
carbon method, fit very well into the extrapolated age-
altitude relation. Accordingly, the sediments accumulated
without great hiatus, thus quasi continuously. In contrast to
lake sediments, permafrost deposits accumulate with low
chronological resolution (between decades and centuries)
due to cryoturbation processes in the active layer. We cannot
exclude that a hiatus occurred within such a timeframe. But
in the light of the exactness of radiocarbon dating, this is
practically irrelevant. The additionally taken alas deposits
are radiocarbon dated to ~2900 '*C yr B.P.

Plant macrofossil identification

Identifiable plant remains, namely seeds, fruits, and
exceptionally leaves, were picked using a stereomicroscope.
The identification of macroremains was based on the
carpological reference collection of the Museum of Natural
History at the Humboldt University, Berlin. In order to
identify adequately potential steppe indicators, the authors
upgraded the collection by several hundred new species
from relic steppe sites in central and northeast Yakutia. In
addition, some identification keys and atlases were used
(Aalto, 1970; Anderberg, 1994; Beijerinck, 1947; Berggren,
1969, 1981; Cappers, 1993; Egorova, 1999; Jessen, 1955;
Katz et al., 1965; Korber-Grohne, 1964).

Reconstruction of palaeoenvironment

The identified taxa were, as major step in the palae-
oenvironmental reconstruction, associated with abstract
plant communities (syntaxa) according to their present day
main occurrences and ecology in the circumarctic tundra
(DierfBen, 1996) and the central-Siberian (Daurian)-Mongo-
lian steppe (Hilbig, 1995; Table 1). To be comparable with
recent vegetation, the syntaxa follow the Braun—Blanquet
nomenclature (Weber et al., 2000). The most characteristic
macrofossil taxa are presented in Figure 6.

The ecological niche of a community is more restricted
than that of its components (Birks and Birks, 1980).
Consequently, the reconstructed syntaxa, labeled by cha-
racteristic species, indicate the former local habitat con-
ditions and dependence on topography better than individual
species. Moreover, it can be assumed that characteristic
species of the reconstructed plant communities probably
were present in the palaecovegetation, even though their
remains were preserved insufficiently for identification. This
is true e.g., for Artemisia, an important component of the
Mkh pollen spectra according to Andreev et al. (2002). For
community reconstruction, only the presence or absence of a
plant taxon was considered. Quantities of plant remains
remained unconsidered since sample volumes were not
comparable due to the diversity of sample textures (sand,
silt, peat, etc.) and unequal sample treatment in the field.
Moreover, plants produce variable numbers of seeds and
fruits. Quantities of fossil seeds, which were the most

frequently found macroremains in the present study, are
hence not comparable between different plant species (Birks
and Birks, 1980). Also, the effects of inhomogeneous
preservation or decomposition, respectively, can be attenu-
ated by this approach. Likewise, modern plant communities
are defined in terms of their taxonomical composition
independent on single species abundances. The reconstruc-
tion of syntaxa was carried out at class level, because the
incompleteness of the fossil species spectra complicated a
finer syntaxonomical resolution.

Results and interpretation

The composition of late Pleistocene species differed
considerably from Holocene ones, although certain
“Pleistocene” plants such as boreal aquatics and even steppe
species are present in the early Holocene sample, dated to
about 7800 '“C yr B.P. (Fig. 7). Therefore, we distinguished
Holocene and Pleistocene vegetation complexes, which are
separately described following in the order of their topo-
graphical occurrence (Fig. 7), beginning with water-filled
depressions.

The vegetation complex of the last cold stage

Boreal aquatics

(Potamogetonetea pectinati R. TX. and PRSG. 1942.)

Fruits of Hippuris vulgaris, Batrachium and abundant
macrofossils of Callitriche hermaphroditica and Potamoge-
ton vaginatus were found. All identified aquatics are
distributed mainly in the boreal or temperate zones (Dierf3en,
1996; Meusel et al., 1978) and are first colonizers in shallow
lakes and ponds (Elias et al., 1997), often with brackish or
slightly saline water (DierBen, 1996; Gliick, 1936). C.
hermaphroditica and P. vaginatus require warm summer
conditions and do not occur north of the 12°C mean July
isotherm today (Krasnoborov, 1988; Meusel et al., 1978).

