
Natural Interpolation of Time Series

Lars Kindermann Achim Lewandowski

RIKEN Brain Science Institute, Japan ÖFAI
Lab for Mathematical Neuroscience Austrian Research Institute for Artificial Intelligence

 lars.kindermann@reglos.de achim@oefai.at
 www.reglos.de/kindermann www.oefai.at

Abstract

To interpolate data which is sampled in finite, discrete time steps into a continuous signal e.g. for resampling, nor-
mally a model has to be introduced for this purpose, like linear interpolation, splines, etc. In this paper we attempt
to derive a natural method of interpolation, where the correct model is derived from the data itself, using some
general assumptions about the underlying process. Applying the formalism of generalized iteration, iteration sem-
igroups and iterative roots we attempt to characterize a method to find out if such a natural interpolation for a
given time series exists and give a method for it’s calculation, an exact one for linear autoregressive time series
and a neural network approximation for the general nonlinear case.

1 Introduction

Let be an auto regressive time series: . We will not deal here with finding ,
i.e. predicting the time series, instead we assume is already known or already approximately derived from the
given data. We will attempt to embed the discrete series of , into a continuous function ,

. To clarify the idea we present the method at first for the case that the timeseries is generated totally deter-
ministically () by an underlying autonomous dynamical system. Later we will consider the influences of
additional external inputs and noise.

The time evolution of any autonomous dynamical systems is represented by a solution of the translation equation
[1],

(1)

where is an state vector representing an initial condition and are arbitrary time intervals. For continuous
time dynamical systems this equation holds for every positive . If we assume the given time series is a discrete
time sampling of an underlying continuously evolving signal, we have to solve (1) under the conditions

 and , where is the discrete time mapping represented by the data. (Without loss of
generality we can assume the sampling rate of the discrete time data to be one, which will result in a nice and very
intuitive formalism.)

To double the sampling rate for example, (1) becomes . Substituting we

get , the functional equation for the iterative root of the mapping [3].

By writing formally the connection to iteration theory becomes visible: Time evolution of dis-
crete time systems can be regarded as the iteration of a time step mapping function (iterative map) and this con-
cept extends to continuous time dynamical systems by means of generalized or continuous iteration, allowing for
non-integer iteration counts. The following mathematical problems appear [3,4]:

• For a given function , does there exist the iteration semigroup ?,
• Is the solution unique?
• How to calculate it explicitely or numerically.

To apply this theory usually, has to be a complete state vector of the dynamical system. This means that has
to be a function of the last state only: . When also depends on earlier values of the time series

, in order to obtain a self-mapping we introduce the function : which maps the vector

xt xt f xt 1– xt 2– … xt n–, , ,() εt+= f
 f

xt t 0 1 2 …, , ,= x t()
t R

+∈
εt 0=

Φ x0 t1 t2+,() Φ Φ x0 t1,() t2,()=

x0 t1 t2,
t

Φ x 0,() x= Φ x 1,() f x()= f

 f x() Φ Φ x
1
2
---, 

  1
2
---, 

 = ϕ x() Φ x
1
2
---, 

 ≡

ϕ ϕ x()() f x()= f

Φ x t,() f
 t

x()≡

 f f
 t

x f
xt f xt 1–()= f

xt 2– … xt n–, , F R
n

R
n→

RIKEN BRAIN SCIENCE INSTITUTE BSIS TECHNICAL REPORTS
No. 03-3, May 2003 - Rev 2, Apr 2004

http://www.brain.riken.jp/labs/bsis/TR/03-3.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Electronic Publication Information Center

https://core.ac.uk/display/11754361?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.oefai.at
http://reglos.de/kindermann
http://reglos.de/kindermann
http://www.alewand.de/
http://www.brain.riken.go.jp/
http://www.mns.brain.riken.go.jp/
mailto:lars.kindermann@reglos.de
mailto:achim@oefai.at
mailto:achim@oefai.at
http://www.oefai.at
http://www.oefai.at
http://www.oefai.at/
http://www.oefai.at/
http://www.brain.riken.jp/labs/bsis/TR/

 to

with . Except for the first element this is a trivial time shift operation, each element
of is just replaced by its successor. But because is a self mapping within a -dimensional space now, time
development can be calculated by iterating and we can try to find the generalized iteration with non-integer
iteration counts to find a time continuos embedding , the continuous iteration semigroup of and extract a
function from this [2].

2 Linear Case

The idea is best demonstrated for the linear case, where it’s application simplifies and unifies several problems.

For a linear autoregessive time series AR(n) model with , the mapping can be written as a

square matrix

with the coefficients in the first row and the lower subdiagonal filled with ones. Then we can compute
 and the discrete time evolution of the the system can now be calculated using the matrix powers

.

This autoregressive system is called linear embeddable if the matrix power exists also for all real . This
is the case if can be decomposed into with being a diagonal matrix consisting of the eigen-
values of and being an invertible square matrix which columns are the eigenvectors of . Additionally
all must be non-negative to have a linear and real embedding, otherwise we will get a complex embedding.

Then we can obtain with .

