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ABSTRACT

The signature of solar irradiance variations on decadal-to-centennial climate variability is analysed by means of statistical
analysis of long-term instrumental, historical, and proxy data sets. Solar variations associated with the Schwabe, Hale,
and Gleissberg cycles are detected by their spatial patterns in sea-surface temperature and sea-level pressure. Different
statistical methods for instrumental and proxy data show that the mode related to solar irradiance fluctuations on multi-
decadal time scales (Gleissberg cycle) is distinct from the Atlantic multi-decadal mode associated with ocean circulation
changes. From this, one can infer the degree to which solar variability has contributed to long-term temperature variations
during the instrumental and pre-instrumental era. Copyright  2004 Royal Meteorological Society.
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1. INTRODUCTION

The radiation output from the Sun does vary on a wide range of time scales, from days to billions of years.
Beyond the very slow evolution of the Sun, i.e. as a hypothesis of stellar evolutionary theory on a 1010

year time scale, there is direct observational evidence for shorter term variations in solar irradiance linked to
sunspots. Sunspots are huge magnetic storms that show up as cool (dark) regions on the Sun’s surface. They
occur in cycles, with their number and size reaching a maximum approximately every 11 years (Schwabe
cycle). The length of the Schwabe cycle defined through the interval between successive sunspot maxima
is modulated over a period of about 70–100 years (Gleissberg cycle) (Hoyt and Schatten, 1997; Beer et al.,
2000). As an example, during the climax of the Little Ice Age (1645–1715) there were few sunspots, the so-
called Maunder Minimum (Hoyt and Schatten, 1997). Since sunspots are easily visible and there are records
of their abundance extending back to the early 1600s, sunspots are the most widely used proxy for solar
activity reconstructions.

The variations of total solar irradiance associated with the 11 year sunspot cycle have been assessed
with some accuracy using satellite data for more than 20 years. The estimation of earlier solar irradiance
fluctuations is via a calibration of satellite measurements. Several recent reconstructions estimate variations in
solar irradiance of about 0.24 to 0.30% on decadal to centennial time scales (Lean et al., 1995, 1997; Hoyt and
Schatten, 1993), compared with a 0.1% modulation during the 11 year solar cycle measured from satellites.

Modelling studies have applied the reconstructions of Lean et al. (1995) and Hoyt and Schatten (1993)
in order to estimate the effect of solar irradiance fluctuations on climate. Cubasch et al. (1997) performed
simulations with a global coupled ocean–atmosphere circulation model to study the potential impact of solar
variability on climate. Results indicate that the near-surface temperature simulated by the model is dominated
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by the long periodic solar fluctuations (Gleissberg cycle), with global mean surface temperatures varying by
about 0.5 K. Their results show that solar variability and an increase in greenhouse gases both, to a first
approximation, induce a comparable pattern of surface temperature change, i.e. an increase of the land–sea
contrast. Compared with a more uniform warming associated with the increase in greenhouse gases, the
solar-induced warming pattern is more centred over the subtropics through an increased flux of shortwave
radiation in cloud-free regions.

Haigh (1999) presents atmospheric circulation model results for the influence of the 11 year solar cycle on
the climate of the lower atmosphere. In her model, solar forcing is represented by changes in both incident
irradiance and stratospheric ozone concentrations, where the latter has the stronger impact. A pattern of
response is found in which the tropical Hadley cells weaken and broaden, and the subtropical jets and mid-
latitude Ferrel cells move poleward for high irradiance. The changes in dynamics cause subtropical warming
and a characteristic vertical band structure of mid-latitude temperature changes.

A recent mechanistic picture of solar radiation for climate variability is provided by modelling studies
of Shindell et al. (2001b). In their atmospheric model coupled to a mixed layer ocean they find a
tropical/subtropical warming which induces a warmer tropical upper troposphere via moist convective
processes. This leads to an increased latitudinal temperature gradient in the stratosphere, resulting in
enhanced lower stratosphere westerly winds, and causes increased angular momentum transport to high
latitudes and enhanced tropospheric westerlies. The dynamical result is attributed to an interaction between
ultraviolet radiation and ozone in the stratosphere (Balachandran et al., 1999) and a downward propagation
of stratospheric events (Baldwin and Dunkerton, 1999; Christiansen, 2000).

