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Abstract In this paper, we present a method to estimate a deformation
field between two instances of a brain volume having tumor. The novelties
include the assessment of the disease progress by observing the healthy tissue
deformation and usage of the Neo-Hookean strain energy density model as
a regularizer in deformable registration framework. Implementations on syn-
thetic and patient data provide promising results, which might have relevant
use in clinical problems.

1 Introduction

Registration of brain volumes with tumors is important to track the changes
between two instances in order to assess the progression of the tumor and
the treatment response. The first step is a rigid/affine registration between
volumes. Although this is a challenging problem due to the changes caused by
the tumor, various approaches on the problem reported successful results in
the literature [4, 15, 13]. The total deformation caused by the tumor growth
can be taught as the combination of infiltration to the healthy tissue and
mass effect components. Our aim in this work is to separate the mass effect
and infiltration components, so that, malignancy and the reversibility of the
destruction can be determined. The healthy brain tissue in one of the images
can be warped onto the other ignoring the tumor tissue regions, as the latter
may contain uncertainty due to highly complex tumor growth and therapy
processes. Hence, matching only the healthy tissues in baseline and follow-up
tumor images provides an estimation of the intracranial pressure caused by
the tumor growth plus the mass effect.
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A similar problem arises in deformable registration of the brain with tu-
mors to a healthy population atlas. The main difference to the intra-subject
registration problem is that the deformation also includes inter-subject varia-
tions. Hence, a general strategy to solve this problem is to iterate the forward
model by simulating the tumor growth on the atlas and refining the param-
eters of the simulation model by comparing it to the tumor image [6]. This
requires strong models, which rely on realistic models of tumor growth and
deformations due to the mass effect [6, 8, 2, 14]. The main problem with
those approaches is that the growth of the tumor is mostly affected by the
uncontrolled parameters such as treatment and requires sophisticated tumor
growth models even without treatment. In ”Geometric Metamorphosis” pa-
per, Niethammer et.al, proposed an interesting approach to the problem using
a weak model by separating the foreground, hence the tumor growth, and the
background changes [11].

Fig. 1: A sample axial slice from baseline (on the right) and follow-up (on
the left) MRI.

For the problem of intra-subject registration, our approach is based on
the assumption that the deformations except around the tumor volume are
caused by the mass effect of the tumor, hence obey the bio-mechanical rules.
This is different from the atlas matching problem, since there is also inter-
subject variations between the images. Sample baseline and follow-up MRI
slices are shown in Figs. 1 and 2. Deformation of the ventricles and sulci due
to the mass effect of the growing tumor can be clearly observed on the right
hemisphere. Although, a mapping of the tumor tissue between the baseline
and the follow-up is not well defined due to the uncertain growth pattern
and therapy effects, a mapping between the healthy tissues can be estimated.
Therefore, our aim is to find a mapping between the healthy tissues of the
brains, which obeys the nonlinear elastic finite deformation models.

The results of the experimental studies on animals suggest to model the
brain with a homogeneous hyper-viscoelastic non-isotropic material [9]. In
the image analysis literature, simplified hyper-elastic or linear models are
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Fig. 2: A sample coronal slice from baseline (on the right) and follow-up (on
the left) MRI.

used: Neo-Hookean [7], Ogden type [16, 10], Saint-Venant Kirchhoff model
[18], linear elastic [3], linear viscoelastic type [2]. In their work, compar-
ing viscoelastic, hyper-elastic and linear elastic models on brain simulations,
Wittek et. al. reports no significant difference on the results obtained [17].
In ”Nonlinear Elastic Registration with Unbiased Regularization in Three
Dimensions”, Saint-Venant Kirchhoff model was used as a regularizer in the
registration of serial magnetic resonance images [18].

Our novel contributions in this paper are: (i) Matching healthy tissue to
healthy tissue of the brain using a dedicated image data term; (ii) Using
the hyper-elastic Neo-Hookean strain energy density as a regularizer in de-
formable registration framework; (iii) Derivation of displacement field update
equations based on the Neo-Hookean model.

2 Methods

2.1 Background

The mechanical properties of a hyper-elastic material are characterized com-
pletely by a scalar strain-energy density function W. Specifying the strain
energy density W as a function of deformation gradient tensor F: W = W (F )
ensures that the material is perfectly elastic. The general form of the strain
energy density is guided by experiment [1].

Let us define the displacement field from the un-deformed to deformed
configuration as u : Ω −→ R3 where Ω ∈ R3. In addition to the strain energy
density W = W (x,∇u), let f = f(x, u(x)) denote the external energy, then
the equilibrium configurations can be determined as the minima of the total
energy functional:
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I(u) =

∫

Ω
W (x,∇u)dx−

∫

Ω
f(x, u)dx (1)

The Euler-Lagrange system associated with the functional I is precisely the
equilibrium equations:

div(
∂W

∂F
(x,∇u(x))) +

∂f

∂u
(x, u(x)) = 0 (2)

where Fij = σij +
∂ui
∂xj

and ∂W
∂F

T
is called the First Piola-Kirchhoff tensor.

