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Abstract

In this paper, we study three delay systems where different classes of im-

patient customers arrive according to independent Poisson processes. In the

first system, a single server receives two classes of customers with general ser-

vice time requirements, and follows a non-preemptive priority policy in serving

them. Both classes of customers abandon the system when their exponentially

distributed patience limits expire. The second system comprises parallel and

identical servers providing the same type of service for both classes of impatient

customers under the non-preemptive priority policy. We assume exponential

service times and consider two cases depending on the time-to-abandon dis-

tribution being exponentially distributed or deterministic. In either case, we

permit different reneging rates or patience limits for each class. Finally, we

consider the first-come-first-served policy in single and multi-server settings.

In all models, we obtain the Laplace transform of the virtual waiting time for

each class by exploiting the level-crossing method. This enables us to compute

the steady-state system performance measures.
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1 Introduction

Motivated by customer contact centers, health-care systems, and telecommunication

networks, in this paper, we analyze multi-class queueing systems with impatient cus-

tomers. We focus on the non-preemptive priority policy while serving two classes of

customers, and also provide some results for the first-come-first-served (FCFS) policy

in multi-class systems. Under both policies, once the service for a customer starts,

it cannot be preempted in favor of another customer. This appears to be a valid

assumption for modeling customer contact centers, where service refers to customers

and agents talking on the phone, or health-care systems, where service could be a

surgical operation, or telecommunication networks, where service is receiving data or

voice packets. In customer contact centers, the Automatic Call Distributor (ACD)

can classify callers based on the type of service requested or information provided

by the caller revealing if s/he can be considered a premier class customer. If callers,

grouped in different classes by the ACD, wait on the line for too long before an

agent handles their call, they can hang up and be lost to the system. In health-care

systems, the type of health service requested or the severity of the condition of the

patient can be used for classification and scheduling resources, yet, patients might

either die or choose to go to another health-care facility if they cannot start with

medical treatment in a reasonable time. In telecommunication networks, there can

be hard deadlines to receive data beyond which the data becomes useless.

In the queueing literature, there is an extensive body of research on single or

multi-server systems serving a single class of impatient customers, e.g., [3, 4, 16,

19, 28, 34, 36, 40]. In FCFS multi-class systems with c identical parallel servers, if

the exponential service time distribution is the same for all k classes of customers

that arrive according to independent Poisson processes, an appropriately constructed

single class M/M/c + Hk model (see Baccelli and Hebuterne, [3]) can be used if

customers in each class have exponential reneging times. Here Hk denotes a k-stage
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Hyperexponential random variable (r.v.) representing the time-to-abandon r.v. of the

constructed single class of customers (see the end of Section 4). However, incorporat-

ing non-exponential distributions for interarrival, service time and time-to-abandon

r.v.s, or considering priority disciplines, especially in systems serving more than two

classes of customers, makes it difficult to construct tractable and exact analytical

models; instead, one has to resort to simulation studies, e.g., [2]. When there are two

classes of customers to consider, we can find some earlier analytical models. Choi,

Kim, and Chung [13] study the M/M/1 queue where high-priority customers have

deterministic impatience time and have preemptive priority over patient low-priority

customers. Analyzing the underlying Markov process, they provide the joint dis-

tribution of the system size, and the Laplace transform (LT) of the response time

of low-priority customers. Brandt and Brandt [8] study the M/M/1 system where

high-priority customers, for whom general time-to-abandon distribution is assumed,

are served under the preemptive-resume priority policy alongside patient low-priority

customers. They derive the probability generating function of the joint queue size

distribution and the LT of the waiting time of low-priority customers. Iravani and

Balcıoğlu [20] study two problems in the M/GI/1 setting. In the first problem which

considers the preemptive-resume priority discipline, both classes have exponentially

distributed times-to-abandon. In the second problem, the non-preemptive priority is

worked on, yet, the low-priority class is assumed to be patient. For both problems,

they provide the LT of the virtual waiting time for both classes. The non-preemptive

priority policy for impatient high-priority customers in multi-server queues has been

studied by Brandt and Brandt [7], also by assuming patient low-priority customers.

In this model, reneging high-priority customers, whose wait time is below a thresh-

old value, become low-priority customers. They provide the exact waiting time and

queue length distributions for high-priority customers as well as approximations for

the factorial moments of the number of low-priority customers.

It appears that when non-preemptive priority discipline is taken into consideration,

2



in previous research, impatience behavior is assumed only for high-priority customers.

There are few exceptions to this, all in Markovian settings. Jouaini and Dallery [23]

analyze a multi-server Markovian system with two classes, yet they assume identi-

cally distributed times-to-abandon (as well as identical service time distributions)

for both classes. They study the corresponding birth-and-death process and derive

the steady-state probabilities of the number of total customers, and high-priority

customers in the system. Rozenshmidt [31] considers the same setting, this time

with k-priority classes, and obtains the expected waiting time of each class. Wang

[38] studies the non-preemptive priority M/M/1 queueing system where both classes

have identically distributed service requirements, and exponential times-to-abandon

with possibly different rates. He analyzes the two-dimensional Markov chain and

provides approximations for the performance measures of the system. Stolletz and

Helber [35] also construct a Markov chain in modeling a call center with skill-based

routing, where a group of flexible servers – in addition to specialized server groups for

each class – attends to two impatient classes of customers under the non-preemptive

rule.

Even though in some cases prioritization of a specific class of customers can be

due to their impatience, in many other settings, such as customer contact centers

and health-care systems, different classes of customers can be impatient with differ-

ent levels of tolerance for waiting in the queue. For instance, patients waiting for

special medical treatments are usually categorized into priority groups according to

their conditions so that, patients with higher risk of death (i.e., the most impatient

customers), receive service first as the highest priority customers. In some other con-

text, prioritization can be even irrelevant of the patience limit of customers. For

example, many call centers give exclusive priority to their more valuable customers

who are on a contract (e.g., [27, 33]), or are known, according to historical data, to be

more profitable. Therefore, there is a need to incorporate impatience for low-priority

customers in settings operating under the non-preemptive priority policy.
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In this paper, we first analyze the two-class non-preemptive priority M/GI/1+M

queue in Section 2. We allow general and different service time distributions for each

class as well as different reneging rates. Then, we extend the problem in Section

3 to two-class multi-server queues. We assume identical exponential service time

distributions for both classes yet retain different rates for exponentially distributed

patience limits in Section 3.1, and different deterministic patience limits in Section

3.2. Same service time distribution is a reasonable assumption, as exemplified by

Milner and Olsen [27], in call centers where the service is the same for all classes

but prioritization differentiates contract customers from those without a contract. In