Littoral pioneer vegetation

(Bidentetea tripartae R. TX. ET AL AP. R. TX. 1950, Lit-
torelletea BR. BL. and TX. 1943 EX WESTH. ET AL. 1946,
Cakilitea maritimae R. TX. and PRSG. 1950.)

The abovementioned classes were treated in combina-
tion, because they are not clearly differentiated socio-
logically and the recent floristic differences between them
are indistinct especially in arid regions of north Asia and
under salt influence (DierfBen, 1996; Hilbig, 1995). Littoral
pioneer communities are represented by Ranunculus
reptans, Senecio congestus, Rumex maritimus, Chenopo-
dium glaucum and Stellaria crassifolia. These species
colonize moist, bare, erosive soils in the range of fluctuating
water levels at shores of shallow lakes and regularly
inundated depressions (DierfBen, 1996; Hilbig, 1995). We
consider a succession of certain species along specific
sections of the littoral. For example, R. reptans can grow on
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both submerged and emerged soils, but is preferably adapted
to water-logged emerged soils. That species is characteristic
of oligotrophic water and endures salt concentrations up to 6
%o (Dierflen, 1996). Probably, it grew closest to the water
line and fell dry last. The halophytes R. maritimus,
Chenopodium glaucum and S. crassifolia are indicative of
salty and nutrient-rich littoral habitats, and thus occurred
farther from the water at drier, saltier and more eutrophic
places.

Floodplain meadows

(Asteretea tripolii WESTHOFF ET BEEFTINK. 1965.)

Alkali grass (Puccinellia tenuiflora) and the wild barley
(Hordeum brevisubulatum) are characteristic meadow
grasses of closed topographic depressions (alases) with a
strongly fluctuating groundwater table and salt accumula-
tion (“saltpans”) in central Yakutia (Mirkin et al., 1985).
Their main distribution area is, however, Mongolia, where
they compose floodplain meadows along rivers, around
lakes and in topographic depressions (Hilbig, 1995). Both
species are salt tolerant. Although occurring exclusively
under arid climates, the community is, due to favorable
groundwater availability at the floodplains, a highly
productive pasture.

Steppe communities

(Festuco-Brometea BR.-BL. and TX. 1943, Koelerio-
Corynephorethea KLIKA AP. KLIKA and NOWAK 1941.)

The macrofossil finds of steppe plants in the arctic
permafrost sequence Mamontovy Khayata are evidence of
the contentious former existence of steppe vegetation in
Beringia. Of the dicots, Alyssum obovatum, Silene repens,
Myosotis alpestris, Rumex acetosella, Potentilla stipularis
and P. arenosa were identified. They are characteristic for
Daurian-Mongolian mountain steppes (Hilbig, 1995).
Remains of the grasses Koeleria cristata, Festuca sp. and
Poa sp. have also been found. Festuca lenensis, F. sibirica
and species of the Poa section Stenopoa are characteristic
elements of Mongolian steppes (Hilbig, 1995) and relic
steppe communities in northeastern Siberia (Yurtsev, 2001).
Moreover, K. cristata, Androsace septentrionalis and Linum
perenne are steppe indicators with a circumpolar distribution.
A singular fruit of Thesium was found in the sample dated to
about 48,000 '*C yr B.P. Its modern closest distribution area
is central Yakutia (Meusel et al., 1978), where mean July
temperatures exceed 15°C. Numerous finds of fruits of Carex
duriuscula in Mkh sediments are noteworthy, as this plant
indicates overgrazing or trampling in steppe and floodplain
meadow communities (Hilbig, 1995).

Arctic/Alpine pioneer vegetation
(Thlaspitea rotundifoliac BR. BL. 1948) and Kobresia
meadows (Carici rupestris-Kobresietea OHBA 1974.)
Arctic/Alpine pioneer vegetation and Kobresia mead-
ows were treated together because of their similar floristic
composition and ecology, and their connection in the

successional series. They correspond to the herbaceous
cryoxerophyte vegetation, described by Yurtsev (2001) for
the vegetation mosaic of Beringia’s tundra-steppe. In our
record, arctic pioneer communities are represented by
Minuartia spp., Papaver sect. Scapiflora, Draba spp.,
Cerastium spp., Stellaria spp. and Saxifraga spp., each
taxon including several species. Arctic pioneer commun-
ities form the northernmost vascular plants in polar deserts.
They occupy well-drained sites, disturbed by deflation in
winter due to lack of snow cover (Dierlen, 1996).
Kobresia meadows replace arctic pioneer communities
after substrate stabilization (DierfBen, 1996). They are
considered as important components of the zonal vegeta-
tion of Beringia during the cold stages of the Pleistocene
(Walker et al., 1991, 2001; Yurtsev, 2001). In the Mkh-
record, Kobresia myosuroides, Potentilla nivea and Tha-
lictrum alpinum were identified among others. Some taxa,
e.g., Minuartia arctica, Potentilla hyparctica, Saxifraga
spinulosa, Draba spp. and Stellaria spp. appear in both
communities. All species are extremely frost resistant and
adapted to strong seasonal temperature fluctuations
(DierBen, 1996).