Now we have a continuous function and the interpolation of the original time series consists
of the first element of .

In case there is also a constant term, i.e. the mean is not zero, , we just have to append a con-

stant one to all the vectors and take

.

A special case is , the square root of a matrix, which solves the matrix equation . It resem-
bles the iterative root of linear functions and corresponds to a doubling of the sampling rate.

A few lines of Maple code can automate this procedure both for symbolic and numeric expressions. A sample
worksheet is available at the authors webpage.

xt 1– xt 1– … xt n–, ,=

xt xt xt 1– … xt n 1–()–, , ,=

xt f xt 1– xt 2– … xt n–, , ,()=
x F n

F
F

t
F

x t()

xt akxt k–

k 1=

n

∑= F

F

a1 a2 … an

1 0 0 0

0 1 0 0

0 0 1 0

=

ak
xt F xt 1–⋅=
xt n+ F

n
xt 1–⋅=

F
t

t R
+∈

F F S A S
1–⋅ ⋅= A

λ i F S F
λ i

F
t

S A
t

S
1–⋅ ⋅= A

t
λ1

t
0 0

0 … 0

0 0 λn
t

=

x t() F
t

x0⋅= x t()
x

xt akxt k–

k 1=

n

∑ b+=

xt xt xt 1– … xt n 1–()– 1, , , ,=

F

a1 a2 … an b

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 0 1

=

F
1 2⁄

F
1 2⁄

F
1 2⁄⋅ F=

3 Examples

We will now provide some simple examples to demonstrate this formalism.

3.1 One dimensional linear case

The time series given by some and simply doubles every time step. The natural interpolation we
immediately get by applying the former formalism in the trivial one dimensional case is , which is of
course exactly what we expect: exponential growth. But a little change makes the problem much more difficult: If

 we expect a mixture of constant and exponential growth, but what is the exact continuous law?

Take then the series is generated by . We get immediately by eigenvalue decomposition

and for the first component (which equals for).

We don’t have to consider about stability or stationarity of the AR(1) model here but note that to obtain a com-
pletely real valued function , has to be positive. Later we will discuss about the meaning of such cases with
complex embeddings, but for short it means that there is no one-dimensional continuous time dynamical system
that can generate such timeseries. In the linear case this should be clear because a negative implies oscillatory
behavior of . This means, some initial condition won’t be enough to determine the continuation of the tra-
jectory, it could be on the rising or falling slope. The underlying dynamical system needs to have one more hidden
dimension to allow embedding. The other dimension can be represented by the imaginary part of which will
vanish at all integer times . But taking only the real part will still result in a valid interpolation of the given
series, the observable of the system.

This is such an embedding of the AR(2) process with . Circles mark the

time series , the left graph shows the real part of , our natural interpolation, the imaginary part is on the

right.

3.2 Two dimensional linear case

The well known Fibonacci series , , can be generated in this manner by

 and . By eigenvalue decomposition of we get

x0 xt 2xt 1–=
x t() 2

t
x0=

xt axt 1– b+=

xt xt 1,[]= F a b

0 1
=

x t() F
t
x0 SA

t
S

1–
x0 = =

1 1

1 a–
b

------------ 0

1 0

0 a
t

0
b

1 a–

1
b

a 1–

x0

1
=

x t() a
t
x0 b

a
t

1–
a 1–
-------------+= ax0 b+ t 1→

x t() a

a
x t() x0

x t()
t

xt
1
2
---xt 1––

1
3
---xt 2–

1
2
---+ += x0 x1 1= =

xt x t()

x0 0= x1 1= xt xt 1– xt 2–+=

F 1 1

1 0
= x1 1 0,[]= F

xt 1+ F
t
x1 SA

t
S

1–
x1 = =

1 5+
2

---------------- 1 5–
2

1 1

1 5+
2

---------------- 
 

t
0

0 1 5–
2

---------------- 
 

t

1
5

------- 1
2
--- 1

2 5
----------–

1
5

-------–
1
2
--- 1

2 5
----------+

1

0
=

which turns out to evaluate exactly to Binet’s famous formula for the Fibonacci series in the first component

 [5].

Because the second eigenvalue is negative, a real linear continuous time embedding does not exist and takes
complex values on non-integer . Figure 2 shows real and complex part of .

4 Nonlinear Case

So far we considered only linear dependencies of the past which could easily be mapped to matrix expressions.
The problem becomes much more complicated if we allow for arbitrary . Even for one dimension this cannot be
solved analytically in the general case, so we use neural networks to compute approximations for fractional iter-
ates of arbitrary functions [7].

4.1 One dimensional nonlinear systems

The general solution of the real valued translation equation
with being continuous and strictly monotonic in and is given by . If the discrete
time mapping is given, this is Abel’s functional equation . If has a fix
point this can further be transformed to Schröder’s functional equation , the eigenvalue
problem for nonlinear functions. In those cases when either of these equations can be solved for the unknown
function , it is immediately possible to obtain the embedding by [2].

This can be easily solved for example in the linear case: If we take and initial value the time step
mapping is , we get the Abel type functional equation or ,
which is solved by . So we get for the continuous embedding the expected result again, exponential
growth

.