Section 3.1, we also visit the case with patient high-priority customers and low-priority

customers that can abandon the system if their patience expires. Examples for this

case are service firms that offer a guarantee to their special or VIP customers on the

service delivery time [18, 33]; if this guarantee is not met, high-priority customers are

not charged, which can lead high-priority customers to wait patiently. The non-VIP

customers, who have to pay for service no matter how long they wait, can be deterred

if they wait for too long and can renege from the system. Finally, in Section 4, we

consider the FCFS policy when serving k classes of customers. Under the FCFS

policy, we model the M/GI/1 queue with class specific service time distributions,

yet, for tractability, we have to assume that the reneging rates are the same across

all customer classes. In the extension to the multi-server case, we resort to identical

service time distributions for each class. When the customer arrival rates are so high

that the servers are busy almost all the time, the analysis can be carried out via

fluid approximations. For instance, Talreja and Whitt [37] consider multiple groups

of servers attending to different classes of customers on an FCFS basis. Assuming

general service time distributions depending on the customer class and the server

group, they develop fluid queueing models which accurately capture the steady-state

routing flow rates which can be used as the input of a single class fluid model to

approximate the performance measures of the system.
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In all the problems we study, we obtain the LT of the virtual waiting time for all

classes by employing the level-crossing technique due to to Brill [9, 11] (see also Brill

[12]). This enables us to write down the integral equations for the density functions

of the virtual waiting time for classes. Eventually, we obtain their LT’s. Then, by

relating the virtual waiting time to the actual waiting time, we are able to compute

the steady-state performance measures of the queueing systems analyzed, such as

the waiting time distributions with their mean values, and proportion of reneging

customers for each class.

The rest of the paper is organized as follows. In Section 2, we analyze the

M/GI/1+M queue serving two classes of customers according to the non-preemptive

priority rule. In Section 3, the analyses of the M/M/c+M and M/M/c+D queues

operating under the non-preemptive priority policy are presented. Finally, in Section

4, we consider the FCFS policy in single and multi-server queues.

2 The Single Server Priority Queue with Impa-

tient Customers

In this section, we model a queueing system in which a single server attends to two

classes of impatient customers under the non-preemptive priority rule. High-priority

(class 1) customers have to wait for the completion of the service time of the low-

priority (class 2) customer they might see under service upon their arrival at the

system. Upon completion of a service, only if there are no high-priority customers

in the system, the next customer to serve is the first low-priority customer in line

(provided that there are any low-priority customers waiting). For both classes, we

assume that once their service starts, they are patient until their service is over. That

is, reneging behavior is observed only among customers during their waiting time in

the queue.
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In this setting, class i customers arrive at the queueing system according to an

independent Poisson process with rate λi, i = 1, 2. The independent and identically

distributed (i.i.d.) service-time r.v. for class i is denoted by Bi, and it follows a

general distribution function Bi(x) (with Bi(x) = 1−Bi(x) denoting the complemen-

tary service time distribution) with mean 1/µi. Furthermore, the Laplace-Stieltjes

transform (LST) of the service-time distribution function is denoted by b̃i(s). We

assume that the time-to-abandon distribution for class i customers is exponential

with rate ωi. The service-time distributions and reneging rates of each class could be

different from one another. Additionally, service-time and time-to-abandon r.v.s are

independent of each other and the Poisson arrival processes.

Let Vi(t) denote the virtual waiting time for class i customers at time t ≥ 0

(the amount of time a class i customer arriving at time t would have to wait if its

patience were infinite). A class i customer with patience R arriving at the system

at time t must wait for the min{Vi(t), R}, at the end of which it either reaches the

server and its service commences if Vi(t−) ≤ R, or abandons the queue otherwise,

with its patience expired. We consider the virtual waiting time for class i when the

system is in steady-state. Denote the steady-state probability density function of

Vi(t) by fi(x) with x > 0. We eventually obtain the LT of f1(x) and f2(x) denoted by

f̃1(s) and f̃2(s), respectively, from which the steady-state waiting time distribution

for each class can be computed. To do this, we employ the level-crossing theorem due

to Brill [9, 11], Brill and Posner [10], Cohen [14], Cohen and Rubinovitch [15], and

Shanthikumar [32]. This method briefly asserts that in steady-state, for every level x

of the virtual waiting time, the value of the density function at x is equal to the rate

of downcrossing level x, which is in turn equal to the rate of upcrossing level x.

We first carry out the analysis for high-priority customers. The following lemma

provides the density function of the virtual waiting time for class 1 customers.

Lemma 1. The density function of the virtual waiting time for high-priority (class
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1) customers in the M/GI/1 +M system satisfies the integral equation

f1(x) = λ1B1(x)P0 + λ2B2(x)P0 + λ1

∫ x

0

B1(x− y)e−ω1yf1(y)dy

+λ2B2(x)

∫ ∞
0

e−ω2yf2(y)dy, (1)

where P0 is the steady-state probability of finding the system empty satisfying the

normalizing equation

P0 +

∫ ∞
0

f1(x)dx = 1.

Proof. According to the level-crossing theory, the rate of downcrossing level x on a

sample path of the virtual waiting time of high-priority customers is equal to f1(x).

The rate of upcrossing level x, as given on the right hand side (RHS), has four

parts: The first two terms are the upcrossing rates of x due to high- and low-priority

customers arriving at an empty system. The third term is the upcrossing rate caused

by high-priority customers that must wait a positive time 0 < y < x. That is, a

“tagged” high-priority customer arriving at a busy system can cause an upcrossing

if its patience is more than the amount of virtual waiting time y, and its service

requirement is in excess of x − y. The last term on the RHS is the upcrossing rate

caused by low-priority customers arriving at a busy system. These customers do not

contribute to the virtual waiting time of high-priority customers until it is their turn

to seize the server, i.e., when the virtual waiting time of class 1 customers hits level

0. Since the queue is stable due to reneging, all these customers reach the server

in a finite amount of time if they do not abandon the queue. Therefore, a tagged

low-priority customer that must wait for a positive time y > 0 causes an upcrossing,

if it is patient enough to survive this wait, and if its service requirement exceeds

x. Note that the virtual waiting time of class 2 customers with density function

f2(x) comprises the amount of work due to patient high- and low-priority customers

that the tagged low-priority customer finds in the system upon its arrival, plus, the

additional work that patient high-priority customers bring in during the queue time

of the tagged low-priority customer.
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To obtain the density function f2(x), we need the distribution of the busy period

generated by both high- and low-priority customers arriving at an empty system. The

busy period generated by a high-priority customer arriving at an idle system has a

distribution function of L0(x) (with L0(x) = 1−L0(x)), the LST of which is given in

Eq. (1) of Iravani and Balcıoğlu [20] who adapt the result which Rao [30] provides

for an M/GI/1 +M queue with a single class of impatient customers

We denote the r.v. of the busy period initiated by a low-priority customer arriving

at an empty system by H. Let H(x) and h̃(s) denote the distribution function and

the LT of H, respectively. We refer the reader to Eq. (25) of [20] for h̃(s), which is

used to numerically compute H(x) (with H(x) = 1−H(x)).

