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ABSTRACT

In this work, we present an automatic branch and stenoses de-

tection method that is capable of detecting all types of plaques

in Computed Tomography Angiography (CTA) modality. Our

method is based on the vessel extraction algorithm we pro-

posed in [1], and detects branches and stenoses in a very

fast way. We demonstrate the performance of our branch

detection method on 3 complex tubular structured synthetic

datasets for quantitative validation. Additionally, we show

the preliminary results of stenoses detection algorithm on 11

CTA volumes, which are qualitatively evaluated by a cardiol-

ogist expert.

Index Terms— stenosis detection, segmentation, CTA,

tubular structures, branch detection, vessel trees, coronary ar-

teries

1. INTRODUCTION

In the last decade, CAD (Coronary Artery Disease) has been

the leading cause of death worldwide [2]. Extraction of ar-

teries is a crucial step for accurate visualization, quantifica-

tion, and tracking of pathologies. Especially, early detection

and quantification of plaques is of high interest. However,

interpreting and detecting the plaques requires substantial ex-

perience. It can take several hours for the physicians to do

manual plaque segmentation for a single CTA dataset. An

automated and fast system that can identify the severe and

moderate stenoses could be an alternative to the physicians in

the emergency cases.

For the automatic detection of plaques, delineation of

coronary arteries is important. Creating a robust fully auto-

matic vessel extraction algorithm is one of the most challeng-

ing and ongoing problems in the literature. According to the

amount of interaction, methods can be classified into three

categories: fully automatic, semi-automatic, or interactive.

Fully automatic vessel extraction algorithms, such as [3], im-

plicitly deal with branching. Interactive methods mostly do
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not handle branching, since user interaction is provided for

every branch. Some semi-automatic methods explicitly repre-

sent bifurcations. For instance, Mohan et. al. [4] suggested a

K-means clustering algorithm with an assumption that vessels

have at most two branches to be separated. Li et. al. [5] pro-

posed to use a 4D interactive key point searching scheme. A

comprehensive treatment of the vessel segmentation methods

can be found in [6] and [7] surveys.

A variety of algorithms have been proposed in the liter-

ature for detection of the plaques in CTA images. However,

most of them focus on calcifications, and require substantial

user involvement [8]. The most recent work [9] detects and

identifies the severe stenoses automatically. However, after

the centerline extraction, it requires centerline verification and

lumen segmentation steps before stenosis detection.

In this paper, we aim to extract coronary vessel branches

from CTA scans and to detect possible abnormalities on arter-

ies. To achieve this goal, we first apply a simple thresholding

technique (Section 2.1) as a prefilter to remove calcifications

on arteries. Then, we detect the branches in a vessel tree (Sec-

tion 2.3) based on our vessel extraction method [1] (Section

2.2), which constructs an intensity-based tensor that fits to

a vessel, which is inspired from diffusion tensor image (DTI)

modeling. Finally, we propose a plaque detection method that

can detect all severe plaques in a vessel tree (Section 2.4).

2. METHODS

2.1. Preprocessing

Vessel calcifications are not part of the vessel lumen, for this

reason, they are eliminated before applying the vessel tractog-

raphy algorithm. The images are prepared for segmentation

using a thresholding technique by setting the voxel intensity

for vessel calcifications equal to the intensity of the myocar-

dial tissue [10].

2.2. Vessel Extraction

In our previous work [1], we designed a novel tensor model

for tubular structure segmentation. The anisotropic tensor
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inside the vessel drives the segmentation analogously to a

tractography approach in DTI. Our model is capable of find-

ing vessel orientation, centerline (central lumen line) and its

thickness (vessel lumen diameter) at the same time.

2.3. Branch Detection

In order to extend our vessel tractography (VET) model to

tubular trees, we propose an unsupervised clustering method,

which is capable of detecting any number of branchings from

a parent coordinate. In our method, we assume that the

branches of the vessel tree have similar intensity distributions

with the main branch, and have a diameter in a given anatom-

ical range. Our method is initialized with a single seed point

and the entire vessel tree can be captured by a non-parametric

automatic branch detection algorithm we propose.

