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ABSTRACT

In this paper, we propose a new, simple, fast, and effective
method to enforce temporal smoothness on nonnegative ma-
trix factorization (NMF) solutions by post-smoothing the
NMF decomposition results. In NMF based single-channel
source separation, NMF is used to decompose the magnitude
spectra of the mixed signal as a weighted linear combination
of the trained basis vectors. The decomposition results are
used to build spectral masks. To get temporal smoothness of
the estimated sources, we deal with the spectral masks as 2-D
images, and we pass the masks through a smoothing filter.
The smoothing direction of the filter is the time direction of
the spectral masks. The smoothed masks are used to find
estimates for the source signals. Experimental results show
that, using the smoothed masks give better separation results
than enforcing temporal smoothness prior using regularized
NMF.

Index Terms— Single channel source separation, non-
negative matrix factorization, and speech-music separation.

1. INTRODUCTION

In single channel source separation problems, only one ob-
servation of the mixed signal is available. The solution of
this problem usually relies on training data for each source
signal. The training data are used to train a set of repre-
sentative vectors for each source signal. The mixed signal is
then decomposed with the trained representative vectors. The
decomposition results are used to find an estimate for each
source. The intuitive assumption of the decomposition re-
sults is the temporal smoothness and continuity between the
consequent frames. In [1, 2, 3], the continuity and smooth-
ness were enforced within the NMF decomposition by using
different regularized NMF cost functions. In [4], the conti-
nuity was enforced within the decomposition algorithm with
a penalized least squares approach. Enforcing continuity and
smoothness within the decomposition algorithm needs to de-
fine a cost function for the temporal continuity, which makes
the decomposition algorithm slightly more complicated.

In this work, we propose a simple and effective method
to enforce temporal smoothness on the estimated source sig-
nals. In this work, NMF [5] is used to train a set of basis
vectors for each source by decomposing the magnitude spec-
tra of their training data. After observing the mixed signal,
a regular NMF is used to decompose its magnitude spectra
with the trained basis vectors for all sources. The NMF de-
composition results are used to build a spectral mask. The
spectral mask explains the contribution of each source signal
in the mixed signal. To enforce temporal smoothness on the
estimated source signal, we pass the spectral mask through a
smoothing filter. The spectral mask is treated as a 2-D image
signal. In this work, we investigate three different types of
smoothing filters. First filter, is the median filter. The sec-
ond filter, is the moving average low pass filter. The third,
is the Hamming windowed moving average filter, which we
note it as Hamming filter for short. Here, we have more
freedom to choose any length for the filter, which means we
can consider smoothness between more than two consequent
frames. We also have different ways of smoothing the spec-
tral mask. The final estimates for the source signal magnitude
spectrograms are found by element-wise multiplication of the
smoothed spectral mask with the magnitude spectrogram of
the mixed signal. That means, the entries of the estimated
magnitude spectrogram for each source are the scaled version
of their corresponding entries in the mixed signal magnitude
spectrogram.

The remainder of this paper is organized as follows: In
section 2, a mathematical description of the single channel
source separation problem is given. In section 3, we give a
brief explanation about NMF and how it is used in source
separation. In section 4, we explain our main contribution
in this paper, which is the smoothed spectral mask approach.
In the remaining sections, we present our observations and
results of our experiments.

2. PROBLEM FORMULATION

In single-channel source separation problems, we aim to find
estimates of source signals si(t) that are mixed when a single
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mixture is available. This problem is usually solved in the
short time Fourier transform (STFT) domain. Let X(t, f) be
the STFT of x(t), where t represents the frame index and f
is the frequency-index. Due to the linearity of the STFT, we
have:

X(t, f) =

N∑
i=1

Si(t, f), (1)

where Si(t, f) is the unknown STFT of source i in the mixed
signal, and N is the number of sources in the mixed signal.
In this framework [1, 6], the phase angles of the STFT were
usually ignored. Hence, we can approximately write the mag-
nitude spectrum of the measured signal as the sum of source
signals’ magnitude spectra as follows:

|X(t, f)| =
N∑
i=1

|Si(t, f)| . (2)

We can write the magnitude spectrogram in matrix form as
follows:

X =

N∑
i=1

Si, (3)

where S = {S1, ..,Si, ..,SN} are the unknown magnitude
spectrograms of the source signals, and need to be estimated
using the observed mixed signal and the training data. The
magnitude spectrogram for the observed signal x(t) is ob-
tained by taking the magnitude of the DFT of the windowed
signal.

