
Helgol Mar Res (2003) 57:110–113
DOI 10.1007/s10152-003-0145-3

O R I G I N A L A R T I C L E

S. Thatje · J. A. Calcagno · G. A. Lovrich ·
F. J. Sartoris · K. Anger

Extended hatching periods in the subantarctic
lithodid crabs Lithodes santolla and Paralomis granulosa
(Crustacea: Decapoda: Lithodidae)
Published online: 13 May 2003
� Springer-Verlag and AWI 2003

Abstract Temporal pattern of hatching was studied in the
subantarctic lithodid crabs Lithodes santolla (Molina) and
Paralomis granulosa (Jaquinot) from the Argentine
Beagle Channel. In both species, larval hatching occurred
in low daily numbers over an extended period of up to
several weeks, depending on hatch size. Low daily
hatching activity and low oxygen-consumption rates in
freshly hatched P. granulosa larvae are discussed as life
history adaptations to, and/or physiological constraints
by, the environmental conditions of high latitudes.
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Introduction

Hatching is one of the most conspicuous behavioural
phenomena in marine and terrestrial decapods (e.g.
Saigusa and Hidaka 1978; Anger et al. 1994). Hatching
synchrony is principally assumed to be controlled by the
combination of internal rhythms and environmental

conditions (Forward 1987; DeVries and Forward 1989,
1991; Zeng and Naylor 1996, 1997). Primary abiotic
signals for hatching behaviour in decapod females are
well studied and known to result in, for example, tidal,
lunar or diurnal hatching rhythms (DeCoursey 1983;
DeVries et al. 1983; Saigusa and Kawagoye 1997; Zeng
and Naylor 1997). They have been most intensively
studied in coastal and estuarine species (e.g. Anger et al.
1994). The hatching of larvae is based on chemical and
behavioural interactions between late embryos and the
brooding female (Naylor 1976; Saigusa and Iwasaki
1999; Saigusa and Terajima 2000), although the hierar-
chical order of factors involved in hatching is not yet well
understood. Hatching rhythms related to abiotic and biotic
cycles, including primary production, allow for a syn-
chronisation of reproduction with favourable environ-
mental conditions (Starr et al. 1990, 1994). This may aid
larval dispersal, growth and survival. However, little is
known of hatching modes in decapod species from high
latitudes and the deep sea, where some species have
developed a food-independent mode of larval develop-
ment.

We studied the hatching mode in the subantarctic
lithodid crabs Lithodes santolla and Paralomis granulosa
from the Argentine Beagle Channel. Both species follow
a completely lecithotrophic larval development (Calcagno
et al., 2003; Lovrich et al. 2003). Our results are discussed
in relation to environmental and physiological constraints
affecting decapod life histories and survival in cold
waters.

Methods

Capture and maintenance of ovigerous females

Ovigerous females of Lithodes santolla and Paralomis granulosa
were caught at about 15 to 30 m depth using commercial fishery
traps in the Argentine Beagle Channel (54�53.80S, 68�17.00W) in
April 2001. The crabs were kept in aquaria at 6€0.5�C in the Centro
Austral de Investigaciones Cient�ficas (CADIC) in Ushuaia. In
May, the lithodids were transported on board the German scientific
research vessel R.V. “Polarstern” to Bremerhaven and finally to the
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marine biological laboratory in Helgoland (Germany). During this
cruise of about 1 month, water was kept at 6€0.5�C and was
changed three times per week. Food (squid) was given twice a
week.

In the laboratory, maintenance of females and rearing of larvae
took place under constant temperature (6€0.5�C) and salinity
(32‰), and a 12:12 h light:dark rhythm. Ovigerous females were
kept individually in flow-through tanks of at least 35 l.

Newly hatched larvae were collected from the overflow filters
(300-mm mesh size). Since almost all larvae hatched at night,
sampling and counting of larvae was done every morning.

Hatching of both species was studied during 7 weeks. Some
females were still carrying remains of egg-clutches when this study
had to be finished for logistic reasons; therefore, we cannot present
complete hatching curves for all females studied. The theoretical
number of eggs in each egg mass was calculated after the
fecundity–CL (carapace length) relationships available from the
literature for P. granulosa (Lovrich and Vinuesa 1993) and L.
santolla (Lovrich 1997).