Given this, the following lemma provides the density function of the virtual waiting

time for class 2 customers.

Lemma 2. The density function of the virtual waiting time for low-priority (class 2)

customers in the M/GI/1 +M system satisfies the integral equation

f2(x) = λ1L0(x)P0 + λ2H(x)P0 + λ2

∫ x

0

H(x− y)e−ω2yf2(y)dy, (2)

with the normalizing equation

P0 +

∫ ∞
0

f2(x)dx = 1.

Proof. We again employ the level crossing theorem. In Eq. (2), f2(x) on the LHS

is the rate of downcrossing level x on a sample path of the virtual waiting time

of low-priority customers. The rate of upcrossing level x, as given on the RHS,

has three parts: The terms λ1L0(x)P0 and λ2H(x)P0 give the upcrossing rates of x

due to high- and low-priority customers arriving at an empty system, respectively.

Such customers increase the virtual waiting time for low-priority customers by the

busy period they generate. The last term is the upcrossing rate due to low-priority

customers that must wait a positive time 0 < y < x. Such customers also increase

the virtual waiting time by a busy period if they can survive the offered waiting time
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y. Note that the contribution of high-priority customers arriving at a busy system in

the virtual waiting time of low-priority customers is already included in these three

components presented on the LHS of Eq. (2).

When we take the LT of both sides of Eqs. (1) and (2), we have

f̃1(s+ ω1)−
f̃1(s)

λ1β̃1(s)
= −P0 −

λ2β̃2(s)

λ1β̃1(s)
(P0 + f̃2(ω2)), (3)

f̃2(s+ ω2)−
f̃2(s)

λ2κ̃(s)
= −P0 −

λ1g̃0(s)

λ2κ̃(s)
P0, (4)

where β̃i(s) is the LT of the complementary service time distribution for class i, κ̃(s)

is the LT of H(x), and g̃0(s) is that of the L0(x). The equations are inhomogeneous

difference equations of the form

u(s+ ω)− a(s)u(s) = b(s), ω > 0,

studied in e.g., Jagerman [22] (p. 115). Given that the series is absolutely convergent,

the general solution is given by (Jagerman [22] (p. 116))

u(s) = cv(s)−
∞∑
j=0

b(s+ jω)

a(s)a(s+ ω)...a(s+ jω)
, (5)

where c is a constant and v(s) is the solution of the corresponding homogeneous

equation v(s + ω) − a(s)u(s) = 0. In Appendix A, we prove the convergence of the

series for Eqs. (3) and (4), and also show that c = 0 for both equations, which we

later use in proposition 1.

Let E[L0] and E[H] denote the expected length of busy periods initiated by high-

and low-priority customers, respectively, which can be computed by using their cor-

responding LT’s. We are now ready to present the LT of the virtual waiting time of

each class in the following proposition.

Proposition 1. In the M/GI/1 + M system, the LT of the virtual waiting time of

high-priority (class 1) customers, f̃1(s), and that of low-priority (class 2) customers,
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f̃2(s), are given, respectively, by

f̃1(s) =
∞∑
j=0

(
P0 +

λ2β̃2(s+ jω1)

λ1β̃1(s+ jω1)

(
P0 + f̃2(ω2)

)) j∏
m=0

λ1β̃1(s+mω1). (6)

f̃2(s) =
∞∑
j=0

(
P0 +

λ1g̃0(s+ jω2)

λ2κ̃(s+ jω2)
P0

) j∏
m=0

λ2κ̃(s+mω2), (7)

where

P0 =

(
∞∑
j=0

(
1 +

λ1g̃0(jω2)

λ2κ̃(jω2)

) j∏
m=0

λ2κ̃(mω2)

)−1
, (8)

f̃2(ω2) =
(1− P0)− (λ1E[L0] + λ2E[H])P0

λ2E[H]
. (9)

Proof. Eqs. (6) and (7) are simply obtained using the solution form in Eq. (A.44).

Eq. (7) helps to find P0, the probability of having an idle system: by letting s→ 0 in

both sides of Eq. (7), and using the normalizing equation P0+
∫∞
0
f2(x)dx = 1, which

implies that f̃2(0) = 1− P0, we get Eq. (8). Finally, in order to obtain f̃2(ω2), which

appears on the RHS of Eq. (6), we let s→ 0 in Eq. (4), which gives Eq. (9),

Given f̃i(s) in Eqs. (7) and (6), by numerically inverting f̃i(s)/s using techniques

such as the ones due to Abate and Whitt [1] and Jagerman [21], one can compute

Fi(x) = P0 +
∫ x
0
fi(y)dy, that is the virtual waiting time distribution for class i

customers. Let Wi denote the steady-state waiting time of a class i customer in the

queue. Also let S denote the event that a customer is successfully served, and A the

event that a customer abandons the queue. We denote the probability that a type

i customer is served (reneges) by Pi(S) (Pi(A)). In the remainder of this section,

we summarize how certain steady-state performance measures can be found (see,

Stanford [34]).

The conditional distribution of waiting time given that a class i customer is even-

tually served is given by

P (Wi ≤ x|S) =
P0 +

∫ x
0
e−ωitfi(t)dt

Pi(S)
, (10)
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that has a mean of E[Wi|S], which is

E[Wi|S] =

∫∞
0
xe−ωixfi(x)dx

Pi(S)
. (11)

where

Pi(S) = 1− Pi(A) = P0 +

∫ ∞
0

e−ωiyfi(y)dy = P0 + f̃i(ωi). (12)

Note that in Eq. (10),
∫ x
0
e−ωitfi(t)dt can be computed by numerically inverting its

LT, f̃i(ωi + s)/s. Having only the LT of fi(x) in hand, the numerical evaluation of

the integral in Eq. (11) can be computationally demanding. In cases where fi(x) is

directly available (see e.g., Eq. 24), this computation can be carried out efficiently.

