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ME Master’s Thesis, 2010

Thesis Supervisor Assist. Prof. Dr. Kemalettin ERBATUR

Abstract

Research on autonomous platforms ranging from unmanned aerial and 
underwater vehicles to wheeled, tracked and legged machines enlarges the application 
boundaries of robotic systems. The control of these platforms, however, is a challenging 
task which requires the availability or estimation of various feedback variables. 
Orientation information of the autonomous platform is vital for robotic control. 

A variety of approaches and instruments are reported in the literature for 
orientation estimation with inertial sensors. Many approaches are based on Kalman 
filters. The use of Extended Kalman filters (EKF), Unscented Kalman filters and 
complimentary Kalman filters are proposed too.

This thesis concentrates on the estimation of orientation from measurements 
provided by inertial sensors. The use of three-axial linear accelerometers and rate gyros 
is considered. The sequential use of two estimators is proposed for orientation 
estimation. The first one is a Kalman Filter and it is employed for the gravity estimation 
mainly based on acceleration readings. The second estimator has the structure of an 
Extended Kalman Filter which uses the gravity estimate generated by the first estimator 
and rate gyro readings for the orientation estimation. Orientation is estimated in a 
multivariable fashion, without the simplifying assumption of decoupling between one-
dimensional rotations about the three gyroscope axes. Therefore quite large angles of 
rotation can be handled accurately.

The presented approach uses a quaternion representation which avoids 
representation singularities common with orientation descriptors like Euler angles. The 
computational efficiency is improved by the quaternion representation too. 

In order to test the estimation methods, experimental studies are carried out. A 
three-degrees-of-freedom robot is designed and built. The accelerometer and gyroscope 
unit is mounted at the tool end of this manipulator which generated test motion in the 
experiments. In order to create a basis for comparison, robot joint encoder data is used 
and actual rotation matrices during the motion are computed. The experiments indicate 
that the proposed technique delivers reliable orientation estimates in a large range of 
rotation angles and motion frequencies. 
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BİR OTONOM ROBOT YÖNELİM TAHMİN TEKNİĞİNİN DENEYSEL 

DOĞRULANMASI

Iyad F.I. Hashlamon

ME Yüksek Lisans Tezi, 2010

Tez Danışmanı Y. Doç. Dr. Kemalettin ERBATUR

Özet

İnsansız hava araçlarından deniz altı araçlara ve tekerlekli, paletli, bacaklı 
makinalara varan konularda yürütülen araştırmalar robot sistemlerinin uygulama 
alanlarını genişletmektedirler. Ne var ki, bu tür platformların kontrolü geri beslemede 
kullanılan birçok değişkenin tahmin edilmesini gerektiren zor bir görevdir. Otonom 
platformun yö nelim bilgisi robot kontrolü için hayati önem taşır. 

Literatürde atalet sensörleri ile yönelim tahmini için çeşitli yaklaşım ve 
enstrümanlar rapor edilmiştir. Birçok yaklaşım Kalman süzgeçlerine dayalıdır. 
Genişletilmiş Kalman süzgeçlerinin (EKF), Kokusuz Kalman süzgeçlerinin ve 
tümleştirici Kalman süzgeçlerinin kullanımı da önerilmiştir.

Bu tez atalet sensörlerinin sağladığı ölçümlere dayanan yönelim tahmini 
üzerinde yoğunlaşmaktadır. Üç eksenli doğrusal ivmeölçerlerin ve jiroskopların 
kullanımı üzerinde durulmaktadır. Yö nelim tahmini için iki tahmin algoritmasının 
ardışık kullanımı önerilmektedir. Bunlardan ilki bir Kalman süzgecidir ve bu süzgeç ana 
olarak ivmeölçer verilerine dayanan bir yer çekimi tahmini için kullanılmaktadır. İkinci 
algoritma Genişletilmiş Kalman filtresi yapısındadır ve ilk algoritma ile elde edilen yer 
çekimi tahminini ve jiroskop verilerini kullanarak yö nelim tahminini 
gerçekleştirmektedir. Yönelim, jiroskop eksenleri çevresindeki tek boyutlu dönüşlerin 
ayrıklığı basitleştirici varsayımı kullanılmaksızın, çok değişkenli bir şekilde tahmin 
edilmektedir. Bu şekilde, oldukça büyük dönüş açıları hassas bir şekilde ele 
alınabilmektedir. 

Sunulan yaklaşım bir kuaterniyon gösterimini kullanmaktadır. Bu gösterim 
Euler açıları gibi bir takım gösterimlerde rastlanan gösterim singülaritelerini 
engellemektedir. Kuaterniyon gösterimi ile algoritmanın bilgisayarda işlenme yükü de 
azalmaktadır. 

Tahmin yöntemlerini teste tabi tutmak için deneysel çalışmalar yapılmıştır. Üç 
serbestlik dereceli bir robot tasarlanmış be imal edilmiştir. İvmeö lçer ve jiroskop birimi 
deneylerde test hareketlerini gerçekleştiren bu manipülatörün uç platformuna monte 
edilmişlerdir. Karşılaştırmaya baz teşkil etmesi için robot enkoderlerinden okunan 
eklem konumları hareket sırasında gerçek dönüş matrislerinin hesaplanmasında 
kullanılmışlardır. Deneyler, önerilen tekniğin geniş dönüş açısı ve hareket frekansı 
aralıklarında güvenilir yönelim tahminleri ürettiğini göstermektedir.
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1 INTRODUCTION

The orientation estimation of a platform is the estimation of its body attitude in 3-

D with respect to a reference frame using sensors data. In this thesis the reference frame 

is a world fixed coordinate system and the estimation uses measurements from a 3-axes 

accelerometer and a 3-axes rate gyroscope. 