Oxygen consumption measurements

Freshly hatched larvae of P. granulosa taken for measurements of
oxygen consumption were reared individually in 100-ml cups with
filtered sea water of constant temperature (see Table 1). Oxygen
consumption was measured in the middle of the zoea-I moulting
cycle. It was measured in a closed system with a 2-ml gas-tight
glass syringe used as a respirometer chamber and oxygen micro-
optodes (Pre Sens, Neuburg a. d. Donau, Germany). The syringe
was filled with aerated sea water (100% oxygen saturation) and the
optode (tip size from <30 to 100 mm) was inserted from the side of
the cannula. Prior to insertion in the syringe, the optode was
calibrated and its drift recorded. Blank measurements in empty
syringes revealed no oxygen consumption (due to bacterial
contamination) during the measuring period (up to 1 h). The larvae
were carefully transferred into the syringe with a pipette and
subsequently the volume was reduced to 1 ml. Mixing of the water
inside the syringe was achieved by the movement of the larvae.
Variation in the position of the sensitive tip of the optode confirmed
that no oxygen gradient occurred inside the chamber. Measure-
ments were terminated when the oxygen saturation decreased
below 80% (15–60 min). Oxygen consumption of larval P.
granulosa was measured at temperatures ranging from 1� to 15 �C
(n=5–8), which roughly represents their range of temperature
tolerance (Anger et al. 2003). At the end of the measurements,
optodes were removed and recalibrated. All measurements and
calibrations were carried out in coolers at temperatures corre-
sponding to the incubation temperature.

Results

Hatching was studied in nine females of Paralomis
granulosa and three females of Lithodes santolla over a
period of about 7 weeks (Figs. 1, 2). Total amount of
hatched larvae per female varied from 426 to 2,915 and
from 204 to 3,821 larvae in P. granulosa (Fig. 1) and L.
santolla (Fig. 2), respectively. The actual numbers,
however, are an underestimation, since not all females
(except females A, B, E of P. granulosa) had finished
hatching their larvae when this study was terminated (see
Figs. 1, 2). The average daily hatching rates were
52.9€52.3 (range 0–379) and 53.4€88.2 (range 0–366)
in P. granulosa and L. santolla, respectively. In P.

Table 1 The effect of water temperature on the oxygen consump-
tion of zoea I of Paralomis granulosa

Temperature (�C) Oxygen consumption
(mg02/h�individual)

Mean SD

1 1.38 0.47
3 1.30 0.10
6 1.59 0.55
9 1.94 0.42

12 3.35 0.56
15 3.98 0.96

Fig. 1 Daily hatching numbers in Paralomis granulosa (Jaquinot)
from the subantarctic Beagle Channel in 2001. Only the females A,
B and E completed the hatching of all larvae within the study
period. TN larvae Theoretical egg/larvae number; CL carapace
length

111



granulosa and L. santolla, the total hatching period lasted
between 13 and 61 days and 35 and 41 days, respectively.
Again, the maximum values were underestimated, be-
cause at the end of the study most females were still
carrying remains of their egg masses.

Depending on incubation temperature, the oxygen
consumption of the larvae varied between 1.38 (1�C)
and 3.98 (15�C) mgO2/h�individual (r=0.94; P=<0.01;
Table 1).

Discussion

Larval release in decapods is known to occur frequently
in response to abiotic environmental conditions, such as
lunar or tidal cycles, leading to synchronised hatching
which usually does not exceed a period of a few hours to
days (DeCoursey 1983; DeVries et al. 1983; Saigusa and
Kawagoye 1997; Zeng and Naylor 1997). Although
aquatic invertebrate embryos are usually tolerant of low
oxygen concentrations, egg masses are size-limited,
owing to oxygen gradients (Strathmann and Strathmann
1995). Decapods, which produce compact egg masses of
up to several centimetres in diameter, compensate oxygen
deficiency in the centre of their egg-masses mainly by
abdominal flapping. This maternal-care behaviour tends
to increase during late embryonic development when the
oxygen demand of the embryos increases (Nakanishi
1985; Naylor et al. 1999; Fern�ndez et al. 2000; Baeza
and Fern�ndez 2002). The energetic cost of brooding
depends mainly on the size of the egg mass and on
oxygen partial pressure. Since the oxygen partial pressure
in sea water is temperature-dependent, these costs should
be higher in temperate and warm shallow subtidal zones
than in the deep sea and at high latitudes.