First, we search the branches on a spherical surface

around the current coordinate. Branch candidate coordinates

are calculated as:

c (i) = c (un−1) + 2rgi, gi ∈ g (1)

where g represents orientations on S
2, r is a radius parame-

ter, r ∈ [rmin, rmax], and c (un−1) is the current centerline

coordinate.

2.3.1. Branch Candidate Elimination

We apply three criteria to eliminate the branch candidates that

are found by (1):

(i) We search the branch coordinates in a
5

3
π field of view,

which avoids the branch candidates that are already pro-

cessed.

(ii) The coordinates, which are out of vessel are eliminated.

Mathematically; the intensity mean of the sphere, μsph1 ,

centered at the potential branch coordinate, c(i), is de-

fined with a sphere sph1 = sph(c(i), r), and the in-

tensity mean of the sphere, μsph0
, centered at the seed,

cseed is expressed with sph0 = sph(cseed, rseed). In-

tensity mean ratio, β, is applied for the potential branch

candidates using μsph1 ≥ μsph0β. When the poten-

tial branch candidate has a mean intensity higher than

μsph0
β, the tensor fitting [1] is applied at that coordi-

nate, otherwise it is eliminated. Vessel direction of the

branch coordinate, v3, is found as the minor eigenvector

of the vessel tensor.

(iii) Branch candidate coordinates, which have vessel direc-

tion that are along the same direction of the current ves-

sel, are eliminated.

Figure 1(a) illustrates the elimination process of branch

candidates. Black balls represent the coordinates that

are eliminated. On the other hand, red balls are the co-

ordinates that will be clustered.

2.3.2. Clustering of Branch Coordinates

After the branch coordinates are found, vessel direction of the

branch coordinates, v3, are used as a feature for clustering. If

v3 of the tensor of the potential branch coordinate is not in the

direction of the current path, v3 and its coordinate is put into

a new cluster or to an already existing cluster as follows:

(i) When the vector v3 is closer to the directions in one

of the previously formed clusters, it is inserted into an

appropriate cluster with its corresponding coordinate;

(ii) When the vector v3 has a distinct orientation, a new

cluster is constructed, and this vector is added with its

corresponding coordinate to that cluster.

Detected branch coordinates and orientation vectors are

stacked into clusters. Then, coordinate mean of each cluster

is calculated and labelled as a branch coordinate. Figure 1(b)

depicts the clustering of branch coordinates (red balls). In the

Y-shaped vessel, two branches are found and clustered.

2rr
c(un-1)

(a) (b)

Fig. 1. (a) Branch Elimination process; Black balls: elimi-

nated coordinates, Red balls: coordinates that will be clus-

tered in the next step. (b) Clustering of branch coordinates;

Y-shaped vessel splits into two clusters.

2.4. Stenosis Detection

Candidate stenoses regions are identified using the lumen

radii, which are estimated during the vessel extraction pro-

cess.

After the vessel extraction, longitudinal views of each

branch are formed for further visualization of stenoses on

them. They are created by concatenating the image cuts of

the data around the centerline coordinates (Figure 2(a)).

Next, we analyze the estimated radius profile and detect pos-

sible stenoses regions on arteries. In our stenosis detection

algorithm, we mainly focus on the proximal part of the coro-

nary arteries as the diseases are mostly detected in this region.

However, since the thickness near to ostium can be anatomi-

cally varying, it may lead to wrong detection. So, we discard

the part of the vessel until first fall is observed in the radius

profile. In other words, we omit the region near to coronary

ostium. Possible stenoses regions are the intervals for which
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the radius constitutes a valley. To find these regions, first,

the estimated radius curve is smoothed by Gaussian filtering

(Figure 2(a), blue). Then, we look at the energy profile of

the derivative of the radius curve to detect the start and end

points of the stenosis. In Figure 2(b), green plot depicts

the derivative of the radius profile: (o, +) pairs indicate the

start and end points of the stenosis regions. In Figure 2(a),

stenotic lesion is indicated by red.