Here, we address the question of whether solar irradiance variations can be detected in the instrumental
record, historical, and high-resolution proxy data sets. Special emphasis is placed on the pattern related to
natural climate variability and solar variability in order to identify their relative importance for observed
multidecadal temperature variations. Varved sediments that accumulate within the bottom anoxic waters
provide a detailed record of climate change on annual to multi-centennial time scales. These records provide
evidence of a strong decadal to centennial climate variability (Black et al., 1999).

This paper is organized as follows. The data are introduced in Section 2. Results are presented in Section 3
and discussed in Section 4. Finally, conclusions are given in Section 5.

2. DATA

The approach is based on statistical data analysis of historical and instrumental surface data. We want to
address the question as to which pattern in these surface quantities is associated with solar forcing variations.
The solar irradiance signature (Lean et al., 1995) is obtained from information contained in long instrumental
data sets for sea-surface temperature (SST) given by Kaplan et al. (1998), Jones (1994), Parker et al. (1994,
1995), and for sea-level pressure (SLP) given by Trenberth and Paolino (1980), Jones (1987), and Luterbacher
et al. (2002).

The SST data set used for most applications in this manuscript covers the period 1856–1991 (Kaplan et al.,
1998). The spatial resolution is 5° × 5° and the data are now updated to the period 1856–2000. Large-scale
atmospheric circulation pattern anomalies over the Northern Hemisphere are based on the SLP historical data
set described by Trenberth and Paolino (1980). This data set is based on historical daily SLP maps from
various sources. It has a 5° × 5° horizontal resolution and covers the period 1899–2000. Furthermore, the
Climatic Research Unit (CRU) data set, containing monthly mean SLP data on a 5° latitude by 10° longitude
grid-point basis, has been utilized. The sources of the original chart data are given in Jones (1987) and are
further discussed by Basnett and Parker (1997).

In order to cover the long time scales, reconstructions were applied of gridded monthly SLP fields back to
1659 for the eastern North Atlantic–European region (30–70 °N; 30 °W–40 °E) of Luterbacher et al. (2002).
This reconstruction is based on the combination of early instrumental station series and documentary proxy
data from Eurasian sites. Under the assumption of stationarity in the statistical relationships, a transfer function
derived over the 1901–90 period was used to reconstruct the 500 year large-scale SLP fields.
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As additional data, a palaeoclimate proxy time series covering the period AD 1165–1990 (Black et al.,
1999) is used in the analysis. This time series provides a millennial record of ocean–atmosphere variability
in the North Atlantic basin and originates from Cariaco basin (10 °N, 64 °W), a large and deep ocean basin
located on the continental shelf of Venezuela (Black et al., 1999). The record contains age and abundance
(number of individuals per gram of sediment) for the planktonic foraminifera Globigerina bulloides. The age
model is based on a combination of varve counts, 210Pb, and accelerator mass spectrometry 14C dates.

3. RESULTS

3.1. Solar fingerprint in instrumental data

The solar irradiance reconstruction of Lean et al. (1995) is displayed in Figure 1(a). Peak times of solar
irradiance are seen around 1750, 1850 and 1950, with amplitudes higher at each peak. Low-energy periods
are centred near 1700, 1810, 1900, and, less clearly, near 1970. The power spectrum of this time series is
calculated using the multi-taper method (MTM; Thompson, 1982). The spectral analysis of the Lean et al.
(1997) solar variability shows a trend and periodicities at about 11, 20, and 80 years (Figure 1(b)). This
spectral composition explains more than 95% of solar variance. The specific cycles are called the Schwabe
cycle (11 years), the Hale cycle (22 years), and the Gleissberg cycle (70–100 years). Motivated by these
frequencies, three distinct time scales are considered separately in the analysis: 9–15 years, 17–30 years and
longer than 30 years.