Common constitutive hyper-elastic strain energy density models include [12]:

• St Venant-Kirchhoff material:

W (F ) = α(trE)2 + βtr(E2) where E =
1

2
(FTF − I) (3)

• Neo-Hookean material:

W (F ) = a‖F‖2 + g(detF ) where a > 0 (4)

2.2 Hyper-elastic Registration for Tumor Follow-up

Let R(x) and T(x) denote the brain tissue maps (White Matter + Gray
Matter + Tumor) of reference (undeformed) and target (deformed) volumes
respectively. We are assuming the mechanical properties of white matter and
gray matter are similar. The problem is to find the displacement u from the
volume R to T, which minimizes the given functional:

u∗ = argmin
u

∫

Ω
f(R(x), T (x− u(x))) + αW (x,∇u)dx (5)

where f is the external energy density term calculated as a similarity measure
between the two volumes and α is the weighting parameter of the regularizer
term W .

Distance maps to the binary segmentations are used, instead of common
image similarity measures, such as mutual information. In this way, state of
the art segmentation methods specific to the problem could be used to obtain
reliable image forces. Reliability of the image term is especially important for
the proposed regularizer dominant approach.
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2.3 Volumetric Data Term

Since a mapping between the two solid body is needed, all the displacements
from the reference should point towards inside of the target body. This is
ensured by the following external energy density term:

fV (x, u(x)) = χR(x)DT (x+ u(x)) (6)

where χR is the indicator function of the reference body, with the value of 1
for the points inside and 0 for the outside. DT is the distance function to the
target body, where DT is zero inside the target body and takes the distance
values outside the target body. The goal is that the displacement vectors can
move freely inside the target volume. To derive the Euler-Lagrange condition
for this energy density, the derivative of the functional in Eq. 6 is written as:

∂

∂u
fV (x, u(x)) = χR(x)

∂

∂u
DT (x+ u(x)) (7)

This is simply the gradient of the distance function of the target body:

∂

∂u
fV (x, u(x)) = χR(x)∇DT (x+ u(x)) (8)

2.4 Boundary Data Term

In addition, a solution that matches the outside surfaces of the two bodies, is
required. Therefore, another external energy density is added which penalizes
the distance from the surface of the reference body to the surface of the target.
We note that, displacement vectors can still move on the target surface freely.
This is ensured by the following energy term:

fB(x, u(x)) = χ∂R(x)D∂T (x+ u(x)) (9)

where χ∂R is the indicator function of the boundary of the reference body,
having the value of 1 for the points on the boundary and 0 elsewhere. D∂T is
the distance function to the boundary of the target body. The Euler-Lagrange
condition for this energy density is:

∂

∂u
fB(x, u(x)) = χ∂R(x)

∂

∂u
D∂T (x+ u(x)) = χ∂R(x)∇D∂T (x+ u(x)) (10)
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2.5 Hyper-elastic Regularizer

For simplicity, assuming nonlinear hyper-elastic model in Ogden form as in
[10]:

W =
2µ

α2
(λ̄1

α
+ λ̄2

α
+ λ̄3

α − 3) +
1

D1
(J − 1)2 (11)

where principal strains λ̄i = λi/J1/3, λi = e1/2i , ei’s are eigenvalues of B =
FFT , J is the determinant of the deformation J = det(F ) and deformation
gradient tensor Fij =

∂ui
∂xj

+δij . In [9], α parameter of the model for the brain

tissue is determined as α = −4.7. For simplicity, in this work we will use
α = 2, which is known as the Neo-Hookean model. By replacing Tr(B) =
λ2
1 + λ2

2 + λ2
3, the strain energy density function becomes:

W =
µ

2
(
Tr(B)

J2/3
− 3) +

1

D1
(J − 1)2 (12)

Let us derive the Euler-Lagrange condition on the displacement field u for
minimizing the given strain energy functional in terms of the trace and de-
terminant. The derivative of the energy density W with respect to ui is given
by:

∇uiW =
∂W

∂ui
−

∑

j

∂

∂xj

∂W

∂(∂ui/∂xj)
(13)

The first term drops, as the energy density functional W is not dependent on
the u but its derivatives. The derivative with respect to ∂ui/∂xj is identical
to the derivative with respect to Fij , therefore, rewriting Eq. 13 results in:

∇uiW = −
∑

j

∂

∂xj

∂W

∂Fij
(14)

Now, we need the derivatives ∂W
∂Fij

, which is also known as the 1st Piola-

Kirchhoff tensor in mechanics literature. After a set of manipulations, the
following derivative is obtained:
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∇uiW = − µ