Next, the waiting time distribution of an arbitrary (served or reneging) type i

customer in the queue is

P (Wi ≤ x) = 1− e−ωix + e−ωixFi(x), (13)

and for its expected value we have

E[Wi] =

∫ ∞
0

P (Wi > x)dx =

∫ ∞
0

e−ωixF i(x)dx

=
1− f̃i(ωi)− P0

ωi
=
Pi(A)

ωi
. (14)

Finally, the conditional distribution of waiting time given that a class i customer

eventually reneges, i.e., P (Wi ≤ x|A), can be obtained from

P (Wi ≤ x) = Pi(S)P (Wi ≤ x|S) + Pi(A)P (Wi ≤ x|A), (15)

and its mean E[Wi|A] from

E[Wi] = Pi(S)E[Wi|S] + Pi(A)E[Wi|A]. (16)

We close this section by demonstrating a nice relationship between P0 and Pi(S).

If we integrate both sides of Eq. (1) on (0,∞), we have

1− P0 = ρ1P0 + ρ2P0 + ρ1

∫ ∞
0

e−ω1yf1(y)dy + ρ2

∫ ∞
0

e−ω2yf2(y)dy,

P0 = 1− ρ1
(
P0 +

∫ ∞
0

e−ω1yf1(y)dy

)
− ρ2

(
P0 +

∫ ∞
0

e−ω2yf2(y)dy

)
,

= 1− ρ1P1(S)− ρ2P2(S),
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where ρ1 = λ1/µ1 and ρ2 = λ2/µ2. This expression for P0 is similar to P0 = 1−ρ1−ρ2,

the probability of finding an idle server in a two-class M/GI/1 queue with patient

customers where all customers are served (P1(S) = P2(S) = 1) provided that ρ1+ρ2 <

1.

3 The multi-server non-preemptive priority queue

with impatient customers

In this Section, we extend the model studied in Section 2 by assuming c identical

and parallel servers. When service times are non-exponential r.v.s, an exact analysis

of the M/GI/c queue even with a single class of patient customers is not possible.

Thus, we consider only exponential service times. Furthermore, we assume that the

service time distribution with rate µ is the same for both classes. As in Section

2, high-priority (class 1) and low-priority (class 2) customers arrive in accordance

with independent Poisson processes with rate λi, and renege from the system if they

are not served before their patience expires. The service of a low-priority customer

cannot be preempted. In order for a waiting low-priority customer to reach a server,

there should not be any high-priority customers waiting in the queue. We study this

system in two sections where models differ due to the time-to-abandon distributions

assumed. In Section 3.1, we analyze the case in which both classes have exponential

time-to-abandon distributions, and in Section 3.2, we study the “time-out problem”

where customers have deterministic patience limits.

3.1 The two-priority class M/M/c+M queue

In this Section, we assume that class i customers have exponentially distributed

times-to-abandon with rate ωi, i = 1, 2. This model can apply to call centers that

can distinguish between customer classes with the help of the ACD such as the one
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analyzed via simulation by Saltzman and Mehrotra [33].

As in Section 2, we need the LT’s of the virtual waiting time density functions for

both classes. Before proceeding further, let Pj be the probability of having j ≤ c− 1

servers busy in steady-state. Since the number of busy servers is a birth-and-death

process, Pj can be expressed as P0ρ
j/j!, where ρ = λ/µ, λ = λ1 + λ2, and P0 is

the steady-state probability of having all servers idle. Using this, we can express the

probability of no wait for a customer (the probability that c− 1 or fewer servers are

busy) as

P (W = 0) =
c−1∑
j=0

ρj

j!
P0,

and we have the following normalizing equation

P (W = 0) +

∫ ∞
0

fi(y)dy = 1, i = 1, 2. (17)

Next, employing the level-crossing theorem for the multi-server model, for high-

priority customers, we have the following lemma.

Lemma 3. The density function of the virtual waiting time for high-priority (class

1) customers in the M/M/c+M system satisfies the integral equation

f1(x) = λPc−1e
−cµx + λ1

∫ x

0

e−cµ(x−y)e−ω1yf1(y)dy

+λ2e
−cµx

∫ ∞
0

e−ω2yf2(y)dy. (18)

Proof. Note that Eq. (18) is very similar in spirit to Eq. (1). The differences are that

arrivals that find fewer than c − 1 servers do not contribute to the virtual waiting

time, and the amount of contribution of those who find all servers busy and survive

the offered waiting time is exponentially distributed with rate cµ, which is the time

until the next departure when all servers are busy.

To obtain f2(x), we need the distribution of the busy period initiated by high-

and low-priority customers. The busy-period starts when all servers become busy
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and ends when no high-priority customers are left in the system. Since service time

distributions are the same for both classes, the distributions of busy periods generated

by high- and low-priority customers are the same, which we denote by Lc(x).

Observe that Lc(x) is the same distribution as the distribution of the busy period

in an M/M/c+M queue receiving a single class of impatient customers according to a

Poisson process with rate λ1, where each server has a service rate of µ and customers

a reneging rate of ω1. In this single-class M/M/c+M queue (similar to the M/M/c

queue with patient customers, see Daley and Servi, [17]), we define the busy period

as the time starting from the instant when all servers become busy until we have

c − 1 servers busy again. Since all c servers of the single-class M/M/c + M queue

are busy during the busy period, clearing customers at a rate of cµ, the distribution

of its busy period is the same as that of an M/M/1 + M queue with λ1 Poisson

arrival rate, ω1 reneging rate, and cµ service rate. Thus, we conclude that Lc(x) is

identical in distribution to the busy period of the M/M/1 + M queue and the LST

of Lc(x), which we denote by l̃c(s), is found from Eq. (1) of [20] by substituting

b̃1(s) = cµ/(cµ + s). Now we employ the level-crossing theorem for the low-priority

customers in the following lemma where Eq. (19) is obtained similar to Eq. (2), and

thus, the proof is omitted to avoid repetitions.

Lemma 4. The density function of the virtual waiting time for low-priority (class 2)

customers in the M/M/c+M system satisfies the integral equation

f2(x) = λPc−1L
c
(x) + λ2

∫ x

0

L
c
(x− y)e−ω2yf2(y)dy. (19)

If we take the LT of Eqs. (18) and (19), we get

f̃1(s+ ω1)−
cµ+ s

λ1
f̃1(s) = − λ

λ1
Pc−1 −

λ2
λ1
f̃2(ω2), (20)

f̃2(s+ ω2)−
f̃2(s)

λ2g̃0(s)
= − λ

λ2
Pc−1, (21)

where g̃0(s) is LT the L
c
(x).
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Let E[Lc] denote the expected length of a busy period. From Perry and Asmussen

[29] and Boxma el al. [6], we have

E[Lc] =
∞∑
k=0

λk1∏k
j=0(cµ+ jω1)

. (22)

The following proposition gives the density function of the virtual waiting time of

class 1 customers, the LT of that of class 2 customers, and the probability of finding

all servers idle.