For data processing, boreal winter (December, January, February (DJF)) and annual means were calculated.
The time series and observational data were band-pass filtered in the above-defined frequency intervals. No
lag is applied. Prior to analysis the individual time series were detrended by removing the linear trend and
normalized to unit variance. For the statistical analysis, statistical routines developed at the Max-Planck
Institute for Meteorology in Hamburg were applied. Their background and several applications are described
in textbooks (e.g. von Storch and Zwiers, 1999). For the calculation of degrees of freedom, serial correlation
in the local time series has been taken into account (e.g. von Storch and Zwiers, 1999). Serial correlation
occurs when residuals from adjacent measurements in a time series are not independent of one another.

3.1.1. The 9–15 year time scale. The correlation map between solar irradiance and SST on this time scale
is shown in Figure 2(a). Significant correlation at the 90% significance level is found for most points where
the absolute value of the correlation for SST is above 0.35, which is mainly confined to regions in the
Pacific Ocean (Figure 2(a)). The correlation maps with SLP data sets of Trenberth and Paolino (1980) and
Luterbacher et al. (2002) show rather low correlation values and are not shown here.

3.1.2. The 17–30 year time scales. The correlation maps between solar irradiance and SST, and between
solar irradiance SLP on the bi-decadal time scale are shown in Figures 2(b) and 3 respectively. For SST
(Figure 2(b)), negative correlations in the central and western North Pacific Ocean, subtropical North Atlantic
and eastern North Atlantic are detected in a similar way as for the decadal band (Figure 2(a)). Significant
correlation at the 90% significance level is found for most points where the absolute value of the correlation
for SST is above 0.6 (Figure 2(b)). The corresponding map with a 95% significance level (not shown) does
not strongly affect the extension of the striped areas in Figure 2(b).

The correlation map of SLP based on Jones (1987) shows a coherent large-scale annular pattern
(Figure 3(a)). High values of solar radiative forcing are associated with a Northern Hemisphere circulation
pattern with a low-pressure system over Europe and high pressure over the Arctic (Figure 3(a)), projecting
partly onto that of the Arctic oscillation (Thompson and Wallace, 1998) in its negative phase. Consistent with
this, warming over the Labrador Sea is related to the weaker influence of cold air from the northwest. The
Aleutian low in the North Pacific is deepened in the 17–30 year frequency interval. The anomalous low-
pressure systems in the North Pacific and Atlantic Oceans indicate cold air advection producing negative SST
anomalies in the western parts of the oceans similar to that associated with the Arctic oscillation (Thompson
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Figure 1. (a) Time series of solar irradiance S according to the reconstruction of Lean et al. (1998). (b) The MTM power spectrum of
the detrended solar irradiance time series represented in (a). Best-fit noise background and the 95% significance level relative to the

null hypothesis of first-order autoregressive red-noise process are shown as dashed and dotted lines respectively

and Wallace, 1998). A consistent SLP pattern over Europe is indicated in Figure 3(b) by the analysis of the
Luterbacher et al. (2002) data set.

3.1.3. Signature for time scales longer than 30 years. The correlation map between solar irradiance and
SST (Kaplan et al., 1998) on this time scale is shown in Figure 2(c). For the multi-decadal time scale, the
most significant temperature changes occur in the Pacific Ocean, with alternating bands of opposite signs,
and in several regions of the Atlantic Ocean (Figure 2(c)). This structure is very similar to the correlation
pattern in the decadal (Figure 2(a)) and bi-decadal (Figure 2(b)) bands.

3.2. Separating multidecadal modes

In order to evaluate the global variability pattern, we applied an empirical orthogonal function (EOF)
analysis (e.g. von Storch and Zwiers, 1999) to the global SST data set provided by Kaplan et al. (1998).
Prior to the calculation, a 25 year running mean was applied to the SST data. The first EOF (Figure 4(a)) has
a very similar structure to the correlation map for solar irradiance and SST (Figure 2(c)), including a small
centre of negative correlations at about 40 °N in the North Atlantic.