3. NON-NEGATIVE MATRIX FACTORIZATION

Non-negative matrix factorization (NMF) is a matrix factor-
ization algorithm with nonnegativity constraints. The non-
negative matrix V can be decomposed into a nonnegative ba-
sis vectors matrix B and a nonnegative gains matrix G as
follows:

V ≈ BG. (4)

In this work, the matrices B and G can be found by solving
the following generalized Kullback-Leibler divergence cost
function [5]:

min
B,G

D (V ||BG) , (5)

where

D (V ||BG) =
∑
k,l

(
V k,l log

V k,l

(BG)k,l
− V k,l + (BG)k,l

)
,

subject to elements of B,G ≥ 0. The solution for equa-
tion (5) can be computed by alternating updates of B and G
as follows [5]:

B ← B ⊗
V
BG

GT

1GT
, (6)

G← G⊗
BT V

BG
BT 1

, (7)

where 1 is a matrix of ones with the same size of V , the
operation⊗ is element-wise multiplication, and divisions also
are element-wise operations.

3.1. Training the bases

The available training data for each source signal is used with
NMF to train a set of basis vectors for each source in magni-
tude spectral domain as follows:

Strain
i ≈ BiG

train
i , (8)

where Bi is the matrix that contains the set of basis vectors in
its columns, Strain

i is the magnitude spectrogram of the train-
ing data for source i. The NMF multiplicative update rules in
equations (6, 7) are used to solve for Bi and Gtrain

i . In each
iteration, we normalize the columns of Bi and find Gtrain

i ac-
cordingly. All the matrices Bi and Gtrain

i are initialized by
positive random noise. For each source i there is a corre-
sponding trained basis matrix Bi and a gains matrix Gtrain

i .
The trained basis matrices are only used in the separation pro-
cess as we explain in the next sections.

3.2. Decomposing the mixed signal

After observing the mixed signal x(t), NMF is used to decom-
pose the magnitude spectrogram matrix X but with a fixed
concatenated bases matrix as follows:

X ≈ BG, or X ≈ [B1, ..,Bi, ..,BN ]



G1

.

.
Gi

.

.
GN


, (9)

where the matrices B1, ...,BN are the N trained basis ma-
trices corresponding to N source signals that are found from
solving equation (8). The only unknown in equation (9) is
the gains matrix G, which is a combination of submatrices
as shown in equation (9). The gains matrix can be found us-
ing the gain multiplicative update rule in equation (7). G is
initialized by positive random noise. The estimate of the mag-
nitude spectrogram of source i is found by multiplying its cor-
responding basis matrix Bi with its corresponding gains sub-
matrix Gi in the gains matrix G in equation (9) as follows:

S̃i = BiGi. (10)

4. SOURCE SIGNALS RECONSTRUCTION AND
SMOOTHED MASKS

Instead of finding the source signal estimates using equation
(10) as usually used in literature, we have proposed a different
method to find the estimates of the source signals [7]. The
solution of equation (9) is used to build a spectral mask for
source i as follows:

Ai =
(BiGi)

p∑N
j=1 (BjGj)

p
, (11)



where p > 0 is a parameter, (.)p, and the division are element
wise operations. Notice that, elements of Ai ∈ [0, 1], and us-
ing different p values leads to different kinds of masks. These
masks will scale every entry of the mixed signal magnitude
spectrogram with a ratio that explains how much each source
contributes in the mixed signal as follows:

Ŝi = Ai ⊗X, (12)

where Ŝi is the final estimate of the magnitude spectrogram
of source i, and ⊗ is element-wise multiplication. As shown
in [7, 8], changing the value of p may improve the perfor-
mance of the separation results. When p = 2, the mask can
be considered as a Wiener filter, and when p = ∞ we get a
binary mask.