Holocene vegetation

Wetland vegetation

(Scheuchzerio-Caricetea nigrac (NORDH. 1936) R. TX.
1937, Oxycocco-Sphagnetea BR. BL. and TX. 1943.)

The floristic composition of Holocene macrofossil
assemblages, dominated by wetland communities with
Carex aquatilis including the subsp. stans, Eriophorum
scheuchzeri, E. vaginatum, Comarum palustre and Betula
exilis shows good correspondence to modern tundra
vegetation in the study area and indicates a stable wet
environment. Carex aquatilis, C. aquatilis ssp. stans, C.
bigelowii ssp. arctisibirica and Eriophorum scheuchzeri
are characteristic species of Scheuchzerio-Caricetea
nigrae, occurring on wet mineral soils with slightly
acidic to basic substrates (Dierlen, 1996), for instance
in the centers of polygonal depressions (Fig. 2) or in
thermokarst depressions.

Communities of the class Oxycocco-Sphagnetea are
typical of moderately wet until periodically dry, rather
acidic mires (Dierflen, 1996), such as the raised borders
of polygons. They are represented in our macrofossil
records by Eriophorum vaginatum, B. exilis, Saxifraga
hirculus and Vaccinium uliginosum.

Snow-bed vegetation

(Salicitea herbaceae Br. Bl. 1947.)

Plants occurring at snow accumulation sites, represented
by Ranunculus nivalis and various species of the snow
saxifrage group (Saxifraga nivalis, S. hieracifolia, S.
foliolosa), were detected only in the late Holocene sample,
apart from a single Saxifraga tenuis seed in a sample dated
to about 22,000 "*C yr B.P. (Fig. 7). They indicate thick
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Figure 6. Plant macrofossils from the sequence Mamontovy Khayata representing the reconstructed syntaxa. Aquatic vegetation: (1) P. vaginatus; (2)
Batrachium sp.; (3) C. hermaphroditica; (4) H. vulgaris. Littoral pioneer vegetation: (5) C. glaucum; (6) S. crassifolia; (7) R. maritimus; (8) R. reptans.
Floodplain meadows: (9) H. brevisubulatum; (10) P. tenuiflora. Steppe communities: (11) C. duriuscula with utricle; (12) C. duriuscula without utricle; (13)
Festuca sp.; (14) K. cristata; (15) A. obovatum; (16) S. repens; (17) P. stipularis; (18) Thesium sp.; (19) L. perenne; (20) R. acetosella. Kobresia meadows:
(21) K. myosuroides; (22) P. nivea; (23) Minuartia verna; (24) Carex argunensis; (25) T. alpinum. Arctic pioneer communities: (26) Cerastium beeringianum
(27) Minuartia rubella; (28) M. arctica; (29) Papaver sect. Scapiflora; (30) Draba sp.

snow cover, late snowmelt, shortened growing season, and
lowered soil temperature in summer that is additionally
decreased by melting snow (Dierflen, 1996).

Discussion and conclusions

The macrofossil composition of permafrost sediments
from the sequence Mamontovy Khayata reveals that a
complex of aquatic, littoral, meadow and steppe associations
existed among high arctic plant communities at today’s
Bykovsky Peninsula, reflecting a wide variety of habitat
conditions during the last cold stage. Several authors have
suggested that diverse vegetation mosaics must have existed
in Beringia (Elias et al., 1997; Goetcheus and Birks, 2001;
Guthrie, 1990; Yurtsev, 2001), however, in a composition
without modern analogues (Goetcheus and Birks, 2001).
The assumption of mosaic-like distributed palacovegetation
bases on the concept of “actualism,” which is the foundation
of palaeo-bioindication. The landscape is never uniform,
and consequently depending on the availability of radiation,
moisture, nutrients and competition, vegetation is always
unevenly distributed. When we, however, apply the
actualism principle consequently, and assume that the
autecological requirements of plant species did not change