The second EOF (Figure 4(b)) shows a monopolar structure for the North Atlantic resembling a multi-
decadal Atlantic mode (Deser and Blackmon, 1993; Delworth and Mann, 2000; Grosfeld et al., 2004).
This multidecadal mode of climate variability is distinct from climate variability related to solar irradiance

Copyright  2004 Royal Meteorological Society Int. J. Climatol. 24: 1045–1056 (2004)
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(a)

(b)

(c)

Figure 2. (a) Correlation map of solar irradiance (Lean et al., 1995) with SST (Kaplan et al., 1998). Data are linear detrended and
filtered in the (a) 9–15, and (b) 17–30 frequency interval prior to the correlation. For (c), the data were detrended and smoothed with a
31 year running mean filter prior to the correlation. For (a) and (b), areas are striped where correlations exceed the 90% confidence level

variations. The signature of the SST pattern (Figure 4(b)) resembles the interhemispheric seesaw pattern
associated with the Atlantic thermohaline circulation (Crowley, 1992; Stocker, 1998).

3.3. Solar fingerprint in proxy data

Motivated by the different modes identified by the EOF analysis, different multi-decadal time components
and spatial signatures are calculated from the high-resolution Cariaco proxy record covering the last 800 years
(Black et al., 1999). We have used singular spectrum analysis (SSA; Vautard and Ghil, 1989) to extract the
dominant oscillatory components from time series. SSA spectral analysis is basically an EOF analysis in
the time domain. As a first step, the long-term trend is removed by a preliminary SSA on the time series.

Copyright  2004 Royal Meteorological Society Int. J. Climatol. 24: 1045–1056 (2004)
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(a)

(b)

Figure 3. Correlation map of solar irradiance (Lean et al., 1995) and winter (DJF) SLP in the 17–30 year frequency band. (a) SLP for
the period 1873–1997 (Jones, 1987). (b) SLP for the period 1659–1997 (Luterbacher et al., 2002). Areas are striped where correlations

exceed the 90% confidence level

A new SSA is applied to the resulting time series using a 300 year window in order to resolve the multi-
decadal time scale. The analysis reveals that the first two periodic components obtained from the SSA
have periods of 250 and 125 years. The third and fourth components show multi-decadal variability with
periods of 83 years and 67 years explaining 8% and 6% of the total variance respectively (Figure 5). The
properties of the multi-decadal components show that they are very stable periodic components because: the
two eigenvalues associated with each component are very close to each other in the eigenvalue spectrum,
the pairs of eigenvalues associated with each component are well separated from each other, and the two
time-EOFs associated with each periodic component are in quadrature.

In order to obtain the corresponding spatial pattern, the correlation maps of the 83 year SSA component
(Figure 5(a)) and 67 year SSA component (Figure 5(b)) with annual mean SST (Kaplan et al., 1998) are
calculated. Prior to the calculation, a 25 year running mean has been applied to the SST data. Figure 6
displays the maps for the different modes, where a 30 year lag has been introduced in both panels in order
to get the same phase as in the EOF analysis (Figure 4).

Copyright  2004 Royal Meteorological Society Int. J. Climatol. 24: 1045–1056 (2004)
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(b)

(c)

(a)

Figure 4. EOF analysis of global annual mean SST provided by Kaplan et al. (1998). Prior to the analysis, the data were detrended
and a 25 year running mean has been applied. (a) EOF1 explaining 39% of the variance. (b) EOF2 explaining 30% of the variance.

(c) Principal components for EOF1 (solid) and EOF2 (dashed)

4. DISCUSSION

4.1. Temperature signal

Taking the hemispheric temperature average, one can find a good match between the long-term average
surface temperature and the solar cycle; for a review, see Waple (1999). This close correlation could account
for the average surface temperature changes in the past, and could partly explain the cold periods around
1700, 1810, 1900, the anomalous warm 1940s and the slight cooling phase between 1950 and 1975 (Jones,
1994). The climate sensitivity is estimated to be a temperature anomaly of 0.2 K per 0.2 W m−2 solar forcing
reaching the surface. Therefore, the observed temperature variations are rather high and cannot be explained
by a direct radiation effect. Indeed, our analysis suggests that the influence of the solar forcing onto climate
is via atmospheric modes of variability.