Typically, in the literature [1], the continuity and smooth-
ness between the estimated consequent frames are enforced in
the solution of the matrix G in equation (9). In this work, we
enforce smoothness by applying different smoothing filters to
the spectral mask Ai. We deal with the mask as a 2-D im-
age, and we apply the smoothing filter in two different ways
using three different type of filters for each way. The first
way of applying the smoothing filter to the spectral mask is as
follows:

Hi = ξ

(
(BiGi)

p∑N
j=1 (BjGj)

p

)
, (13)

where ξ (.) is a smoothing filter. The second way of applying
the smoothing filter to the spectral mask is as follows:

Hi =
(Biξ (Gi))

p∑N
j=1 (Bjξ (Gj))

p
, (14)

which means we apply the smoothing filter on the gains ma-
trices only in the spectral mask formula.

The first type of filters that are used in this work is the
median filter, which replaces the entry values of the mask
by the median of all entries in the neighborhood. The sec-
ond filter is the moving average low pass filter. The 1-D
moving average low pass filter coefficients cn are defined as
cn = 1

b , n = {1, 2, ...., b}, where b is the filter length. The
third filter is the Hamming windowed moving average filter
“Hamming filter” for short with 1-D coefficients cn defined
as cn = 1

cwn, n = {1, 2, ...., b}, where c is chosen such
that

∑
n cn = 1, and w is the Hamming window with length

b. The direction of the smoothing filter is usually in the time
axis, which is the horizontal axis of the spectral mask. As
we elaborate in the next sections, it is important to note that,
both methods of applying the smoothing filters on the spec-
tral mask are neither similar to applying the same smoothing
filter to the gains matrix G without mask, nor applying the
same smoothing filter to the estimated magnitude spectra of
the source signals.

After finding suitable estimates of the magnitude spectro-
grams of the source signals. The estimated source ŝi(t) can be

found by using inverse STFT to the estimated source magni-
tude spectrogram Ŝi with the phase angle of the mixed signal.

5. EXPERIMENTS AND DISCUSSION

We applied the proposed algorithm to separate a speech sig-
nal from a background piano music signal. Our main goal
was to get a clean speech signal from a mixture of speech
and piano music. We simulated our algorithm on a collec-
tion of speech and piano music data at 16kHz sampling rate.
For training speech data, we used 540 short utterances from
a single speaker, we used other 20 utterances for testing. For
music data, we downloaded piano music from piano society
web site [9]. We used 38 pieces from different composers but
from a single artist for training and left out one piece for test-
ing. The magnitude spectra of the training speech and music
data were calculated by using the STFT: A Hamming win-
dow with 480 points length and 60% overlap was used and
the FFT was taken at 512 points, the first 257 FFT points only
were used since the conjugate of the 255 remaining points are
involved in the first FFT points. The test data was formed by
adding random portions of the test music file to the 20 speech
utterance files at different speech-to-music ratio (SMR) val-
ues in dB. The audio power levels of each file were found
using the ”audio voltmeter” program from the G.191 ITU-T
STL software suite [10]. For each SMR value, we obtained
20 test utterances this way.

We trained 128 basis vectors for each source in equation
(8), which makes the size of each trained basis matrix Bspeech
and Bmusic to be 257×128, and we fixed the parameter p = 3
in equation (11). Those choices gave good results on the same
data set in [7].

Performance measurement of the separation algorithms
was done using the signal to noise ratio (SNR).

For comparison with our proposed algorithm, we applied
the continuity prior algorithm in [1] on our training and test-
ing data set. In [1], the solution of G in equation (9) was
found by solving the following regularized Kullback-Leibler
divergence cost function:

C (Bd,G) = Cr (Bd,G) + αCt (G) . (15)

Table 1. SNR in dB for the estimated speech signal using only NMF and
with using regularized NMF in [1].

SMR Just NMF regularized NMF regularized NMF

dB No Mask αs = 10−5 αs = 10−5

No priors αm = 10−5 αm = 10−3

-5 6.17 6.13 3.53
0 9.15 9.16 7.37
5 10.81 10.81 10.18

10 12.81 12.81 14.58
15 14.02 14.03 17.60
20 14.67 14.66 20.37



Table 2. SNR in dB for the estimated speech signal using spectral mask without and with smoothing filter, with different filter types and different filter size
a× b.