However, this analytical method is limited to a small selection of functions and it can be shown that there exist
embeddings for a much wider range of mappings which cannot be calculated analytically yet. Furthermore the
theory so far is developed mainly for real or complex valued functions, solving Abel or Schröder type functional
equations in higher dimensions is in general beyond reach.

But simple neural networks can be used to find precise approximations for those embeddings as well [7,8,9].

Take , the iterated logistic map, which is a favorite textbook example for the emergence of
chaotic behavior within a simple dynamical system. However, this is a discrete time system, so the question
should arise naturally if it is possible to embed the into continuous trajectories which now obey the func-
tional equation for any non-integer . Or even more general, is there any continuous
time system that takes the same values at integer times? Iteration theory proofs that the answer is no if
[6], but this could be expected also by the theorem of Poincare-Bendixon, which implies that chaotic behavior is
impossible in continuous time systems of less than three dimensions. To obtain a continuous embedding of this
series, we again have to introduce some hidden dimension, like allowing complex values for x, in iteration theory
these generalized solutions are called phantom roots of functions [1].

4.2 Multidimensional nonlinear system

We took a time series of yearly snapshots from a discrete non linear Lotka-Volterra type predator - prey system (x
= hare, y = lynx) as training data.

xt
1

5
------- 1 5+

2
---------------- 
 

t 1 5–
2

---------------- 
 

t
–=

x t()
x x t()

 f
 f

Φ x0 t1 t2+,() Φ Φ x0 t1,() t2,()= Φ: R R R→×
Φ x t Φ x t,() ϕ 1– ϕ x() t+()=

Φ x 1,() f x()= f x() ϕ 1– ϕ x() 1+()= f
 f x() ϕ 1–

cϕ x()()=

ϕ f
t
x() ϕ 1– ϕ x() t+()=

xt axt 1–= x0
 f x() ax= ax ϕ 1– ϕ x() 1+()= ϕ ax() ϕ x() 1+=

ϕ x() xalog=

 f
t
x() a

xa 0log t+
x0a

t
= =

xt 1+ 4λxt 1 x– t()=

xt x t()
x t 1+() 4λx t() 1 x t()–()= t

λ 3 2⁄>

From these samples only we calculated the monthly population by use of a neural network based method to com-
pute iterative roots and fractional iterates with a pseudo newton algorithm [9].

This figure shows the yearly training data as circles and the interpolated monthly values. Additionally the fore-
casted values for the next 12 months are shown, together with the true value after 1 year which was excluded from
model fitting.

The given method provides a natural way to estimate not only the values over a year, but also to extrapolate arbi-
trarily smooth into the future.

5 Discussion and Outlook

The method demonstrates that there is a close relation between prediction and interpolation. A necessary condi-
tion for the existence of a natural interpolation of a time series is predictability. If there are random influences and
we require that the values coincide with for integer , we can still use the embedding function to get a
near fit and add an additional interpolation method for the residuals . This has again to be selected freely
of course, but it minimizes the amount of arbitrariness involved in interpolating.

References
1. G. Targonski: Topics in Iteration Theory. Vandenhoeck und Ruprecht, Göttingen (1981)
2. M.C. Zdun: Continuous iteration semigroups. Boll. Un. Mat. Ital. 14 A (1977) 65-70
3. M. Kuczma, B. Choczewski & R. Ger: Iterative Functional Equations. Cambridge University Press, Cambridge

(1990)
4. K. Baron & W. Jarczyk: Recent results on functional equations in a single variable, perspectives and open prob-

lems. Aequationes Math. 61. (2001), 1-48
5. R.L. Graham, D.E. Knuth & O. Patashnik: Concrete Mathematics. Addison-Wesley, Massachusetts (1994)

6. R.E. Rice, B. Schweizer & A. Sklar: When is f(f(z)) = az2+bz+c for all complex z? Amer. Math. Monthly 87
(1980) 252-263

7. L. Kindermann: Computing Iterative Roots with Neural Networks. Proc. Fifth Conf. Neural Information Pro-
cessing, ICONIP (1998) Vol. 2:713-715

8. E. Castillo, A. Cobo, J.M Gutiérrez & R.E Pruneda: Functional Networks with Applications. A Neural-Based
Paradigm. Kluwer Academic Publishers, Boston/Dordrecht/London (1999)

9. L. Kindermann & A. Lewandowski: A Comparison of Different Neural Methods for Solving Iterative Roots.
Proc. Seventh Int’l Conf. on Neural Information Processing, ICONIP, Taejon (2000) 565-569

xt 1+ 1 a b yt–+() xt=

yt 1+ 1 c– d xt+() yt=

0 2 4 6 8 10 12
0

1

2

3

4

5

6

7

Prey

P
re

da
to

r

x t() xt t
xt x t()–

http://reglos.de/kindermann/documents/ICONIP2000.pdf
http://reglos.de/kindermann/documents/ICONIP2000.pdf
http://reglos.de/kindermann/documents/ICONIP98.pdf
kindermann
Changes in Rev 2, Apr 8 2004: Author´s email and links updated