(a)

(b)

Fig. 2. An example of a CTA data: (a) The presented method

detects severe stenoses caused by calcified plaque and non-

calcified plaque regions (red); (b) The graphs at the bottom

show the smoothed lumen radii estimate (blue) and derivative

(green). Detected stenoses regions are depicted by red (o, +)

pairs.

3. RESULTS AND EXPERIMENTS

In the first part of this section, we first give a quantitative

validation of the performance of our method on 3 synthetic

vascular image volumes, which are obtained from the work

of Hamarneh and Jassi’s [11] that simulate volumetric images

of vascular trees and generate the corresponding ground truth

segmentations. Then, we evaluate the performance of our al-

gorithm by adding two levels of salt and pepper noise to three

data, and compare our results with the region growing (RG)

algorithm. We also analyze the performance of our algorithm

by adding Gaussian noise with two different variances. For

each case, a single seed point is selected from each tree, then

entire vessel tree is segmented automatically. We used 128
unit directions, g , on S

2 and the radius range is selected be-

tween 0.25 and 4 mm. Additionally, β, ratio of intensity mean

of the spheres is heuristically set to 0.85 for all experiments.

In the second part, we first evaluate our stenoses detection

method on synthetic varying cylinder dataset [12]. At last, we

show the qualitative performance of our method on real CTA

data.

3.1. Branch Detection

As the performance of whole vessel tree segmentation corre-

lates directly with branch detection, we show the overlap-like

measures of the segmentation map here. We used four dif-

ferent quantitative measures for the synthetic validation as TP

(True Positive), FN (False Negative), FP (False Positive) and

OM (Overlap Measure) between the estimated vessel map and

the ground truth vessel map. Table 1 shows the comparison

of the region growing algorithm with our method. Our al-

gorithm is more resistive to salt and pepper noise compared

to region growing algorithm. Table 2 shows the performance

analysis of our method in the presence of two levels of Gaus-

sian noise: σ2
noise = 20, σ2

noise = 60. As it is seen from the

results, the algorithm is able to detect correctly most of the

vessel structures and branches in all cases.

Table 1. Comparisons of the segmentation results of our

method (VET) with the region growing (RG): additional salt

& pepper noise with weights of 0.05 and 0.2.
Measure data 1 data 2 data 3

(%) RG VET RG VET RG VET
W

ei
g

h
t=

0
.0

5 TP 66.28 93.28 65.91 94.02 69.91 94.91

FN 33.72 6.72 34.09 6.08 30.09 5.09

FP 0.19 8.83 0.20 6.09 0.63 5.33

OM 79.63 92.31 79.35 93.97 82.28 94.80

W
ei

g
h

t=
0

.2 TP 63.02 92.04 48.92 93.21 60.10 93.54

FN 36.98 7.96 51.08 6.79 39.90 6.46

FP 1.22 8.91 0.60 6.13 0.17 5.82

OM 76.74 91.60 65.44 92.35 74.99 92.49

Table 2. Performance analysis of our method in the presence

of two levels of Gaussian noise: σ2 = 20, σ2 = 60.
Measure data 1 data 2 data 3

(%) σ2 = 20 σ2 = 60 σ2 = 20 σ2 = 60 σ2 = 20 σ2 = 60

TP 92.89 90.65 93.78 91.43 94.23 92.28

FN 7.11 9.35 6.22 8.57 5.77 7.72

FP 8.45 8.97 6.73 7.92 6.13 6.86

OM 92.27 90.82 93.54 91.73 94.06 92.76

Figure 3 depicts the result of our algorithm on one of the

three synthetic vascular dataset from Hamarneh and Jassi’s

work [11] with additional salt and pepper noise by 0.2 weight.

Extracted centerline of the dataset is shown by green. Vessel

tree with radial thickness is shown by orange on the right.