Proposition 2. In the M/M/c + M system, the LT of the virtual waiting time for

low-priority (class 2) customers is given by

f̃2(s) =
λPc−1
λ2

∞∑
j=0

j∏
k=0

λ2g̃0(s+ kω2). (23)

Also, the density function of the virtual waiting time of high-priority (class 1) cus-

tomers is given by

f1(x) = (λPc−1 + λ2f̃2(ω2))e
{−cµx+λ1(1−e−ω1x)/ω1}, (24)

where

f̃2(ω2) =
(1− P (W = 0))− λPc−1E[Lc]

λ2E[Lc]
, (25)

and the probability of finding all servers idle is

P0 =

(
c−1∑
i=0

ρi

i!
+

λ

λ2

ρc−1

(c− 1)!

∞∑
j=0

j∏
k=0

λ2g̃0(kω2)

)−1
. (26)

Proof. As in Section 2, the solution of Eq. (21) can be found by using Eq. (A.44),

which is presented in Eq. (23). We can write the solution for Eq. (20) with the help

of Eq. (A.44) as

f̃1(s) =
λPc−1 + λ2f̃2(ω2)

λ1

∞∑
j=0

j∏
k=0

λ1
cµ+ s+ kω1

. (27)

Let

m(x) =
e−cµx

j!

(
1− e−ω1x

ω1

)j
,
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which has the LT (Jagerman, [22], p. 122)

m̃(s) =

j∏
k=0

1

cµ+ s+ kω1

.

Then, using m(x), we can explicitly invert the LT f̃1(s) as

f1(x) =
λPc−1 + λ2f̃2(ω2)

λ1
λ1e

−cµx
∞∑
j=0

1

j!

(
λ1(1− e−ω1x)

ω1

)j
= (λPc−1 + λ2f̃2(ω2))e

{−cµx+λ1(1−e−ω1x)/ω1}.

In order to obtain f̃2(ω2), which appears on the RHS of Eq. (20), we let s→ 0 in Eq.

(21), which gives Eq. (25).

The probability of finding all servers idle, P0, is found by letting s → 0 in Eq.

(23), and using Eq. (17) with Pc−1 = ρc−1P0/(c− 1)!, as

1− P (W = 0) =
λ

λ2

ρc−1

(c− 1)!
P0

∞∑
j=0

j∏
k=0

λ2g̃0(kω2),

from which Eq. (26) is obtained.

We can use Eqs. (10), (12), and (14) by replacing P0 with P (W = 0) to compute

P (Wi ≤ x|S), Pi(A) = 1 − Pi(S), and E[Wi]. The other distribution functions and

mean waiting times can be found from Eqs. (11), (13), (15), and (16).

We close this section by considering a special case in which high-priority customers

are assumed to be patient. This model is relevant to service industry that offers a

guarantee to their VIP customers on service delivery time: if this guarantee is not

met, the service will be free for VIP customers (see Ho and Zheng,[18], and Saltzman

and Mehrotra [33]). In this scenario, it is reasonable to assume that high-priority

(VIP) customers are patient, because they know that, in the worst case, if they wait

too long, they will not be charged any service fees. Since high-priority customers are

patient, Eq. (18) becomes (the difference is the second term on the RHS)

f1(x) = λPc−1e
−cµx + λ1

∫ x

0

e−cµ(x−y)f1(y)dy + λ2e
−cµx

∫ ∞
0

e−ω2yf2(y)dy,
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that has a solution of

f1(x) = (λPc−1 + λ2f̃2(γ2))e
−(cµ−λ1)x.

The busy period distribution required for f2(x) in Eq. (19) is identical to the busy

period distribution in an ordinary M/M/1 queue with the same arrival rate and cµ

as the service rate, which has the following LST (e.g., Kleinrock [24], p. 215)

l̃c(s) =
λ1 + cµ+ s−

√
(λ1 + cµ+ s)2 − 4λ1cµ

2λ1
,

from which its mean can be found as

E[Lc] =
1

cµ− λ1
.

3.2 The two-priority class M/M/c+D queue

In this Section, we analyze the multi-server queueing system where the patience limit

of customers are constants: if a class i customer does not start receiving service in τi

time units after its arrival, it abandons the system without being served. The single-

class version of this problem was studied by Boots and Tijms [5], Xiong, Jagerman and

Altiok [39] and Liu and Kulkarni [25, 26]. Such models apply to telecommunication

systems where data become useless if not received within a hard deadline.

To include two priority classes, we again employ the level-crossing theorem, and

for high-priority customers we have the following lemma.

Lemma 5. In the M/Mc+D system, the density function of the virtual waiting time

for high-priority (class 1) customers satisfies the following integral equation:

f1(x) = λPc−1e
−cµx + λ1

∫ x∧τ1

0

e−cµ(x−y)f1(y)dy

+λ2e
−cµx

∫ τ2

0

f2(y)dy, (28)

where a ∧ b = min(a, b).
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Proof. Eq. (28) is similar to Eq. (18) with the following differences: The second

term on the RHS is the upcrossing rate caused by high-priority customers arriving at

the system when all servers are busy. In this case, if x > τ1, a tagged high-priority

customer can cause an upcrossing only if it arrives when the virtual waiting time

is less than its patience, i.e., 0 < y < τ1 (otherwise, it abandons the system). If

0 < x < τ1, it suffices to arrive at a system with a virtual waiting time less than

x, i.e., 0 < y < x, because in this case, the customer will not abandon and receive

service. The third term is the upcrossing rate caused by low-priority customers that

must wait for a positive amount of time y. A tagged low-priority customer causes an

upcrossing if it reaches the server and if the time until next departure after it reaches

the server is in excess of x.

To write the equation for f2(x), we need the busy period distribution Lc(x) as

in Section 3.1, this time considering deterministic patience limits. In the following

lemma, we provide the LT of the busy period in this M/M/c+D queue. First, let

α1 =
(cµ− s− λ1) +

√
(s+ λ1 − cµ)2 + 4cµs

2
,

α2 =
(cµ− s− λ1)−

√
(s+ λ1 − cµ)2 + 4cµs

2
,

γi = (cµ− αi −
λcµ

s+ cµ
)e−αiτ1 , i = 1, 2.

Lemma 6. The LT of the busy period in the M/M/c+D queue is

l̃c(s) =
cµ

γ1 − γ2

[
γ2
(
1− e−τ1(cµ−α2)

)
α2 − cµ

−
γ1
(
1− e−τ1(cµ−α1)

)
α1 − cµ

+
(γ1e

α1τ1 − γ2eα2τ1)e−cµτ1

cµ+ s

]
.