The determination of orientation of an autonomous robotic platform from 

imperfect data plays an important role in the control. The estimated body attitude is

used in the control loops of these systems. The success of estimation depends on several 

factors. The main factor can be listed as: i) Quality of sensors (such as inertial 

measurement units, gyroscopes, accelerometers, magnetometers and GPS based 

measurement systems), ii) Estimation method implemented (such as observers and 

Kalman filters), iii) Orientation representation employed (such as rotation matrices, 

Euler angles, fixed axes rotation angles and quaternions).

Although in certain applications a high quality gyroscope can be used for the 

attitude calculation by integration alone, such precise gyroscopes are expensive. 

Relatively more affordable gyroscopes have bias and noise problems and produce 

generally unsatisfactory results by integration alone. The accelerometer can be used for 

the orientation estimation too. However, it functions satisfactorily only for low

frequency ranges. Therefore, providing a cost-effective solution under adverse effects of

noise and sensor bandwidth limitations is a challenge calling for sophisticated 

estimation techniques.

Kalman filtering presents a strong solution. It combines the strengths of 

observers and Bayesian approaches. In a Kalman filter, predicted data are compared 

with measured data and their difference is fed back to the system over a state estimation 

correction gain. This gain is determined in a statistically optimal way and noise 
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characteristics (probability distributions associated with the process and sensor noise 

signals) are used in its computation, unlike deterministic observer gains. For plants with 

nonlinear state space descriptions, a modification of the Kalman Filter, an Extended 

Kalman Filter (EKF) can be employed. Although the optimality of the state estimation 

correction gain is compromised, quite satisfactory estimation performance can be 

obtained by the EKF.  

A considerably great effort has been done in the fusion of the inertial sensing 

instruments using Kalman filters in many perspectives such as navigation, aircraft 

technology, and biomechanics. Fusion methods have dramatically gained an increased 

interest. In reported studies on orientation estimation with accelerometer and rate 

gyroscope sensor data, Kalman filtering is used in such a way to solve the trade-off 

between a good short-term precision (when a gyroscope is used) and a reliable long-

term precision (when accelerometer is used). A combination of the measurements of the 

two instruments in order to make use of the advantages of each instrument and 

alleviating their limitations is sought. However, most methods have their limitations, 

such as the assumption of well known gravity, working for low angles, singularities, 

high computational cost, and no guarantee for error bound.

The estimation scheme also depends on the orientation representation employed.

Roll-Pitch-Yaw angles, Euler angles, rotation matrices, axis-angle representations, and 

unit quaternions are commonly used representations of orientation. Each of these has its 

own advantages and disadvantages. The Euler angle representation is simple but has 

high computational cost and singularities. Rotation matrices are easy to use with no 

singularities and moderate computational cost. The quaternion representation has no 

singularities too and it presents the lowest computational cost although but it has no 

direct physical interpretation. 

The next section presents a literature survey on the use of sensors, attitude 

representations and techniques employed for orientation estimation.
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1.1 A Survey on Orientation Estimation

The rapid and high technological development in inertial measurement units 

(IMU) makes them popular and widely used. Amongst commonly used instruments are, 

gyroscopes, accelerometers, and magnetometers.

The attitude estimation can be realized using a combination mechanism of the 

above mentioned sensors. The integration of the instantaneous angular velocity 

measured by a very high quality gyroscope can be used for the attitude estimation of 

dynamic systems [1]. However, these gyroscopes have to be accurate and produce a 

stable output which makes them very expensive. At the same time; the ordinary 

gyroscopes have bias and noise which limit their estimation capability to short time 

running [2]. The accelerometers are contaminated by the sensor noise which limits their 

estimation to work in the low frequency region, and they measure both linear and 

gravity accelerations. The magnetometers are disturbed by metals [3]. Combining 

accelerometers and magnetometers is another way for attitude estimation [4], where the 

deduced gravity from the accelerometer signal used to estimate the roll and pitch angles 

while the yaw angle is estimated from both signals. Although [4] presents a simple 

method, the accelerometer signal used has components other than the gravity 

acceleration and these components affect the estimated results.

Some of the studies used the gyroscope with GPS, others used GPS with 

magnetometers and accelerometers, or used gyroscope, magnetometers and 

accelerometers together [5-7].

The attitude estimation for a flying vehicle [8] from a low-cost IMU and 3-axis 

magnetometer measurements using two nonlinear complementary filters is done with 

the Euler angles representation. However, this study is realized only for the mentioned 

system in takeoff and landing. A linear complementary filter is used in [9] for roll and 

pitch angle estimation by fusing the measurements from the gyroscopes and the tilt-

meters in the frequency domain, assuming small variations of orientation angles. In [10] 

an estimated virtual angular velocity provided by the low pass sensors is used for the 

bias estimate and the complimentary filter is used afterwards to recover the actual 

attitude.
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Kalman filter [11] is helpful for the orientation estimation in combining the data 

from several noisy measurements. That is because it incorporates the observer theory 

and the Bayesian approach [12]. Kalman filters are like observer models. As a result, 

they can be used for modeling complex, dynamic and continuous systems. However, the 

gain determination depends on the noise or the probability distribution associated with 

the sensor signals unlike the deterministic gain of the observer. 

The Kalman filter used in [13] uses 3-axes accelerometers, 3-axes gyroscopes 

and magnetometers for attitude estimation. The method uses the Euler angles 

representation and it assumes the availability of the estimated linear acceleration. This 

assumption does not hold in all cases and the Euler representation has the disadvantage 

of representation singularities too. A Kalman filter and an Extended Kalman filter with 

quaternion representation were used for the estimation using the Newton method or 

Gauss-Newton method to find a corresponding quaternion for each pair of 

accelerometer and magnetometer measurements [14, 15]. The computed quaternion is 

then combined with the angular rate measurements, and presented to the Kalman filter 

as its measurement. In the same context, instead of using Gauss-Newton method, the 

quaternion estimator algorithm [16, 17] is used in [18] to calculate the attitude of the 

system with respect to a fixed frame. [18] computes the quaternion which rotates the 

measured vectors to the fixed frame. For better performance, the Factored quaternion 

algorithm [19] is used for the same purpose in [18]. It estimates the orientation based on 

measurements of three sequential rotations about three orthogonal axes.