SMR Just Median Filter Moving Average Filter Hamming Filter

dB Using a = 1 a = 1 a = 1 a = 1 a = 2 a = 1 a = 1 a = 1 a = 1 a = 2 a = 1 a = 1 a = 1 a = 1 a = 2

Mask b = 3 b = 5 b = 7 b = 9 b = 3 b = 2 b = 3 b = 5 b = 7 b = 3 b = 3 b = 5 b = 7 b = 9 b = 3

-5 7.05 7.26 7.44 7.45 7.30 7.04 7.18 7.34 7.38 7.32 6.84 7.17 7.39 7.43 7.42 6.72
0 10.37 10.69 10.86 10.82 10.71 10.47 10.56 10.72 10.74 10.57 10.13 10.51 10.76 10.80 10.75 10.01
5 12.46 12.80 12.95 12.92 12.73 12.31 12.60 12.77 12.72 12.44 11.87 12.59 12.81 12.81 12.70 11.78

10 15.23 15.83 16.03 15.97 15.78 15.40 15.44 15.65 15.53 15.13 14.67 15.40 15.68 15.66 15.50 14.54
15 17.05 17.81 17.98 17.91 17.72 17.54 17.34 17.52 17.32 16.81 16.56 17.24 17.55 17.50 17.28 16.43
20 18.40 19.37 19.56 19.58 19.41 19.11 18.74 18.87 18.63 18.07 17.87 18.60 18.91 18.84 18.60 17.75

Table 3. SNR in dB for the estimated speech signal using spectral mask after smoothing the matrix G in the mask, with different filter types and different
filter size a× b.

SMR Median Filter Moving Average Filter Hamming Filter

dB a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1 a = 1

b = 3 b = 5 b = 7 b = 3 b = 5 b = 7 b = 9 b = 11 b = 3 b = 5 b = 7 b = 9 b = 11 b = 13

-5 7.16 7.17 7.15 7.56 7.79 7.85 7.82 7.74 7.21 7.60 7.76 7.85 7.88 7.89
0 10.46 10.48 10.41 10.95 11.16 11.18 11.12 10.99 10.56 10.97 11.13 11.20 11.22 11.20
5 12.57 12.69 12.57 13.12 13.40 13.48 13.44 13.31 12.67 13.15 13.35 13.46 13.51 13.51

10 15.57 15.59 15.54 16.19 16.49 16.58 16.56 16.48 15.53 16.20 16.43 16.55 16.60 16.61
15 17.57 17.54 17.29 18.25 18.60 18.73 18.75 18.70 17.44 18.26 18.53 18.68 18.76 18.79
20 19.00 19.06 18.89 19.85 20.33 20.56 20.67 20.59 18.86 19.87 20.24 20.46 20.68 20.67

Where Bd =
[
Bspeech, Bmusic

]
, Cr is the generalized

Kullback-Leibler divergence cost function in (5), α is the reg-
ularization parameter, and Ct is the continuity penalty term
that was defined as follow:

Ct (G) =

K∑
k=1

1

σ2
k

T∑
t=2

(
gk,t − gk,t−1

)2
, (16)

where k, t are the row and column index of the gains ma-

trix G, and σk =
√(

1
T

)∑T
t=1 g

2
k,t. In our experiment, we

chose different values for the regularization parameter for
each source signal. αs is the regularization parameter for the
speech continuity prior and αm is for the music continuity
prior.

Table 1, shows the signal to noise ratio results of the es-
timated speech signal. We chose the best results according
to different values of the parameters αs and αm. We also
show the separation results using only NMF without any con-
tinuity prior or any spectral masks. As we can see from the
table, using NMF with continuity prior remarkably improves
the separation results at SMR higher than 5dB, but it does not
improve the results at low SMR ratio.

Table 2, shows the signal to noise ratio results of the es-
timated speech signal using spectral mask without and with
smoothing filter as in equation (13). In this table, we show
the results for different types of filters and different filter size
a × b. Where a is the size of the filter in the vertical direc-
tion, which is the frequency direction of the spectral mask,
and b is the size of the filter in the horizontal direction, which
is the time direction of the spectral mask. If a > 1 then the

filter is smoothing in the frequency direction. If b > 1, the
filter is smoothing in the time direction, which is equivalent
to temporal smoothness. As we can see from the table, us-
ing the median filter gives better improvement in the results
than using other filters. Also, we can see that, using smoothed
spectral mask gives better results than using only the spectral
mask. Smoothing the mask in frequency direction as shown
in the table for a > 1 cases, does not improve the results but
it degrades the performance.