(29)

Proof. Similar arguments made in Section 3.1 apply here and Lc(x) is identically

distributed as the busy period in a single-class M/M/1 + D queue with λ1 as the

arrival rate, cµ as the service rate, and τ1 as the deterministic patience limit. We

resort to Perry and Asmussen [29] and Liu and Kulkarni [25] who provide l̃0(s, ξ),
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which is the conditional LT of the busy period in a single-class M/M/1 + D queue,

given that the service time initiating the busy period is a constant ξ:

l̃0(s, ξ) =


α1eα1ξ−α2eα2ξ

γ1−γ2 0 ≤ ξ ≤ τ1,

e−s(ξ−τ1)l̃0(s, τ1) ξ > τ1.

For our problem, we need to remove the condition on the first service time:

l̃c(s) =

∫ τ1

0

γ1e
α1ξ − γ2eα2ξ

γ1 − γ2
cµe−cµξdξ +

∫ ∞
τ1

e−s(ξ−τ1)l̃0(s, τ1)cµe
−cµξdξ,

which, after some simplification, reduces to Eq. (29).

Recalling that L
c
(x) denotes the complementary distribution of the busy period,

similar to Eq. (19), for low-priority customers we have the following result, which is

presented without a proof.

Lemma 7. The density function of the virtual waiting time for low-priority (class 2)

customers in the M/Mc+D queue satisfies the integral equation

f2(x) = λPc−1L
c
(x) + λ2

∫ x∧τ2

0

L
c
(x− y)f2(y)dy. (30)

Note that similar to Eq. (28), the second term on the RHS in Eq. (30) points

out that the upcrossing rate caused by low-priority customers arriving at the system

when all servers are busy depends on the level x.

Similar to Liu and Kulkarni [25], we introduce

k1(x) = L
c
(x) + λ2

∫ x

0

L
c
(x− y)k1(y)dy, (31)

k2(x) = L
c
(x) + λ2

∫ τ2

0

L
c
(x− y)k1(y)dy, (32)

which are used in the following proposition that gives the density functions of the

virtual waiting times. We denote the probability that a low-priority customer arriving

at the system when all servers are busy is eventually served by P c
2 (S) (noting that

P (W = 0) + P c
2 (S) = P2(S)), which also appears in proposition 3. By definition,

P c
2 (S) =

∫ τ2

0

f2(y)dy = λPc−1

∫ τ2

0

k1(x)dx. (33)
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We will elaborate on how to compute P c
2 (S) in the proof of proposition 3.

Proposition 3. In the M/M/c+D queue, the density function of the virtual waiting

time for high-priority (class 1) customers, f1(x), and that of low-priority customers,

f2(x), are given, respectively, by

f1(x) =


(λ2P

c
2 (S) + λPc−1) e

−(cµ−λ1)x, x < τ1,

(λ2P
c
2 (S) + λPc−1) e

λ1τ1e−cµx, x ≥ τ1,

(34)

f2(x) =


λPc−1k1(x), x < τ2,

λPc−1k2(x), x ≥ τ2,

(35)

where Pc−1 = ρc−1P0/(c− 1)!, in which

P0 =
1− λ2P c

2 (S)
[

1
cµ−λ1

(
1− e−(cµ−λ1)τ1

)
+ 1

cµ
e−(cµ−λ1)τ1

]
∑c−1

i=0
ρi

i!
+ λρc−1

(c−1)!

[
1

cµ−λ1 (1− e−(cµ−λ1)τ1) + 1
cµ
e−(cµ−λ1)τ1

] . (36)

Proof. We start with Eq. (30), the solution of which depends on the value of x

through x ∧ τ2, and with which we can express f2(x) as in Eq. (35).

Using the boundary equation P (W = 0) +
∫∞
0
f2(x)dx = 0, and the fact that

Pc−1 = ρc−1P0/(c− 1)!, we write

1− P (W = 0) =
λρc−1

(c− 1)!
P0

(∫ τ2

0

k1(x)dx+

∫ ∞
τ2

k2(x)dx

)
,

P0 =

(
c−1∑
i=0

ρi

i!
+

λρc−1

(c− 1)!

(∫ τ2

0

k1(x)dx+

∫ ∞
τ2

k2(x)dx

))−1
.

In order to solve for k1(x), we take the LT of both sides of Eq. (31). Letting k̃1(s)

denote the LT of k1(x), and as in previous sections, g̃0(s) the LT of L
c
(x), we have

k̃1(s) =
g̃0(s)

1− λ2g̃0(s)
, (37)

which can be used first to calculate k2(x), and then f2(x). Using Eq. (37), we can

also obtain P c
2 (S) in Eq. (33) where

∫ τ2
0
k1(x)dx can be computed by numerically
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inverting k̃1(s)/s. However, we need Pc−1 that requires P0, which in return calls for

evaluating
∫∞
τ2
k2(x)dx. As will be demonstrated shortly, this can be by-passed easily.

The same solution approach taken for f2(x) can be applied to solve Eq. (28),

which yields Eq. (34).

To bypass computing k2(x), which requires inverting both k̃1(s) and g̃0(s) numer-

ically, we first note that it is more convenient to use Eq. (17) for f1(x), i.e.,

P (W = 0) + (λ2P
c
2 (S) + λPc−1)

[∫ τ1

0

e−(cµ−λ1)xdx+ eλ1τ1
∫ ∞
τ1

e−cµxdx

]
= 1,

P (W = 0) +

(
λ2P

c
2 (S) +

λρc−1

(c− 1)!
P0

)[
1

cµ− λ1
(
1− e−(cµ−λ1)τ1

)
+

1

cµ
e−(cµ−λ1)τ1

]
= 1,

which, after simplification, gives us Eq. (36). Also from Eq. (33), we have

P0 =
P c
2 (S)

λρc−1

(c−1)!

∫ τ2
0
k1(x)dx

. (38)

Equating Eqs. (36) and (38), we can obtain P c
2 (S) and using either of these equations

gives P0.

We close this section by relating the virtual and actual waiting time distributions,

and explaining how to calculate the expected waiting times. The virtual waiting time

distribution for class i is

Fi(x) = P (W = 0) +

∫ x

0

fi(y)dy.

Thus,

P (Wi ≤ x) =


Fi(x), x < τi,

1, x ≥ τi,

and for served customers

P (Wi ≤ x|S) =


Fi(x)/Pi(S) x < τi,

1, x ≥ τi,

where

Pi(S) = P (W = 0) +

∫ τi

0

fi(x)dx.
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One can see that waiting time distributions can be calculated by only numerically

inverting k̃1(s)/s, without computing k2(x) in Eq. (32).