3.2. Stenosis Detection

We first tested our algorithm on synthetic, contrast and radii

varying dataset. Detected stenosis region of the volume is de-

picted by red (Figure 4). Then, we apply our algorithm on 11

CTA volumes to detect calcifications, mixed plaques and soft

plaques; and the results are evaluated by a cardiologist expert

visually. Figure 5 depicts the application of our method to

three different cases. In all cases, our method can locate all

severe stenotic lesions correctly.
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(a) (b)

Fig. 3. Extracted vessel tree from the 101 × 101 × 101 syn-

thetic vascular dataset with salt and pepper noise of weight

0.2.

Fig. 4. An example of a stenosis detection: Synthetic vessel

volume with varying radius, detected stenosis region is de-

picted by red.

4. CONCLUSION

In this paper, an automatic method for the detection of

branches of arteries and stenotic lesions in CTA is proposed.

We demonstrated the performance of our branch detection

method quantitatively on 3 complex tubular structured syn-

thetic datasets. Additionally, detected stenoses on 11 CTA

volumes were shown for qualitative validation of the method.

Further extensive validation studies of stenoses detection will

be carried out and presented in the next phase of this work.

5. REFERENCES

[1] S. Cetin, G. Unal, A. Demir, and M. Degertekin, “Ves-

sel tractography using an intensity based tensor model,”

The MICCAI Workshop on CVII, 2011.

[2] WHO, “The 10 leading causes of death by broad in-

come group (2004),” World Health Organization Media
Center, editor., October 2008.

[3] S. Zambal, J. Hladuvka, A. Kanitsar, and K. Buhler,

“Shape and appearance models for automatic coronary

artery tracking,” In MICCAI 2008 Contest: 3D Segmen-
tation in Clinic: A Grand Challange, 2008.

[4] Vandana M., Ganesh S., and Allen T., “Tubular surface

segmentation for extracting anatomical structures from

medical imagery,” IEEE Trans. Med. Imag., pp. 1945–

1958, 2010.

(a) (b)

(c)

Fig. 5. Stenoses labeling are shown by red: (a) soft plaque,

(b) calcifications, (c) mixed plaque.

[5] H. Li, A. Yezzi, and L. Cohen, “3d multi-branch tubular

surface and centerline extraction with 4d iterative key

points,” in MICCAI ’09: Part II, Berlin, Heidelberg,

2009, pp. 1042–1050, Springer-Verlag.

[6] C. Kirbas and F. Quek, “A review of vessel extraction

techniques and algorithms,” ACM Comput. Surv., vol.

36, pp. 81–121, June 2004.

[7] D. Lesage, E.D. Angelini, I. Bloch, and G. Funka-

Lea, “A review of 3D vessel lumen segmentation tech-

niques,” Med. Imag. Anal., vol. 13, no. 6, pp. 819–845,

Dec. 2009.

[8] S. Wesarg, M. Khan, and E. Firle, “Localizing calcifica-

tions in cardiac ct data sets using a new vessel segmen-

tation approach,” Journal of Digital Imaging, vol. 19,

pp. 249–257, 2006.

[9] B. M. Kelm, S. Mittal, Y. Zheng, and et al., “Detec-

tion, grading and classification of coronary stenoses in

computed tomography angiography,” in MICCAI’11:
Part III, Berlin, Heidelberg, 2011, pp. 25–32, Springer-

Verlag.

[10] Ola Friman, Milo Hindennach, Caroline Kühnel, and

Heinz-Otto Peitgen, “Multiple hypothesis template

tracking of small 3D vessel structures,” Med. Imag.
Anal., vol. 14, no. 2, pp. 160–171, Apr. 2010.

[11] G. Hamarneh and P. Jassi, “Vascusynth: Simulating vas-

cular trees for generating volumetric image data with

ground-truth segmentation and tree analysis,” Comput-
erized Medical Imaging and Graphics, vol. 34, no. 8,

pp. 605 – 616, 2010.

[12] Karl Krissian and Gr Malandain, “Syntheti-

cal test images for vascular segmentation algo-

rithms,” http://lmi.bwh.harvard.edu/
research/vascular/SyntheticVessels/
SyntheticVesselImages.html.

585