Copyright  2004 Royal Meteorological Society Int. J. Climatol. 24: 1045–1056 (2004)
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Figure 5. The thin black lines in both panels show the detrended time series of planktonic foraminifera Globigerina bulloides per gram
of sediment from Cariaco basin (Black et al., 1999). The thick solid lines are the SSA period components with (a) 83 year period
explaining 8% of the total variance, and (b) 67 year period explaining 6% of the total variance. They are obtained as the third and

fourth components of the SSA analysis respectively

We detect the Schwabe, Hale, and Gleissberg cycles in the solar irradiance forcing. It is found that the
patterns of SST associated with these cycles are similar when considering different time scales (Figure 2).
For all time scales considered, the SST maps over the Pacific area are consistent with a poleward shift of
the subtropical jet and a horizontal expansion, but weakening of the Hadley cell (Figure 2) consistent with
modelling studies (Haigh, 1999).

The first EOF for multi-decadal time scales largely resembles the solar fingerprint. The principal component
of the first EOF (Figure 4c) suggests that the warming trends since the 1970s and prior to 1940 are in accord
with the Gleissberg cycle (Hoyt and Schatten, 1997). The correlation maps suggest that the multi-decadal
variability associated with solar irradiance is not confined to the Northern Hemisphere (Figure 2(c)), with
modelling studies raising possible links with the tropical Pacific Ocean (Shindell et al., 2001a,b). Even a weak
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(a)

(b)

Figure 6. (a) Correlation map of (a) the 83 year and (b) 67 year SSA components (Figure 5) with annual mean SST (Kaplan et al.,
1998) covering the period 1856–1997. The SST data are detrended prior to the correlation. For both panels, a 30 year lag has been

introduced in order to get the same phase as in Figure 4

increase of SST due to direct solar forcing may enhance convection. Consequently, the Walker circulation
is increased and the associated surface westward anomalous wind may be responsible for the negative SST.
An increased Walker cell would be consistent with the out-of-phase relation between the Walker and Hadley
cells (Wang and Weisberg, 1998).

The second EOF (Figure 4(b)) has a distinct pattern from the solar fingerprint (Figures 2 and 4(b)).
This mode is characterized by the interhemispheric seesaw temperature pattern (Crowley, 1992; Stocker,
1998; Lohmann, 2003) associated with the Atlantic thermohaline circulation. The multi-decadal mode is
characterized by a monopolar SST pattern in the North Atlantic (Deser and Blackmon, 1993; Delworth and
Mann, 2000). In considering the fields of SLP, an anomalous cyclonic circulation was present in the atmosphere
during the warm period and an anomalous anticyclonic circulation was present during the cold period. Unlike
the dipole pattern seen in the Arctic oscillation signature, the wind anomalies occurred downstream from the
SST anomalies. Thus, it appears that the warming is a result of basin-scale forcing independent of the local
wind forcing. An additional indication for the Atlantic origin of this mode comes from an EOF analysis for
the Atlantic region, where this mode becomes the dominant mode (Dima and Lohmann, 2004b).

A sediment record from the Cariaco basin in the southern Caribbean provides a millennial record of
ocean–atmosphere variability in the North Atlantic basin (Black et al., 1999). These records with yearly
resolution exhibit strong decadal to centennial climate variability. Distinct modes of documented variability
are obtained though our statistical analyses. The patterns have a very similar structure to the maps of solar
irradiance and SST (Figures 2(c) and 4(a)) and multi-decadal Atlantic mode (Figure 4(b)). This suggests that
a distinction between these two multi-decadal modes of climate variability is possible in the spatial domain
(through EOF analysis) and in the temporal domain (through SSA).

Copyright  2004 Royal Meteorological Society Int. J. Climatol. 24: 1045–1056 (2004)
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4.2. SLP signal

For the decadal time scale, SLP anomalies over large parts of the North Atlantic Ocean are not significantly
correlated with solar irradiance (not shown). These results suggest that climate variability on this time scale
could be masked by other processes, such as ocean–atmosphere interactions in the North Atlantic realm (Deser
and Blackmon, 1993; Dima et al., 2001; Dima and Lohmann, 2004a). The origin of the ocean–atmosphere
mode is clearly distinct from the solar mode. However, it appears as the spatial SLP structure related to the
North Atlantic oscillation/Arctic oscillation, which is modulated by the solar cycle (Kodera, 2002).