Table 3 shows the signal to noise ratio of applying the
smoothing filter only on the matrix G in the mask as shown
in equation (14). In this table, we got the best SNR results by
using the Hamming filter.

It is important to note that, finding the estimates of the
sources by smoothing G in the mask formula is different than
finding the estimate by smoothing G without mask. Finding
the final estimate of the source signal magnitude spectrogram
by smoothing G without mask degrades the separation per-
formance as we can see from Table 4. In Table 4, we found
the final estimate of the speech magnitude spectrogram as fol-
lows:

Ŝspeech = Bspeechξ(Gspeech), (17)

where Bspeech is the trained basis matrix for the training
speech signal, Gspeech is the speech gains submatrix in the
gains matrix G in equation (9). The smoothed G in (17) is
not a minimum of D (X||BG), and it does not guarantee the
sum of the two estimated sources to be equal to the mixed
signal. Smoothing G inside the spectral mask in equation



(14) guarantees the sum of the two estimated sources to be
equal to the mixed signal. This explains the better results in
Table 3 comparing to the results in Table 4.

Table 5 shows the differences between applying the
smoothing filter to the spectral mask as in Table 2, and apply-
ing the smoothing filter directly to the estimated magnitude
spectrogram. In Table 5, we estimated the speech magnitude
spectrogram as follows:

Ŝspeech = ξ
(
Aspeech ⊗X

)
. (18)

This means, we applied the mask on the mixed signal mag-
nitude spectrogram and then we smoothed the result. The
effect of the smoothing filter on the widely changing term
Aspeech ⊗X is different than the effect of the smoothing fil-
ter on the mask Aspeech ∈ [0, 1] in equation (11). As we can
see from Tables 2 and 5, smoothing the spectral mask in (13)
gives better results than the smoothing in equation (18).

In Tables 4 and 5, we showed the results for b = 3 only.
Since using b = 3 did not yield better results than the pro-
posed approaches, we did not continue for larger b.

Table 4. SNR in dB for the estimated speech signal with smoothing G
without using mask with different filters with a = 1, b = 3.

SMR Median Moving Average Hamming
dB Filter Filter Filter
-5 5.29 5.89 6.18
0 7.17 8.52 9.11
5 7.99 9.83 10.70
10 8.97 11.34 12.62
15 9.46 12.18 13.78
20 9.71 12.59 14.38

Table 5. SNR in dB for the estimated speech signal with smoothing the
estimated magnitude spectrogram of speech signal with different filters with
a = 1, b = 3.

SMR Median Moving Average Hamming
dB Filter Filter Filter
-5 6.96 7.05 7.18
0 9.86 10.06 10.49
5 11.49 11.69 12.54
10 13.49 13.68 15.25
15 14.59 14.80 17.03
20 15.27 15.48 18.30

Comparing the results of enforcing temporal smoothness
in the spectral mask as shown in Tables 2 and 3, with the
results of using regularized NMF in Table 1, we can see that
using smoothed masks give better results for all SMR values.
We got the best results as shown in Table 3 by using Hamming
filter to smooth the mask using equation (14). Smoothing the
mask using equation (14) is the only method in this paper that

guarantees the sum of the estimated source signals to be equal
to the observed mixed signal.

Comparing our results in Tables 2 and 3, with the results
of using only NMF without using the smoothed masks as
shown in the first column in Table 1, we can see that, our
proposed method improves the results by 6dB in some cases.

Audio demonstrations of our experiments are available at:
http://students.sabanciuniv.edu/grais/speech/nmfwssm/

6. CONCLUSION

In this work, we studied new methods to enforce smoothness
on NMF solution rather than using regularized NMF. The new
methods are based on post smoothing the NMF decomposi-
tion results. The NMF was used to decompose the magnitude
spectra of the mixed signal as a nonnegative weighted linear
combination of the trained basis vectors. The decomposition
results are used to build spectral masks, then the masks were
smoothed. The smoothed masks were used to find an estimate
for each source in the mixed signal.
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