In [20], a switching algorithm with a Kalman filter is used to switch between 

high and low acceleration cases for a walking robot, for the attitude estimation using a 

gyroscope (assuming exact angular velocity measurements) and an accelerometer. In 

this study, the bias is not considered during the derivation. In low acceleration the linear 

acceleration is assumed to be zero and hence the accelerometer reading is the gravity 

vector whereas in high acceleration the linear acceleration is treated as an unknown 

disturbance.

Other reports used Kalman filter with strapdown integration. Strapdown with 

quaternion representation approach was studied in [21] where the gyroscope is used 

when the body is in motion while the accelerometer is used in the static inclination by 

double integrating the acceleration. However, this work is only applicable to periodic 
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movements. In [22] the strapdown integration is used to find a predicted orientation 

estimate, and this estimate is then corrected by two methods: The first one considers the 

accelerometer reading as gravity vector which corrects the predicted quaternion. The 

second method uses corrected quaternion samples to form a linear interpolation between 

them, and then corrects the other samples in between the two corrected samples. A 

quaternion Kalman filter is introduced in [23] where the quaternion is corrected 

depending on the linear pseudo measurement equation of gravity. The quaternion 

constrained Kalman filter is used in [24] which keeps the unity norm of the quaternion.

An accelerometer with a magnetometer for low frequency components, and the 

gyroscope for high frequencies were utilized to track the human limbs in real time in 

[25]. Nevertheless, this study is applicable to 2D, and magnetometers have a problem in 

the vicinity of ferromagnetic metals. Similarly, inclination using both gyroscope and 

accelerometer is estimated and then the difference between them is used in 

complementary Kalman filter for the final estimation in [26]. However, it operates on 

the errors of the primary estimated states with no guarantee on the bound of this error 

especially for long time operations [27].

The Extended Kalman filter is widely used for the estimation of nonlinear 

system behavior [28]. The EKF is employed with several fusion approaches and 

orientation representations. EKF applications with quaternion representation can be 

found in [29, 30, 32], and EKF with Euler representation is reported in [31]. Its 

principle is finding the Jacobian for both the process function and the measurement 

function forming a state space representation linearized around the estimated state. 

However, Jacobian matrices may be difficult to be obtained for high order systems. 

Furthermore, the linear approximation of the system may introduce errors in the state 

which may lead the state to diverge over time [33]. 

In [34] the EKF with Euler representation is used to estimate the roll and pitch 

angles. It considers an inclinometer when the acceleration is lower than a threshold 

whereas it only integrates the gyroscope reading when the acceleration is higher than 

the threshold. In [35], EKF is used for the real time attitude estimation of a spacecraft 

using the quaternion representation:
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The unscented Kalman filter (UKF) is used for nonlinear system without 

linearization. It works by using the same nonlinear function to propagate a fixed number 

of sigma points [33, 36]. For a comparison with the EKF, the UKF is used in [37] with 

quaternion representation to estimate the attitude of a spacecraft. Better results are 

obtained with the UKF. However, the knowledge of the system function is necessary for 

the application of this filter.

1.2 Overview of the Thesis

As mentioned above, in this study, a 3-axes accelerometer and 3-axes gyroscope

are used for full orientation estimation (Figure  1-1). 

The accelerometer output consists of the gravity acceleration, linear 

acceleration, bias and noise. The gravity acceleration vector as expressed in the robotic 

platform (body) frame contains information about the roll and pitch angles of the body.

To extract the gravity acceleration, the accelerometer output signal has to be 

decomposed. First of all, the linear acceleration component in the accelerometer output 

is modeled as slow (low pass filtered) version of the actual linear acceleration. By 

ignoring the noise, the values of the accelerometer signal terms are predicted using a 

pseudo inverse matrix multiplication. The predicted values are used as initial values for 

an accelerometer Kalman filter which updates the predicted terms and corrects them. An 

z-y-x-Euler angles representation is employed for orientation. The gravity acceleration 

estimate is used for the computation of x- and y-Euler angles. 

The accelerometer Kalman filter described above can function as a orientation 

estimator by its own, especially for low frequencies of motion. However, much better 

estimates can be obtained when its output is combined with gyroscope based estimates.

In the proposed approach, the accelerometer Kalman filter works sequentially 

with an Extended Kalman filter which processes the angular rate measurement of the 

gyroscope and produces a unit quaternion estimate for the orientation description of the 

body. The z-y-x- Euler angles estimated by the accelerometer Kalman filter are 

transformed into quaternion representation to be considered as a “measured quaternion” 



7

for the correction stage of the gyroscope Extended Kalman filter. Since in addition to 

the x- and y- Euler angles obtained from the gravity estimate, the z-Euler angle is also 

required to compute the measured quaternion, the accelerometer Kalman filter 

“borrows” this angle from the quaternion estimate of the gyroscope Extended Kalman 

filter. 

In other words, the two filters feed each other cyclically: The gyroscope filter 

provides the z-Euler angle for the accelerometer filter, whereas the accelerometer filter 

produces the measured quaternion for the gyroscope filter. Figure  1-2 illustrates the 

sequential operation of the two filters.

The working principle of the gyroscope Extended Kalman filter can be outlined 

as follows. A state space model which relates the unit quaternion evolution with the 

measured angular velocity, gyroscope bias and noise is obtained. This model is a 

nonlinear one. It is used in the quaternion prediction. The prediction is corrected by the 

use of the accelerometer filter output as the measured quaternion. This correction is 

followed by a norm correction to keep the unity magnitude of the quaternion. 

The performance of the estimation system is tested by experiments with a 

robotic platform. This platform has a fixed base and joint encoder readings provide a 

means of computing the actual orientation. Experimental results indicate that the 

proposed estimation technique provides stable and reliable orientation estimates for a 

large range of orientation angles and motion frequencies.