To compute the expected waiting times, we first note that E[Wi|A] = τi. The

conditional expected waiting time given that a type i customer is served is given by

E[Wi|S] =

∫ τi
0
xfi(x)dx

Pi(S)
.

For low-priority customers using Eq. (35) this becomes

E[W2|S] =
λPc−1

∫ τ1
0
xk1(x)dx

P2(S)
,

which can be computed by inverting k̃1(s) and numerically evaluating the integral.

For high-priority customers, however, the computation can be carried out more easily

using Eq. (34), and we have

E[W1|S] =
(λ2P

c
2 (S) + λPc−1)

∫ τ2
0
xe−(cµ−λ1)xdx

P1(S)

=
(λ2P

c
2 (S) + λPc−1)

(
1− e−τ2(cµ−λ1)(1 + τ2(cµ− λ1)

)
P1(S)(cµ− λ1)2

.

Finally, once we have E[Wi|S], E[Wi|A] in hand we can use Eq. (16) to find E[Wi].

4 FCFS queues with impatient customers

In this section, we model first the single server, then the multi-server FCFS queueing

systems with k classes of impatient customers. Class i customers arrive according

to a Poisson process with rate λi, have exponential times-to-abandon with rates ωi,

i = 1, . . . , k.

We start with the single server case. As before, let Bi(x) be the complementary

service time distributions for class i customers, and β̃i(s) its LT. The following lemma

provides the density function of the virtual waiting time and its LT when the reneging

rate is the same for all classes.
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Lemma 8. In the multi-class FCFS M/GI/1+M system, the density function of the

virtual waiting time for all classes of customers is the same and satisfies the integral

equation

f(x) = P0

k∑
i=1

λiBi(x) +
k∑
i=1

λi

∫ x

0

Bi(x− y)e−ωiyf(y)dy. (39)

If the reneging rate ω is the same for all classes, the LT of the virtual waiting time

is given by

f̃(s) = P0

∞∑
j=0

j∏
m=0

(
k∑
i=1

λiβ̃i(s+mω)

)
, (40)

where

P0 =

(
1 +

∞∑
j=0

j∏
m=0

(
k∑
i=1

λiβ̃i(mω)

))−1
.

Proof. Note that Eq. (39) is very similar to Eq. (1), except that we have more than

two classes and do not have different virtual waiting time density functions for each

class. Rather, f(x), is the density function of the virtual waiting time for all classes

of customers.

When we take the LT of both sides of Eq. (39), we have

f̃(s) = P0

k∑
i=1

λiβ̃i(s) +
k∑
i=1

λiβ̃i(s)f̃(s+ ωi). (41)

We are unable to solve for f̃(s) unless we assume the same reneging rate for each

class. By setting ω1 = . . . = ωk = ω, Eq. (41) becomes

f̃(s+ ω)− (
k∑
i=1

λiβ̃i(s))
−1f̃(s) = −P0,

and its solution (after employing Eq. (A.44)) is found as in Eq. (40), and P0 is

obtained using the normalizing equation P0 + f̃(0) = 1.

In the FCFS multi-server case with c servers, as in Section 3, each server has a

rate µ, and we assume that independent service times are exponentially distributed.

Let λ =
∑k

i=1 λi, and as before, ρ = λ/µ.
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Proposition 4. In the multi-class FCFS M/M/c + M system, the density function

of the virtual waiting time for all classes is given by

f(x) = Be
{
∑k
i=1

λi
ωi

(1−e−ωix)−cµx}
, (42)

where

B = λPc−1 =
λρc−1

(c− 1)!
P0,

and

P0 =

(
c−1∑
j=0

ρj

j!
+ λ

ρc−1

(c− 1)!

∫ ∞
0

e
{
∑k
i=1

λi
ωi

(1−e−ωix)−cµx}
dx

)−1
.

Proof. Eq. (39) can be re-written as

f(x) = λPc−1e
−cµx +

k∑
i=1

λi

∫ x

0

e−cµ(x−y)e−ωiyf(y)dy. (43)

Note that f(x) satisfies Eq. (17) where we substitute f(y) instead of fi(y).

To solve Eq. (43), we take the derivative with respect to x, which gives us the

following first order differential equation:

f
′
(x) ≡ df(x)

dx
=

k∑
i=1

λie
−ωixf(x)− cµf(x),

the solution of which has the form given in Eq. (42). Note that the constant B is

found by setting x = 0 in Eqs. (43) and (42). Finally, P0 can be computed from Eq.

(17).

With f̃(s) in Eq. (40) for the single server case or f(x) in Eq. (42), we can use

Eqs. (10)-(16) to compute the waiting time distributions, the fraction of customers

served and the mean waiting times for each class (and by replacing P0 with P (W = 0)

in these equations for the multi-server case). Note that in the single-server case with

identical reneging rates, all these measures (e.g., E[Wi|S]) will be the same for each

class. The difference will be in the mean system time of served customers due to

different mean service times added to E[Wi|S].
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An alternative approach to obtain f(x) for the multi-server case is to use the

single class M/M/c+Hk model (see Baccelli and Hebuterne, [3]) with Poisson arrival

rate λ and service rate µ where Hk is a k-stage Hyperexponential r.v., which is an

exponential r.v. with rate ωi with probability λi/λ.

5 Conclusion

In this paper, we model delay systems that are inspired from health-care systems,

customer contact centers, and communication networks. In all systems, multiple

classes of impatient customers are served. The first system involves a single server at-

tending to two classes of impatient customers in accordance with the non-preemptive

priority policy. Our contribution is incorporating general and class-specific service

time distributions in this setting. The second system has identical parallel servers

receiving classes of impatient customers that require the same type of service. Al-

though we assume the same exponential service time distribution for all customers,

we permit different classes to exhibit different times-to-abandon characteristics by

assuming class-specific deterministic patience limits or class-specific reneging rates

when patience times follow exponential distributions. The third system is operating

under the FCFS rule. Although, we introduce general and class-specific service time

distributions for multiple classes of customers, we can design a tractable solution only

when all customers have the same exponentially distributed patience limits. In all

models, we employ the level-crossing technique to express the virtual waiting time

density functions and obtain their LT’s. We relate these transforms to the classical

system performance measures.
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[20] Iravani, F., & Balcıoğlu, B. (2008b). On priority queues with impatient cus-

tomers. Queueing Systems 58: 239–260.

[21] Jagerman, D. L. (1982). An inversion technique for the Laplace transform. Bell

System Technical Journal. 61: 1995–2002.

[22] Jagerman, D. L. (2000). Difference Equations with Applications to Queues, Mar-

cel Dekker, Inc., New York.