Another explanation for the weak 11 year solar signal is based on the Holton and Tan (1980) mechanisms in
modulating the stratospheric circulation and polar vortex due to the quasi-biennial oscillation (Labitzke, 1987;
Loon and Labitzke, 1999; Loon and Shea, 2000). One may also note that model simulations show a weak
response to the 11 year cycle (e.g. Shindell et al., 2001a). These authors conjecture that the climate system
may integrate the solar forcing in such a way that the instantaneous response at 11 years is weaker than
the response on multidecadal-to-centennial time scales. In the bi-decadal frequency band, the SLP pattern
(Figure 3) shows an annular structure with centres north of the Arctic oscillation mode (Thompson and
Wallace, 1998), suggesting a polar vortex mechanism. A dynamical link between solar irradiance and the
stratospheric polar vortex has been attributed to an interaction between ultraviolet radiation and ozone in the
stratosphere (Balachandran et al., 1999).

5. CONCLUDING REMARKS

The radiation variations are detected in many climate records (Hoyt and Schatten, 1993, 1997) with possible
large-scale consequences (Stanhill and Cohen, 2001). Statistical analyses of instrumental, historical, and high-
resolution proxy data have been used to investigate systematically the effects of solar irradiance variations on
climate variability modes. Consistent climate variability patterns associated with solar irradiance variations
over the last few centuries are examined through statistical (correlation, EOF, and SSA) methods.

SST patterns associated with the Schwabe, Hale, and Gleissberg cycles in the solar irradiance forcing show
a characteristic band structure over the Pacific Ocean. This structure is consistent with a poleward shift of
the subtropical jet and weakening of the Hadley cell (Haigh, 1999). It is shown that the spatio-temporal
patterns associated with the solar irradiance forcing are consistently recorded in sediment records from the
Cariaco basin in the southern Caribbean covering the last millennium (Black et al., 1999). We find that the
Atlantic multi-decadal mode (Deser and Blackmon, 1993; Delworth and Mann, 2000; Dima and Lohmann,
2004b), characterized by an interhemispheric seesaw pattern, is clearly separated from the solar fingerprint.
The distinction of these two multi-decadal modes of climate variability is possible in the spatial domain
(through EOF analysis) and in the temporal domain (through SSA).

Our study relies on historical and instrumental data sets, and on measurements of solar irradiance. Therefore,
the results depend strongly on data coverage and quality. By using different data set and methods, we try
to overcome this difficulty. Differences between the patterns are possibly due to other modes associated
with internal climate variability masking the solar fingerprint. For example, the dominant Atlantic mode on
decadal time scales is associated with the Atlantic quasi-decadal mode (Deser and Blackmon, 1993; Dima
and Lohmann, 2004a) originating from atmosphere–ocean interactions (Dima et al., 2001). The analyses of
instrumental, historical, and proxy data suggest a separation between the climate system response to solar
forcing and natural climate variability linked to multi-decadal thermohaline circulation variations.

Cubasch et al. (1997) argued that the observed temperature rise over the most recent 30 and 100 years is
larger than the trend in the solar forcing simulation for the same period, indicating a strong likelihood that,
if the model forcing and response is realistic, other factors have contributed to the observed warming. Since
the pattern of the recent observed warming agrees better with the greenhouse warming pattern than with the
solar variability response, it is likely that one of these factors is the increase of the atmospheric greenhouse
gas concentration. Separating different climate modes (Hasselmann, 1993) is essential for the evaluation and
detection of the possible influence of solar irradiance variations on climate (e.g. Hansen and Lacis, 1990;
Hegerl et al., 1997). For the examination of the solar–climate link, one needs long-term measurements (e.g.

Copyright  2004 Royal Meteorological Society Int. J. Climatol. 24: 1045–1056 (2004)
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Gilgen et al., 1998) and modelling work; this is particularly so for the upper atmosphere, where the solar
influence on climate is strongest (e.g. Haigh, 1999; Shindell et al., 2001a,b). A logical next step would be the
identification and separation of the spatio-temporal pattern linked to the anthropogenic effect of greenhouse
gas concentrations in the atmosphere from internal climate variability and solar forcing, which is important
for the interpretation of climate variability for the past, present, and future.
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