Figure  1-1: Signal flow schematic diagram
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Figure  1-2: Estimation block diagram

1.3 Contribution

The main contributions of this thesis are:

 Full decomposition of the accelerometer signal terms, and estimation of the 

gravity vector which can be used for the orientation estimation for low 

frequencies.

 The estimation algorithm which produces stable and reliable estimates with the 

sequential use of a Kalman filter and an Extended Kalman filter.
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1.4 Thesis Organization

This thesis is organized as follows. In Chapter 2, preliminary concepts are 

introduced. Accelerometer and gyroscope model equations employed in this thesis, 

attitude representations, basic quaternion mathematics, Kalman and Extended Kalman 

filter equations are reviewed. In Chapter 3, the decomposition of the accelerometer 

signal and the estimation of the gravity vector based on accelerometer data are 

presented. The Extended Kalman filter based orientation estimator with unit quaternion 

representation is described in Chapter 4. Chapter 5 is devoted to the experimental 

results. The conclusion is presented in the last chapter.
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2 PRELIMINARIES

Basic models of the sensors, attitude representations and Kalman filter equations

are reviewed in this chapter.

2.1 Accelerometer Model

Accelerometers measure the acceleration of a moving body depending on the 

Hooke’s law and Newton’s second law of motion [38]. 

The general output of the accelerometer is given [39] in the form

A k k Ak A k A kfy a g b v    (2.1)

1 1A k A k bA kb b v   (2.2)

where k is the sampling index. A ky stands for the accelerometer output and A kb is a 

bias term. A kv and bA kv represent the sensor and bias noise terms, respectively. They 

are assumed to be independent random variables with zero mean Gaussian distribution 

functions and variances 2 2,
A Ab v  respectively. Akg is the gravity acceleration. (It is 

typically [0 0 9.81]T, as expressed in a coordinate frame with its z-axis showing 

downwards to the earth’s surface.). kfa is a “slower” version of the linear acceleration 

ka . In this thesis, the relation between kfa and ka for each acceleration axis of the 

accelerometer is modeled by a first-order low pass filter: 
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Gain pK and the time constant  are case-specific design parameters. With a 

rearrangement of (2.3) we obtain

( ) ( ) ( )f f pa s s a s k a s   , (2.4)

which, by the inverse Laplace transform, yields

( ) ( ) ( )f f pa t a t k a t   . (2.5)

The backward Euler rule is used to obtain a discrete time approximate of this 

differential equation as

1-k kf f
k p kf

a a
a k a

T
    , (2.6)

where T is the sampling time of the estimation routine. The linear acceleration, as a 

discrete variable, is expressed as

1k f k ff kf fa c a c a   (2.7)

where fc and ffc are constants obtained by

,  p
f ff

k T
c c

T T


 

 
 

. (2.8)

For the implementation of the proposed estimation approach, the above equations

are modified by introducing a scaling factor h to the bias term. This factor is determined 

by the designer of the estimation algorithm. The expression for the accelerometer output 

with the scaling factor is given below.

A k k Ak A k A kfy a g hb v    (2.9)

Substituting (2.7) into (2.9) we obtain

1A k f k ff k Ak A k A kfy c a c a g hb v     (2.10)
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2.2 Gyroscope Model

Gyroscopes are instruments to measure the angular motion rate along their axes. 

The gyroscope output signal can be written as the following sum of components [38]

G k k G k G ky b v   (2.11)

where Gy is the gyroscope output, Gv is the gyroscope noise and  is the actual angular 

velocity. Gb is a bias term which evolves with

1 1G k G k bG kb b v   (2.12)

2.3 Attitude representation

The attitude of the body frame may be described in a number of different ways [40].

Some of the most common ones are listed below:

2.3.1 Rotation matrices

A matrix in which the columns represent unit vectors in body axes projected 

along the reference axes is a rotation matrix. The element in the ith row and the jth

column represents the cosine of the angle between the ith axis of the reference frame and 

the jth axis of the body frame. This representation is simple and it does not contain any 

singularities.
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2.3.2 Euler angles

A transformation from one coordinate frame to another is defined by three 

successive rotations about the current principle axes. There are twelve Euler angles 

representations. An example is as follows: A rotation by angle ψ about reference z axis, 

followed by a rotation by angle θ about new y axis, and finally by a rotation by angle φ

about the new x axis. The triplet (ψ, θ, φ) then describes the orientation of the body. 

This Euler angles representation can be termed as “z-y-x-Euler angles representation.” 

This specific Euler angles representation is used in this thesis in addition to the unit 

quaternion representation reviewed below.

2.3.3 Axes angle representation

This type of attitude representation is based on the fact that a transformation 

from one coordinate frame to another can be done by a single rotation around a vector 

defined in a reference frame. The angle of the rotation θ and the unit vector in the 

direction of the rotation axis describe the orientation in this representation.

2.3.4 Quaternion for rigid body dynamics

The quaternion representation [41, 42] of a rigid body rotation is a four-

dimensional vector representation of an arbitrary rotation around an axis [25]. The 

algebraic properties of quaternion distinguish them from other ordinary four-

dimensional vectors. Some definitions and the computational principles are reviewed 

below.
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2.3.4.1 Definitions 

Definition 1. The quaternion vector consists of four elements vector. These elements 

are divided into two parts, scalar part 0q  and vector part 3n 

 as

0q q n 


. (2.13)

Equation (2.13) can be extended to write the quaternion in the form in (2.14) or simply 

as in (2.15)

0 1 2 3q q q i q j q k    . (2.14)

0

1

2

3

q

q
q

q

q

 
 
 
 
 
 

(2.15)

Definition 2. Quaternion conjugate ( q ): Changing the sign of the rotational axis (the 

vector part) will form the quaternion conjugate, as described in (2.16),

0 0 1 2 3- - - -q q n q q i q j q k  


(2.16)

Definition 3. Quaternions Addition and subtraction ( 1 2q q ): both addition and 

subtraction are done in the same way. The scalar parts are added together or subtracted 

from each other. The vector parts are added component-wise as in (2.17)