[23] Jouini, O., & Dallery, Y. (2007). Stationary delays for a two-class priority queue

with impatient customers. Proceedings of the 2nd International Conference on

Performance Evaluation Methodologies and Tools, Nantes, France.

[24] Kleinrock, L. (1975). Queueing Systems Volume I: Theory, John Wiley & Sons,

New York.

[25] Liu, L., Kulkarni, V. G. (2008a). Busy period analysis for M/PH/1 queues with

workload dependent balking. Queuing Systems, 59: 37–51.

[26] Liu, L., & Kulkarni, V. G. (2008). Balking and reneging in M/G/s system exact

analysis and approximations. Probability in the Engineering and Informational

Sciences 22: 355–371.

[27] Milner, J. M., & Olsen, T. L. (2008). Service level agreements in call centers:

perils and prescriptions. Management Science 54: 238–252.

[28] Palm, C. (1953). Methods of judging the annoyance caused by congestion. Tele

2: 1–20.

[29] Perry, D., & Asmussen, S. (1995). Rejection rules in the M/G/1 queue. Queueing

Systems 19: 105–130.

28



[30] Rao, S. S. (1967). Queueing with balking and reneging in M/G/1 systems.

Metrika 12: 173–188.

[31] Rozenshmidt, L. (2008). On priority queues with impatient customers: station-

ary and time-varying analysis. Master’s Thesis, Technion - Israel Institute of

Technology, Haifa, Israel.

[32] Shantikumar, J. G. (1981). On level crossing analysis of queues. The Australian

Journal of Statistics 23: 337–342.

[33] Saltzman, S. M., & Mehrotra, V. (2001). A call center uses simulation to drive

strategic change. Interfaces 31: 87–101.

[34] Stanford, R. E. (1979). Reneging phenomenon in single channel queues. Mathe-

matics of Operations Research 4: 162–178.

[35] Stolletz, R., & Helber, S. (2004). Performance analysis of an inbound call center

with skills-based routing. OR Spectrum 26: 331–352.
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Appendix A The solution form and the conver-

gence of the series for Eqs. (3) & (4)

In this Appendix, we will show that the solution for the difference equations given in

Eqs. (3) and (4) is of the form

u(s) =
∞∑
j=0

−b(s+ jω)

a(s)a(s+ ω)...a(s+ jω)
, (A.44)

and that the series is uniformly convergent in s.

We start by showing the uniform convergence of the series in the solution of

Eq. (4). Assuming the existence of the LT’s g̃0(s) and κ̃(s), we note that g̃0(s) =

(1− l̃0(s))/s, and κ̃(s) = (1− h̃(s))/s, where s has a positive real part, i.e., Re(s) > 0.

Identifying a(s) = 1/(λ2κ̃(s)) and b(s) = −P0(1 + λ1g̃0(s))/(λ2κ̃(s)) from Eq. (4),

the jth term of the series in Eq. (5), which we denote by Uj(s), is

Uj(s) =
P0 + λ1g̃0(s+ jω)(λ2κ̃(s+ jω))−1P0

[λ2κ̃(s)λ2κ̃(s+ ω)...λ2κ̃(s+ jω)]−1

= P0λ
(j+1)
2

j∏
m=0

κ̃(s+mω) + P0

[
λ1g̃0(s+ jω)λj2

j−1∏
m=0

κ̃(s+mω)

]
.

Now observe that for s with Re(s) > 0, and all m ≥ 0

κ̃(s+mω) =

∫ ∞
0

e−(s+mω)xH(x)dx ≤
∫ ∞
0

e−(mω)xH(x)dx = κ̃(mω),

and similarly g̃0(s+mω) ≤ g̃0(mω). Hence, letting

Mj = P0λ
(j+1)
2

j∏
m=0

κ̃(mω) + P0

[
λ1g̃0(jω)λj2

j−1∏
m=0

κ̃(mω)

]
,

we have Uj(s) ≤ Mj for all s. We now claim that
∑∞

j=0Mj is absolutely convergent.
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Using the ratio test and noting that h̃(s)→ 0 and l̃0(s)→ 0 as Re(s)→∞, we have

lim sup
j→∞

∣∣∣∣Mj+1

Mj

∣∣∣∣ = lim sup
j→∞

P0λ
(j+2)
2

∏j+1
m=0 κ̃(mω) + P0

[
λ1g̃0((j + 1)ω)λ

(j+1)
2

∏j
m=0 κ̃(mω)

]
P0λ

(j+1)
2

∏j
m=0 κ̃(mω) + P0

[
λ1g̃0(jω)λj2

∏j−1
m=0 κ̃(mω)

]
= lim sup

j→∞

λ22κ̃(jω)κ̃((j + 1)ω) + λ1g̃0((j + 1)ω)λ2κ̃(jω)

λ2κ̃(jω) + λ1g̃0(jω)

= lim sup
j→∞

λ22
1−h̃(jω)

jω
1−h̃((j+1)ω)

(j+1)ω
+ λ1λ2

1−l̃0((j+1)ω)
(j+1)ω

1−h̃(jω)
jω

λ2
1−h̃(jω)

jω
+ λ1

1−l̃0(jω)
jω

= lim sup
j→∞

λ22(1− h̃(jω))1−h̃((j+1)ω)
(j+1)ω

+ λ1λ2
1−l̃0((j+1)ω)

(j+1)ω
(1− h̃(jω))

λ2(1− h̃(jω)) + λ1(1− l̃0(jω))

= 0 < 1,

and hence the series is indeed absolutely convergent. Therefore, since Uj(s) ≤ Mj

for all s, by Weierstrass M-Test, the series
∑∞

j=0 Uj(s) is uniformly convergent in

s. Similarly, by choosing a(s) = 1/(λ1β̃1(s)) and b(s) = −(P0 + λ2β̃2(s)(P0 +

f̃2(ω2)))/(λ1β̃1(s)) from Eq. (3), the jth term of the series in Eq. (5), which we

denote by Qj(s), is obtained. Then, one can show that
∑∞

j=0Qj(s) is uniformly

convergent in s as well. Finally, we observe that for any j ≥ 0, lims→∞ Uj(s) =

lims→∞Qj(s) = 0, and since both series are uniformly convergent in s, we also have

lims→∞
∑∞

j=0 Uj(s) = lims→∞
∑∞

j=0Qj(s) = 0. Therefore, the boundary conditions

f̃1(∞) = f̃2(∞) = 0, are satisfied for c = 0, and hence by uniqueness of the density

functions f1(x), f2(x) (and their LT’s) we can conclude that the solution of Eqs. (3)

and (4) has the form given in Eq. (A.44).

31