considerably during the late Quaternary, we must imply the
same for the synecological behaviour of those plants,
because plants with resembling ecology occur together,
now and in the past. Therefore, we assumed that there must
be modern analogues of Beringia’s cold-stage vegetation,
even though much more restricted geographically today.
Thus, we focused on the xerophilous vegetation complexes
described as glacial relicts in central and northeast Yakutia
by Yurtsev (1982, 2001). For the first time, we could show
that characteristic components of the xerophyte relict
vegetation, including steppe plants, really existed in arctic
Beringia during the last cold stage.

Arguable macrofossil finds of steppe indicators by
Kienast et al. (2001) and Zazula et al. (2003) in the vicinity
of Beringia’s shelf-land offered already valuable clues.
Kienast et al. (2001) found individual macroremains of the
steppe plants 4. obovatum and Carex cf. stenophylla (in fact
the closely related east Siberian vicar C. duriuscula) in Ice
Complex sediments at the Taymyr Peninsula in species
spectra that are predominantly composed of arctic pioneer
plants. The steppe Crassulaceae, Orostachys spinosa, was
probably misidentified. Its identification shall be checked
later by DNA analysis. In the Yukon Territory, Zazula et al.
(2003) listed taxa of potential steppe indicators (Draba,
Cerastium, Carex, Artemisia, Juncaceae, Potentilla, Ranun-
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Figure 7. Representation of the reconstructed syntaxa for the macrofossil assemblages of the site Mamontovy Khayata and idealized distribution patterns of

plant communities with respect to the local topography.

culus, Papaver, Silene) that are, however, widely distributed
in arctic tundras and even in arctic deserts today or occur at
specific habitats rather independent on macroclimate (Ely-
mus). For example, Elymus arenarius is characteristic of
sand dunes in north Alaska (Walker et al., 2001). The
identification of Artemisia frigida, that is the most indi-
cative steppe species in Zazula et al. (2003), is, according to
the photo in that paper hardly reproducible. Androsace
septentrionalis, the other steppe indicator in that study, may
occur extrazonally in arctic and subarctic areas today and
occurs, for instance, on sandy slopes in the Lena River delta
at 72°N (Kienast and Tsherkasova, 2001).

The reconstructed vegetation complex of the last cold
stage differs substantially from the Holocene vegetation at
the Bykovsky Peninsula. All plant communities described
for the last cold stage are absent or rare during the Holocene
(Fig. 7). In contrast to the reconstructed diverse cold-stage
vegetation, the Holocene tundra is almost uniform.

We consider two factors to explain the reconstructed
features of the last cold-stage vegetation and its difference
from modern arctic tundra: moisture availability and
summer warmth. Mkh’s cold-stage vegetation indicates that
moisture rather than temperature acted restricting on
vegetation. The high percentage of Pediastrum and Botryo-
coccus algae in Mkh pollen and spore spectra (Andreev et

al., 2002) and the presence of aquatic and littoral taxa in the
macrofossil assemblage indicate that the deposits were
accumulated in shallow water. Although an overrepresenta-
tion of wet place indicators is probable, the late Pleistocene
vegetation complex indicates arid climate conditions. The
pioneer character of aquatic and littoral vegetation, indicat-
ing shrinking or desiccation of shallow lakes and small
pools, suggests dry summers during the last cold stage. The
former existence of floodplain meadows and the halotol-
erance of many identified species also suggest large
seasonal groundwater fluctuations and consequently strong
evaporation under an arid climate. In particular, the presence
of Puccinellia tenuiflora is indicative of salt accumulation
in the topsoil horizon, caused by high evaporation of
groundwater. Under warm and dry summer conditions,
permafrost supports salt accumulation by damming ground-
water and supplying moisture and solutes (Yelovskaya et al.,
1966). Abundant macrofossils of steppe and drought-
resistant arctic plants confirm arid conditions. Macrofossils
of taxa from permanently wet habitats (like mires) were
found only sporadically in last cold-stage sediments, mainly
from the Middle Weichselian Interstade, dated about
48,000-35,000 '*C yr B.P. (Fig. 7). In contrast, the Holocene
macroremains indicate steadily wet environments as a result
of increased oceanic influence and atmospheric humidity.
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The paludification happened, however, successive. Whereas
sporadic steppe indicators persisted in the early Holocene,
they disappeared completely before ~2900 '*C yr B.P.