       1 2 1 2 1 2 1 2 1 2
0 0 1 1 2 2 3 3q q q q q q i q q j q q k        (2.17)

Definition 4. Quaternions multiplication ( 1 2q q ): By referring to  Definition 1 and

Figure  2-1 , the product of two quaternions are
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Figure  2-1: Quaternion unit vector multiplication

  

 
 
 
 

1 2 1 1 1 1 2 2 2 2
0 1 2 3 0 1 2 3

1 2 1 2 1 2 1 2
0 0 1 1 2 2 3 3
1 2 1 2 1 2 1 2
0 1 1 0 2 3 3 2
1 2 1 2 1 2 1 2
0 2 1 3 2 0 3 1
1 2 1 2 1 2 1 2
0 3 1 2 2 1 3 0

- - -

 -

 -

 -

q q q q i q j q k q q i q j q k

q q q q q q q q

q q q q q q q q i

q q q q q q q q j

q q q q q q q q k

      

 
  

  
 

(2.18)

(2.18) can be represented in the matrix form as

1 1 1 1 2
0 1 2 3 0
1 1 1 1 2

1 2 1 0 3 2 1
1 1 1 1 2
2 3 0 1 2
1 1 1 1 2
3 2 1 0 3

2 2 2 2 1
0 1 2 3 0
2 2 2 2 1

1 0 3 2 1
2 2 2 2 1
2 3 0 1 2
2 2 2 2 1
3 2 1 0 3

- - -

-

-

-

- - -

-

-

-

q q q q q

q q q q q
q q

q q q q q

q q q q q

q q q q q

q q q q q

q q q q q

q q q q q

   
   
   
   
   
      

   
   
   
   
   
      

(2.19)

The quaternion multiplication is not commutative, i.e. 1 2 2 1q q q q .

From this point on, the quaternion multiplication will be assigned the symbol .

Definition 5. Quaternion Length: The quaternion length is the norm

  2 2 2 2
0 1 2 3q q q q q q q       (2.20)
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Definition 6. Quaternion inverse

1
2

q
q

q


  (2.21)

Definition 7. Augmented vector: A vector in 3
 can be augmented with zero and 

transformed to 4
 in a quaternion form. As an example the gravity would be in 

quaternion form as

0
qg

g

 
  
 

Theorem 1. [42] The rotation of vector 1
qg around n


by an angle  to produce a 

rotated vector 2
qg is

2 1 1

qqg q g q    (2.22)

where q is a quaternion described as in (2.22) (2.15) . The inverse rotation is 

1 1 2

q qg q g q   (2.23)

By arithmetic manipulation of (2.22), it can be shown that this rotation can be rewritten 

as

2 1( )g R q g (2.24)

where R(q) is a rotation matrix described as

   
   
   

2 2 2 2
0 1 2 3 1 2 0 3 1 3 0 2

2 2 2 2
1 2 0 3 0 1 2 3 2 3 0 1

2 2 2 2
1 3 0 2 2 3 0 1 0 1 2 3

- - 2 - 2

( ) 2 - - 2 -

2 - 2 - -

q q q q q q q q q q q q

R q q q q q q q q q q q q q

q q q q q q q q q q q q

  
    
   

(2.25)

Theorem 2. [42] The quaternion derivative with respect to time can be expressed as

0.5 ( )q U q , (2.26)

where
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0 - - -

0 -
( )

- 0

- 0

x y z

x z y

y z x

z y x

U

  
  


  
  

 
 
 
 
 
  

(2.27)

and  is the angular velocity vector as expressed in the body fixed frame. By 

rearranging equation (2.26), the form below can be obtained for q .

1 2 3

0 3 2

3 0 1

2 1 0

0.5 ( )
- -

0.5

- -

0.5 ( )

x y z

x y z

x y z

x y z

q U q
q q q

q q q

q q q

q q q

U q


  
  
  
  




 

   
  
   





(2.28)

where 

1 2 3

0 3 2

3 0 1

2 1 0

 ( )

q q q

q q q
U q

q q q

q q q

   
  
 
  

(2.29)

Definition 8. Quaternion to Euler angles conversion: Obtaining the Euler angles from 

the quaternion depends on the rotation order. The order considered here is x-y-z. In 

other words, first a roll rotation around the x-axis by an angle  , then a pitch rotation 

about the current y-axis by an angle  , and finally yaw rotation about the current z-axis 

by an angle  is carried out. The corresponding rotation matrix R is given by [43]

, , ,

0 0 1 0 0

0 0 1 0 0

00 0 1 0

R R R Rz y x

c s c s

s c c s

s c s c

c c s c c s s s s c s c

s c c c s s s c s s s c

s c s c c

  

   
   

   

          

          

    





 


  

   



                        

 
 
 
 
  

(2.30)
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where the abbreviations c and s are used for  cos  and  sin  , respectively. 

Comparing (2.25) with (2.30), it follows that the Euler angles can be expressed in terms 

of the quaternion parameters as

 
 

1 2 0 3-1

2 2
2 3

2
tan

1- 2

q q q q

q q


 
 
   ,

(2.31)

 
 

2 3 0 1-1

2 2
1 2

2
tan

1- 2

q q q q

q q


 
 
  

(2.32)

and

  -1
1 3 0 2sin -2 -q q q q  (2.33)

2.3.4.2 Unit Quaternions

Quaternions with unit norm have an important role in representing rotations. 

Such a vector can be described as

cos
2

 sin
2

q

n





  
    

  
  

  


(2.34)

Here n


represents the vector around which the rotation takes place, and α is the 

rotation angle (Figure  2-2).
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Figure  2-2: Quaternion representation of a rotation. In this example the dashed line is 
rotated to coincide with the dotted line.[25]

2.3.4.3 Advantages of the unit quaternion representation

The quaternion representation is attractive to be used because of the following 

advantages [44]:

 The angular discontinuities at ± π radians are avoided as well as the 

trigonometric singularities that can occur at 
2


 if compared with Euler angles

 They are more compact and faster than rotation matrices.