J2/3

∑

j

(
∂F

∂xj
)ij +

2µ

3J2/3

∑

j

FijTr(F
−1 ∂F

∂xj
)

−(
µTr(B)

3J2/3
− 2J(J − 1)

D1
)
∑

j

(F−1 ∂F

∂xj
F−1)ji

−(
2µTr(B)

9J2/3
+

2J(2J − 1)

D1
)
∑

j

(F−1)jiTr(F
−1 ∂F

∂xj
)

+
2µ

3J2/3

∑

j

(F−1)jiTr(
∂F

∂xj
FT )

(15)

2.6 Implementation Details

A multi-resolution approach is implemented to increase the convergence
speed. Volumes are down-sampled using trilinear interpolation and the ob-
tained displacement field is interpolated to the higher resolution at the end
of each stage.

The update equation for the displacement field u is obtained by the gra-
dient descent method as:

∂u

∂t
= −(Eq.8 + Eq.10 + Eq.15) (16)

If the maximum change due to the regularizer is greater than 1, the update
of the displacement is normalized by dividing to the maximum update:

∇uW =

{ ∇uW
max(∇uW ) if ∇uW > 1

∇uW otherwise
(17)

Scaling of the strain energy density function of the regularizer term is arbi-
trary. Therefore, instead of having two independent parameters µ and D1 for
the energy functional in Eq. 12, the algorithm is affected mainly by the ratio

µ
1/D1

= µD1.
The effect of a µD1 at a higher limit is shown on the sub-figure at the cen-

ter of Fig. 4, which corresponds to the first term in Eq. 12, whereas, the effect
of a zero µD1 is shown on the right sub-figure of Fig. 4, which corresponds to
the second term. In this work, our aim is to estimate the cause (tumor defor-
mation) by observing the result (displacement at the boundaries). Therefore,
we assure the reversibility by enforcing a highly incompressible behavior to
prevent the energy to be stored in the material, which we can not observe
by MRI. This is achieved by penalizing the local volume changes more by
setting a low µD1. We also assume that the total volume increase of the
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brain parenchyma is mostly caused by the increase of the tumor volume.
Therefore, by setting the tumor region as a hole for the regularizer, which
does not contribute to the external energy, and using an incompressible strain
energy density, the observed local volume changes at the boundaries of the
parenchyma are carried to the tumor area. We also note that, by decreasing
the µ, the dependence of the strain energy density to the model parameter α
in Eq. 11 is decreased, which strengthen our simplification approach of using
Neo-Hookean model (α = 2) instead of Ogden form with α = −4.7.

Starting with an initial time step δt for the regularizer, the value is halved
if the strain energy is not decreased by updating the displacement field.

The first derivatives are calculated by using central difference finite differ-
encing scheme as:

Vx(x, y, z) =
V (x+ h, y, z)− V (x− h, y, z)

2h
(18)

The derivative ∂F
∂xj

is given by the following matrix:

∂F

∂xj
=





∂2u1
∂x1∂xj

∂2u1
∂x2∂xj

∂2u1
∂x3∂xj

∂2u2
∂x1∂xj

∂2u2
∂x2∂xj

∂2u2
∂x3∂xj

∂2u3
∂x1∂xj

∂2u3
∂x2∂xj

∂2u3
∂x3∂xj





Its components are calculated by second order finite difference discretization
as:

Vxx(x, y, z) =
V (x− h, y, z)− 2V (x, y, z) + V (x+ h, y, z)

h2

Vxy(x, y, z)=
V (x+h, y+h, z)−V (x+h, y−h, z)−V (x−h, y+h, z)+V (x−h, y−h, z)

4h2

(19)

Other derivative components are calculated similarly. At the boundaries, one-
sided differences are used, for both the first and the second order derivatives.

3 Experiments and Results

3.1 Regularizer Test

To test the regularizer initially, the algorithm is run on 10x10x10 mask on a
20x20x20 lattice with a single constant displacement vector (0.0001,0.0001,0.0)
and zero boundary conditions. The central xy-plane of the input and the re-
sult obtained with µ = 0.8 and D1 = 1.0 is given in Fig. 3 with a closer
look at Fig. 4. The effect of setting the parameters of the model at the lower
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and higher limits is shown on the middle and the right sub-figures of Fig. 4.
Although, incompressibility is a necessity for our problem as discussed in the
method, setting a non-zero value to µ helps to increase the stability of the
solution.

Fig. 3: Left: Input phantom for the regularizer test. Right: Output of the
regularizer test.