The macrofossils of some boreal aquatics in the Mkh
sequence allow to make some conclusions about summer
temperatures. Aquatic plants are regarded as excellent
temperature indicators (Iversen, 1954). In contrast to
terrestrial warmth indicators, which may occur extrazonally
at south facing slopes, aquatics reflect the zonal thermal
regime independent on topography and altitude of the sun
(Iversen, 1954). Furthermore, they indicate average summer
temperatures, buffered by the thermal capacity of lake
water. Aquatics are also able to occupy new habitats
extremely quickly after establishment of favorable condi-
tions (Elias et al., 1997). At the study site, mean July
temperatures above 12°C can be inferred for most of the last
cold stage, based on modern climate values at the north-
ernmost distribution limit of the boreal species Potamogeton
vaginatus in eastern Siberia, according to Krasnoborov
(1988). At about 48,000 '*C yr B.P. and around 35,000 '*C
yr B.P., the occurrence of the temperate aquatic plant
Callitriche hermaphroditica is reliable evidence of mean
summer temperatures higher than 12°C. Moreover, the
finding of the steppe taxon Thesium in the sediments dated
to 48,000 *C yr B.P. suggests July temperatures >15°C
then. Some of the aquatics recorded in the deposits were
also found in cold-stage sediment cores from the shelves of
the Chukchi and Bering Seas in central Beringia (Elias et
al., 1997). Warm summers during the Middle Weichselian
Interstade are suggested by other bioindicators as well.
Periods of prominent aridity and summer temperature
higher than present are implied by steppe insects between
about 48,000-35,000 and 18,000-12,500 '*C yr B.P.
(Kuzmina, 2001; Sher et al., 2001) as well as by pollen
spectra between about 48,000 and 33,000 '*C yr B.P.
(Andreev et al., 2002).

The macrofossil spectra do, however, not reflect
increased summer temperatures during the entire late
Pleistocene. There are samples, especially the samples
dated to ~58,000, 28,100 and 22,100 '"“C yr B.P,
containing no solid warmth indicators but characterized
by dominating arctic pioneer species and decreased
floristic diversity (Fig. 7). Although taphonomical biases
cannot be excluded, these results could point to fluctuating
thermal conditions within the last cold stage. A cooling
effect of local mountain glaciers in the Verkhoyansk
Mountains is conceivable. The composition of Mkh’s
insect spectra (Kuzmina, 2001; Sher et al., 2001) suggests
summer temperatures lower than present between about
25,000 and 18,000 '*C yr B.P. (Kuzmina, 2001; Sher et
al., 2001). High concentrations of Selaginella rupestris
spores in the pollen spectra between about 26,000 and
16,000 "*C yr B.P. indicate denuded and disturbed soils
and dry conditions and were also interpreted as character-
istic of cold and dry climate (Andreev et al., 2002). But,
according to our results the north Siberian summers

continued to be warmer than present during the most part
of the Late Weichselian cold stage. Steppe plants reached
their highest diversity and abundance, and boreal warmth
indicators, such as Potamogeton vaginatus, still occurred,
although more sporadically, likely due to further increased
aridity and the disappearance of aquatic habitats (Fig. 7).

Species of Kobresia meadows and arctic pioneer
communities are extremely cold-resistant and characteristic
of thin or lacking snow cover. Thus, they suggest low snow
accumulation and winters colder than present throughout the
whole last cold stage. This assumption is consistent with
results of an isotope record from Mkh ice wedges (Meyer et
al., 2002), showing that during the last cold stage, stable
heavy isotopes ('®0, *H) in winter precipitation water
reached low values, which are correlated with very cold
winter temperatures. Macrofossils of Kobresia meadows
and arctic pioneer communities were also proven for the last
cold stage at the Seward Peninsula in east Beringia
(Goetcheus and Birks, 2001) and at the Taymyr Peninsula
(Kienast et al., 2001).