 Simple composition: The rotation is easily composed by multiplying the 

involved quaternions [41].

2.4 Kalman Filter

The Kalman filter is a statistically optimal estimator in the sense of minimizing 

the estimated error covariance. It is implemented as a programmed set of prediction and 
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correction equations that are called recursively to estimate the states of linear dynamic 

systems (Figure  2-3). The dynamic systems are perturbed by noise using noisy 

measurements that are linearly related to the state. Because of its simplicity and 

robustness nature, it has a great impact and used in many applications such as 

manufacturing systems, navigation systems [45, 46].

In the first part, i.e. in the prediction, a prior estimate based on the model at hand 

takes place, and then the correction part adjusts the predicted state vector using the 

measurements. In the following state space representation

-1 -1 -1 -1 -1k k k k k k

k k k k

x F x G u w

y C x v

  

 
(2.35)

x is the state vector, u is the input vector and y is the output vector. F represents the state 

matrix, G is the input matrix and C is the output matrix. w and v are uncorrelated 

process and measurement zero mean Gaussian noise terms.

Then the Kalman filter algorithm is described by the following equations [45].

 Prediction:

1 1 1 , 1

1 1 1 1

T

k k k k p k

k k k k k

P F P F Q

x F x G u


   

 
   

 

  

(2.36)

 Correction

 

 
 

1

,
T T

k k k k k k o k

k k k k k k

k k k k

K P C C P C Q

x x K z C x

P I K C P

 

  

 

 

  

 

   (2.37)
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Figure  2-3: Kalman filter algorithm

In (2.36) and (2.37) the following notation is employed.  . 
and  . 

stand for the 

prior and posterior estimates, respectively. P is the estimation error covariance matrix

and K is the Kalman gain. pQ and oQ stand for the process and measurement covariance 

matrices, respectively. 

2.5 Extended Kalman Filter

It is a nonlinear version of Kalman filter. It uses a nonlinear state equation for 

prediction and linearizes the model around the current states for the correction stage. 

The nonlinear model is written as

 

 

1 1 1,

k

k k k

k k

kx

z h x v

f x u w   

 
(2.38)
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where w and v are the process and observation zero mean Gaussian noises with 

covariance Q and R respectively. Then the prediction and update equations are as 

follows.

 Prediction

 

1

| 1 1| 1 1

| 1 1 1 1| 1

ˆ ˆ ,k k k k k

T
k k k kk k k

x f x u

P F P F Q

   

   



 
(2.39)

 Update 

 

 

| 1

| 1

1
| 1

| | 1

| | 1

ˆ

ˆ ˆ

k k k k

T
k k k k k k

T
k k k k k

k k k k k k

k k k k k k

y z h x

S H P H R

K P H S

x x K y

P I K H P












 

 



 

 





(2.40)

Here, the state and observation matrices are defined as

1| 1

| 1

1
ˆ

ˆ

,k k k

k k

u

k

k
x

x

f

x

h
H

x

F
 













(2.41)

In these equations, x̂ is the state vector, and u is the input. y stands for the 

measurement residual. P is the estimation error covariance matrix and K is the Kalman 

gain.
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3 GRAVITY VECTOR ESTIMATION

In this section, the general form of the output equation of the accelerometer in

(2.9) is used for the estimation. A decomposition for the accelerometer signal is carried 

out to predict the additive terms in the accelerometer output to initialize the 

accelerometer Kalman filter. A z-y-x-Euler angles representation is employed to 

describe the orientation of the robotic platform (body). The Kalman filter corrected 

estimate of the gravity vector is used to calculate the x- and y- Euler angles. As 

mentioned in Chapter 1, the information contained in these angles is transformed into a 

quaternion vector to be used in the correction part of the gyroscope Extended Kalman 

filter explained in Chapter 4.

3.1 Acceleration Signal Decomposition

The accelerometer output in equation (2.10) (ignoring the noise) is

1A k f k ff k Ak A kfy c a c a g hb    (3.1)

where a is the acceleration of the center of the body frame, as expressed in the body 

frame coordinates. We assume that the body frame axes coincide with the accelerometer 

measurement axes. 1kfa  is updated each sample time to be the previous value of 

equation (2.7) taking into account the zero initial value.

Rewriting equation (3.1) in matrix form we obtain
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 3 3 3 1-A f ff kfA

A
A

a

y c I I hI c ag

b


 
   
  


. (3.2)

where nI is the n n identity matrix .

The acceleration and bias vector can then be computed as

 †
1A ff kfA

A

a

A y c ag

b


 
    
  

(3.3)

where †A stands for the right pseudo inverse of a matrix A, obtained by

 -1† T TA A AA (3.4)

In this way the prediction of the gravity in the body frame is done if (3.4) does 

exist. It does indeed exist since A is of full-rank. This computation is carried out only 

in the first estimation cycle, to initialize estimation.

After being calculated by (3.3), the values of the accelerometer signal terms are

used in a Kalman filter as initial state estimates. This Kalman filter referred to as the

“accelerometer Kalman filter” in this thesis.

3.2 Accelerometer Measurement State Space Model

The source for the acceleration a can be deliberate robot motion. It can originate 

from undesired falling or gliding motion too. In fact there are a large variety of 

scenarios in which the robotic platform accelerates and our estimation should be 

independent of these scenarios. Therefore the simplest possible acceleration model is 

assumed as the starting point in our modeling:

1 1k k aka a v   (3.5)

1 1Ak Ak g kg g v   (3.6)
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Here av and gv are the linear and gravity acceleration zero mean Gaussian noises

respectively. With these assumptions, the process model can be described as 

3

3

3 -1 -1 1

0 0 0 0

0 0 0 0

0 0 0 0

a

k A A g

A A bk k k k

a I a v

x g I g v

b I b v


       
                
              

(3.7)

In order to work on an output equation, (2.10) is repeated here for convenience:

1A k f k ff k Ak A k A kfy c a c a g hb v     (3.8)

This equation can be put in the following form.