In cold environments, such as the Antarctic and adjacent
regions, the hatching mode of decapods is little known.
Biogeographic limits in decapod distribution, in particular
the absence of reptant crabs in polar areas, have been

assumed to be due to low temperatures in combination with
food limitation, owing to short primary-production periods,
both affecting larval survival (for recent review, see Anger
2001). Recently, these distribution patterns were proposed
to be due to physiological constraints at low temperatures;
namely, the Reptantia are poor Mg2+ regulators which may
suffer narcotising effects induced by low temperatures in
combination with high Mg2+ levels in the haemolymph
(Frederich et al. 2001). As a consequence, brooding
activities such as abdominal flapping should be dramati-
cally reduced at low temperatures.

Limited food availability at high latitudes may be
compensated by lecithotrophic larval development, which
has been shown in lithodid crabs (Anger 1996; Shirley
and Zhou 1997), including the species studied here, P.
granulosa and L. santolla (Calcagno et al., 2003; Lovrich
et al. 2003). Embryonic development in these species is
known to last between about 1 and 2 years (L. santolla 9–
10 months, Vinuesa 1984; P. granulosa 18–22 months,
Lovrich and Vinuesa 1993).

Freshly hatched larvae of P. granulosa showed low
oxygen-consumption rates at low temperatures in our study
(Table 1); the rate, however, increased strongly with
increasing temperature. The same tendency has been
reported in other lithodid species (Nakanishi 1985; Anger
1996). Low larval oxygen consumption may be a conse-
quence of low-temperature regimes and restricted maternal
aid in oxygen supply. Active enhancement of the hatching
by means of strong abdominal flapping was not observed in
our study. Low daily hatching rates suggest that hatching in
lithodids is associated with little activity and low energetic
costs for the female. Lecithotrophic development makes
larvae independent of food, so that there is no need for
hatching to coincide with periods of high primary produc-
tion in these species. Their larvae show a demersal drifting
behaviour and do not occur in the productive upper parts of
the water column (for discussion, see Lovrich 1999).

Paralomis granulosa and L. santolla are known to
carry up to 10,000 and 32,000 eggs per clutch, respec-
tively (Lovrich 1997). Since the females of L. santolla
used in this study were on average much smaller than in
natural populations (cf Lovrich et al. 1999), hatching in
nature may last even longer than 7 weeks. This is
indicated also by those females in both species which had
not completed hatching at the end of the study period.
Differences between total hatching numbers obtained
during our study period of about 7 weeks and the
estimated theoretical amount of larvae in each clutch
support this point of view (see Figs. 1, 2), not taking into
account the females A, B, and E of P. granulosa which
apparently hatched most of their larvae before being
individualised (Fig. 1). Since in some females the study
included both the beginning and end of larval hatching,
we probably have not missed conspicuous peaks in
hatching. This is also supported by the fact that daily
means in hatching numbers were rather similar. The
continuous release of demersal larvae may have an
adaptive value, since it enhances the dispersal and may
reduce the susceptibility to pelagic predation.

Fig. 2 Daily hatching numbers in Lithodes santolla (Molina) from
the subantarctic Beagle Channel in 2001. Open bars the numbers of
lost eggs. TN larvae Theoretical egg/larvae number; CL carapace
length
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If we assume that the duration of embryonic develop-
ment in decapods is not strictly determined genetically,
but is also dependent on temperature and dissolved-
oxygen level, oxygen gradients in egg masses of
brachyuran crabs could be responsible for the delay in
hatching of larvae from the innermost layers of the egg
mass (Chaffee and Strathmann 1984), thus explaining the
occurrence of extended hatching periods.
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