Seasonal temperature gradients much larger than at
present, and the negative summer water balance during the
last cold stage point to a climate more continental than
today. This implication is consistent with the late
Pleistocene sea level lowering and the associated extension
of the continent by several hundred kilometers north of the
study site (Fig. 1). The reconstructed climatic changes can
be better understood by comparing modern climate data
from the coastal meteorological station Tiksi with the
inland one in Yansk (68°26'N, 134°47'E), situated 300 km
south of the Bykovsky Peninsula (Fig. 1), and reflecting
continental climate. In Yansk, the mean July temperature is
14°C, 7°C higher than in Tiksi, whereas annual (—14.5°C)
and January (—44°C) temperatures are lower than in Tiksi
by 1° and 11°C, respectively (http://www.meteo.infospa-
ce.ru/). The extremely continental climate in the Yansk
area is apparently favorable for the preservation of relic
steppe communities, which occur there (Fig. 1). It may
reflect the similarity of modern climate and vegetation
there with the climate and vegetation during the last cold
stage on the Bykovsky Peninsula.

If summer temperatures were higher than 12°C, why are
there no macrofossils of boreal trees at the Bykovsky
Peninsula in sediments from the last cold stage? The
probable reasons are the special features of continentality:
aridity and severe winters. Today, the mean annual
precipitation is around 200 mm at the study site. Even if
we assume that the precipitation would have been the same
during the last cold stage, the increased evaporation in
consequence of warmer summers would shift the water
balance towards aridity. Due to extreme continentality
during the Weichselian, we must, however, assume even
lower precipitation than today. Aridity is well indicated in
the macrofossil assemblages by the presence of salt
indicators, steppe plants and indicators of strong ground-
water fluctuations. The relict steppe vegetation in Yakutia
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occurs at south exposed, well-drained, dry and warm
extrazonal sites within the taiga zone (Yurtsev, 1982,
2001). Trees are limited in these areas to north facing
slopes, depressions and ravines, where water accumulates
and evaporation is decreased. Thus, boreal trees require
relatively warm, but more important, moist (mesic) con-
ditions as well, as is apparent from the northward shift of
the treeline in Siberia during the early Holocene (Kreme-
netski et al., 1998; MacDonald et al., 2000), when summers
were still relatively warm but precipitation already increased
(according to Mkh macrofossils in the 7800'*C yr old
sample). Increased precipitation results in a thicker snow
cover, which protects plants with aboveground renewal
buds, such as tree seedlings or dwarf shrubs, against the
effects of very low winter temperatures. In contrast, low
snow cover, snow abrasion and grazing all favor plants with
renewal buds close to or below the ground, such as grasses.
The Biome 4 vegetation model suggests that a snow
thickness of less than 15 cm results in the predominance
of grasses in the arctic (Kaplan, 2001). The thin snow cover
could explain how large populations of mammals could
survive the long arctic winters during the last cold stage
(Andreev et al., 2004). Because of lacking snow cover, the
nutrient rich grasses and forbs would have been available
for herbivores, preserved quasi freeze-dried throughout the
winter.

The absence of boreal trees can be ascribed, to a
certain degree, to the disturbing influence of megaherbi-
vores (Owen-Smith, 1988). The Mkh plant species spectra
show that cold-stage vegetation in northeastern Siberia
was at least locally productive enough to support large
grazers and consequently hunters, who occurred roughly
200 km to the east at the Yana RHS Site (70°43'N,
135°25'E) at ~27,000 '*C yr B.P. (Pitulko et al., 2004).
The numerous mammal bones from Mkh reflect a rich
wildlife at the Bykovsky Peninsula during the last cold
stage (Kuznetsova et al., 2003). Kobresia meadows,
steppe communities and especially floodplain meadows
can be classified as possible pastures for large herbivores.
Floodplain meadows are the most productive vegetation
type in central Yakutian alas regions today, intensively
used for pastures and haymaking. The abundant occur-
rence of C. duriuscula in the fossil assemblages is
particularly interesting in this context because that species
indicates degradation of steppe vegetation by overgrazing
and trampling (Hilbig, 1995).

The available macrofossil records do not allow the
conclusion that the described last cold-stage vegetation
complex was widespread over whole northern Siberia and
the exposed arctic shelves. For the time being, the Mkh
macrofossil record must be considered as local vegetation.
It is difficult to say whether the high percentage of arctic
(or alpine) pioneer species is characteristic of Beringia’s
lowland vegetation. It is also possible that remains of these
taxa were transported from the foothills of the Kharaulakh
Range to the Bykovsky Peninsula during snow melt and

are consequently of rather alpine origin. Future inves-
tigations of different permafrost sequences around the
Laptev Sea coasts shall answer this question.
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