1-   -

k

A k ff k f k Ak A k A kf

zMeaured

y c a c a g hb v   


(3.9)

In this form, the left hand side terms can be identified as “measured” terms. Aky

is literally measured since it is the accelerometer output signal. 1ff kfc a  , on the other 

hand is not measured actually. However, it belongs to the previous cycle and is already 

computed before time index k . Therefore, we can treat the left hand side as a pseudo-

measurement term. Note that all the terms on the right hand side of (3.9) are noise or 

scaled parts of the state vector in (3.7). Defining this left hand side as kz , the following 

output equation can be written 

 -k f k Ak A k A kz c a g hb v   (3.10)

which can be rearranged as

k A A k

A k

a

z A g v

b

 
   
  

(3.11)

This completes the state space model of accelerometer based measurement used in 

this thesis.
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3.3 Prediction

Ignoring the noise terms, the following version of (3.7) is employed for state 

prediction.

3

| 1 3

3 -1| 1| 1 -1| 1

ˆ ˆ0 0

ˆ ˆ0 0

ˆ ˆ0 0
k k A A

k kA Ak k k k

a I a

x g I g

Ib b



 

    
         
        

(3.12)

The estimated output is then computed as 

| 1

| 1

ˆ

ˆˆ

ˆ
k k A

A k k

a

z A g

b





 
 

  
 
 

. (3.13)

3.4 Correction

The measurement residual is computed by the following equation.

 1 | 1ˆ-  -zk A k ff k k kfy y c a   (3.14)

The Kalman filter algorithm described in the previous chapter is then 

implemented by using the following settings for the filter matrices.

3

1 3 1

3

0 0

0 0 ,  0,  

0 0
k k k

I

F I G C A

I
 

 
    
  

(3.15)

The initial covariance matrices for the process and measurement noises are set 

randomly.
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3.5 Euler Angle Computations

Calculating the x- and y-Euler angles is necessary for two main reasons. The first 

one is to use them in an orientation estimation mechanism based on the accelerometer 

signal only. The second one is to transform them into a unit quaternion representation to 

be used as the measured data in the Extended Kalman filter correction stage in the next 

chapter to estimate the orientation. The roll and pitch angles are calculated using

1sin ,
9.81

Axg   
  

 
(3.16)

and

1sin
cos( ) 9.81

Ayg




 

    
(3.17)

3.6 Euler Angles to Unit Quaternion Representation

The accelerometer estimation for the roll and pitch angles operates in the low 

frequency ranges. Therefore, to overcome this limitation, its output data is fused with 

the gyroscope. Basically, since the output of the gyro based estimation is a unit

quaternion, the estimated angles from the accelerometer Kalman filter are transformed 

into a unit quaternion representation too. However, to accomplish this transformation, 

the z-Euler angle is needed too. This angle is calculated from the estimated and non-

corrected quaternion in (4.16) in the next chapter. In the first cycle however, this angle 

is assumed to be zero.

As mentioned in Chapter 2, with the z-y-x-Euler angles  ,  and  about the 

current z, y and x=axes, respectively, the rotation matrix representation of the 

orientation is

, , ,R R Rz y xR    (3.18)
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and the corresponding quaternion can be computed as

   cos( / 2) sin( / 2) cos( / 2) sin( / 2) cos( / 2) sin( / 2)k j iq         . (3.19)

(3.19) yields the unit quaternion 

0

1

2

3

cos( / 2) cos( / 2) cos( / 2) sin( / 2) sin( / 2) sin( / 2)

sin( / 2) cos( / 2) cos( / 2) cos( / 2) sin( / 2) sin( / 2)

cos( / 2) sin( / 2) cos( / 2) sin( / 2) cos( / 2) sin( / 2)

cos( / 2) cos( / 2) sin( / 2)

A

A
A

A

A

q

q
q

q

q

     

     

     

  









 
 
  
 
 
  sin( / 2) sin( / 2) cos( / 2)  

 
 
 
 
 
 

(3.20)

The notation “ Aq ” reads as the quaternion computed by the Accelerometer based 

estimation method.
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4 ORIENTATION ESTIMATION

The method proposed in this chapter uses the gyroscope angular rate signal to 

obtain a unit quaternion prediction which describes the orientation of the robotic 

platform. The estimation algorithm follows the guidelines of an Extended Kalman 

Filter.

A state space model of the angular rate measurement system is obtained firstly. 

The unit quaternion and the gyroscope bias are augmented to construct the state vector. 

A continuous-time quaternion dynamics equation is used as the starting point in 

modeling. This equation is discretized and combined with the gyroscope bias dynamics 

equation (2.12) to complete the state space model. 

The resulting model, which is a nonlinear one, is used in the state prediction stage. 

The quaternion part of the predicted state vector is used as the predicted output. To 

serve as the measured output in the correction stage of the Extended Kalman Filter a 

second quaternion estimation is computed from the accelerometer measurements. This 

estimate is based on the gravity vector prediction presented in the previous chapter. The 

difference between the two quaternion estimates and the linearized versions of the state 

space equations are employed in the estimate correction stage.

Details of this estimation procedure, the quaternion initialization mechanism and 

measures for preserving the unity norm of the quaternion are presented below.
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4.1 State Space Model of Gyroscope Signal Measurement

The derivation of the estimator starts with the expressions(2.26) and(2.27) for the 

quaternion dynamics. These equations are repeated below for convenience:

1
( )

2
q U q (4.1)

0 - - -

0 -
( )

- 0

- 0

x y z

x z y

y z x

z y x

U

  
  


  
  

 
 
 
 
 
  

(4.2)

Here q is a unit quaternion which describes the orientation of the robotic platform 

(body) with respect to a world fixed reference frame.  is the body angular velocity as 

expressed in the body coordinate frame. From (2.11), the vector  can be written in 

terms of the gyroscope output signal Gy , gyroscope bias Gb and measurement noise Gv

as 

G G Gy b v    (4.3)

Hence, the quaternion dynamics in (4.1) can be expressed as

1
( )

2 G G Gq U y b v q   (4.4)

For a small sampling period T , this equation can be approximated by

1
1 1 1 1

1
( ) .