Fig. 4: Left: A closer view of the output of the regularizer test on phantom.
Middle: The result obtained on phantom by increasing µ in the strain energy
density model in Eq. 12. Right: The result obtained on phantom by setting
the µ as zero in the strain energy density model in Eq. 12.
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3.2 Phantom Results

To test the algorithm, two synthetic volumes are created as a sphere and
an ellipsoid. Firstly, the method is run to determine the displacement field
from sphere to ellipsoid by considering only the image terms, without the
regularization. The results obtained with these external energies alone are
shown in Fig. 5.

Fig. 5: The central slices of the results obtained on synthetic volumes by
applying the volumetric data term only (on left) and boundary data term
only (on right) without regularization.

The central xy-plane of the result obtained by considering both image
terms and the regularizer with µ = 0.4 and D1 = 1.0 is given in Fig. 6. Since
the target volume is larger than the reference, the incompressibility, enforced
by a low µ, results curled field to minimize the change of the volume. Shortfall
appearance of the vectors is due to the 2D slice visualization of the 3D vector
field.

3.3 Experiments on MRI Brain Tumor Followup
Volumes

3.3.1 The Data

MR images of a brain tumor patient (Glioblastoma Multiforme), obtained by
1.5T MRI scanner at high resolution (≈ 0.5x0.5x1.0 mm) contiguous axial
T1 weighted 3D SPGR (TE/TR = 3.16s/8.17s, FA=25) sequence acquired
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Fig. 6: The result obtained on the synthetic volumes. Reference spherical
volume is labeled with white color, the blue contour represents the boundary
of the target ellipsoid, and the displacement field from sphere to ellipsoid is
indicated with arrows in red color.

after IV injection of 10cc 0.5M Multihance Gd, is used for validation study.
The sample slices of the baseline and the follow-up volume, obtained 35 days
after, are given in Fig. 1 and 2.

3.3.2 Preprocessing MRI Volumes

Statistical Parametric Mapping (SPM) software 1, distributed by Wellcome
Trust Centre for Neuroimaging, London, which gives accurate results in brain
volumes with tumors, is used for standard operations such as: rigid registra-
tion, segmentation and smoothing. Specifically, the following preprocessing
operations are applied to the data before the execution of the deformable
registration:

• Follow-up volume is registered to the baseline volume using co-register
function of SPM8.

• White matter (WM) and gray matter (GM) segmentations (P > 0.5) are
obtained for both volumes using SPM8.

• Tumors in both volumes are segmented using the Tumor-cut algorithm [5].
• For each of the volumes, Tumor, WM and GM segmentations are combined

using: ΩTumor ∪ΩWM ∪ΩGM .

1 http://www.fil.ion.ucl.ac.uk/spm/
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• Each combined binary volume is smoothed by smooth function of the
SPM8 with a Gaussian kernel having 8x8x8mm full width at half maxi-
mum.

• Finally, binary maps are converted to isotropic voxels (1x1x1mm).

3.3.3 Results

Sample slices of the result obtained on tumor patient data is shown in Fig. 7.
Intense displacement on the hemisphere with tumor, due to the mass effect,
can be observed. At the bottom of the sub-figure on the right, displacement
of the sulci due to the increased cerebrospinal fluid (CSF) pressure can be
seen. Also, the increase in the CSF pressure results slight displacements at the
ventricles of the healthy hemisphere, on the top. Displacement field, overlayed

Fig. 7: Sample slices of the result obtained on tumor patient data in 3x3x3mm
voxel size. Binarized brain tissue of the reference volume is labeled in white
color, the blue contour indicates the boundary of the target volume, and the
displacement field is indicated with arrows in red.

on a sample axial slice of the reference MRI in high resolution, is given in
Fig. 8. The mass effect around the tumor is clearly observed. A closer look to
the ventricle at the hemisphere without tumor depicts the displacement due
to the expansion of the ventricle. When we focus on the displacement around
the tumor as in Fig. 9, the displacement caused by the mass-effect (at the
top) and the tumor growth (on the right) can be observed. The vectors at
the the bottom-left of the tumor explains the local shrinkage of the tumor as
a tissue displacement.

4 Discussion and Conclusions

A method to register the brain tissues in baseline and follow-up MRI volumes
using finite deformation models is presented. Implementations on synthetic
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Fig. 8: Displacement field (in red) overlayed on a sample MRI slice of the
reference volume, with the boundary of the target volume indicated with the
blue contour. A closer look to the ventricle of the hemisphere without tumor.

Fig. 9: A closer look to the tumor where the baseline tumor volume is labeled
with white color, the follow-up tumor boundary is indicated with blue contour
and the displacement field is overlayed with red arrows.

���
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and patient data, with only minimal user interaction, provide promising re-
sults, which might have relevant use in clinical problems. Publicly available
state-of-the-art algorithms for the rigid registration and tissue/tumor seg-
mentation are able to provide highly accurate outputs, which is a necessity
to obtain an accurate displacement field. Accuracy of the method could be
increased by improving the data term, such as by adding vessel correspon-
dences or manual landmarks.
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