2
k k

G k G k G k k

q q
U y b v q

T


   


   (4.5)

Here k stands for the sampling index. Rearranging(4.5) we obtain the following 

discrete time approximation of (4.4).

4 4 1 1 1 1

1
( ( )) .

2k G k G k G k kq I TU y b v q        (4.6)

The equation governing the dynamics of the gyroscope measurement bias was 

stated earlier in Chapter 2. This equation is repeated here too:
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1 1G k G k bG kb b v   (4.7)

Defining the state vector kx as

k
k

G k

q
x

b

 
  
 

(4.8)

and the input ku as kGy , the discrete-time dynamics equations for the quaternion q and 

the gyroscope measurement bias in (4.6) and (4.7), respectively, can be combined as

4 4 1 1 1 1

1 1

1
( ( ))

2
k G k G k G k k

k
G k

G k bG k

q I TU y b v q
x

b
b v

    

 

             

(4.9)

From (4.2) and (4.9) we have:

4 4 1 1 1

1 1

1 1
( ( )) ( )

2 2G G k G k k
k

G k bG k

I TU y b q TU v q
x

b v

   

 

         
   
   

(4.10)

Defining the state matrix ),( 11  kk uxf as

4 4 1 1 1
1 1

1

1
( ( ))

( , ) 2 G k G k k
k k

G k

I TU y b q
f x u

b

   
 



   
 
 

(4.11)

and the process noise kw as

1 1
1

1

1
( )

2 G k k
k

bG k

TU v q
w

v

 




  
 
 

(4.12)

(4.9) can be rewritten as

1 1 1( , )k k k kx f x u w    (4.13)
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Although the term 1)(  kG qvTU in(4.12) is state dependent, this dependency is 

ignored as a simplification, and kw is considered as an independent noise term. This 

simplification is justified by the fact that the components of the unit quaternion 1kq are 

always constrained to have magnitudes less than or equal to one, making drastic 

changes in the noise effect impossible.

The output kz of this state space system is chosen as kq . This choice has a 

special reason: We would like to use the difference between the predicted output (the 

quaternion prediction generated by gyroscope data) with the measured output (the 

quaternion obtained from the accelerometer data) in the correction stage. With this 

choice, the computation of kz can be carried out by a matrix multiplication as

k G k kz H x v  (4.14)

where

4 4 4 30GH I      (4.15)

In (4.15) 340  stands for a 34 matrix with zero entries. The notation GH reads 

as “the output matrix H used in the Gyroscope based estimation.” kv is a measurement 

noise term.

4.2 Prediction

From(4.10) we obtain the following state prediction equation.

4 1 1| 1 1| 1

| 1 1| 1 1

1| 1

1 ˆ ˆ( ( ))
2ˆ ˆ( , )

ˆ

G k Gk k k k

k k k k k

Gk k

I TU y b q
x f x u

b

    
   

 

      
  

(4.16)

The computation of the predicted output kẑ is carried out by

| 1 | 1ˆ ˆk k G k kz H x  (4.17)



33

4.3 Correction

The matrix GH in (4.14) can be used in the Extended Kalman Filter covariance 

and state update equations described in Chapter 2 as is. However, the expression in 

(4.16), for ),ˆ( 11|1  kkk uxf is nonlinear and it has to be approximated by a Jacobian 

before it can be used in these equations. This Jacobian, here denoted by 1kGF , is 

computed as follows. First of all ),ˆ( 11|1  kkk uxf is rewritten in a form more convenient 

for partial derivative computations with respect to the components of 
1|1

ˆ
 kkGb . Using the 

linearity of )(U we have:

4 1 1| 1 1| 1

1| 1 1

1| 1

1 1 ˆ ˆ( ( ) ( ))
2 2ˆ( , )

ˆ

G k Gk k k k

k k k

Gk k

I TU y TU b q
f x u

b

    
  

 

     
  

(4.18)

Further, using the identity in (2.28) we can write

1| 1 1| 1 1| 1 1| 1
ˆ ˆˆ ˆ( )) ( ))Gk k k k k k Gk kU b q U q b        (4.19)

to obtain

4 1 1| 1 1| 1 1| 1

1| 1 1

1| 1

1 1 ˆˆ ˆ( ( )) ( )
2 2ˆ( , )

ˆ

G k k k k k Gk k

k k k

Gk k

I TU y q TU q b
f x u

b

      
  

 

     
  

(4.20)

Indeed, the form in(4.20) makes the partial derivative computations with respect 

to the components of 
1|1

ˆ
 kkGb more straightforward. The matrix 1kGF is then computed 

as

1| 1 1 4 1 1| 1 1| 1
1

1| 1
3 4 3 3

1 1ˆˆ ˆ( , ) ( ( )) ( )
2 2

ˆ
0

k k k G k Gk k k k
G k

k k

f x u I TU y b TU q
F

x
I

       


 
 

      
 
 

(4.21)

Equipped with the matrices GH and 1kGF , the correction is carried out by 

following the main structure of the Extended Kalman Filter described in Chapter 2. In 

this computation, in equations (2.39)-(2.40) the matrices kH and 1kF are replaced by 
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GH and 1kGF , respectively. Also, 1|ˆ kkG xH replaces )ˆ( 1| kkxh and the quaternion 

estimate Aq based on the accelerometer readings is used in place of kz . The initial 

process and measurement noise covariances are assigned randomly.

4.4 Initial State Estimation

In order to start the prediction cycle, (4.16) needs an initial state estimate which 

can be denoted by 0|0x̂ . 0|0x̂ is composed of the initial quaternion and bias estimates:

0|0

0|0

0|0

ˆ
ˆ

Ĝ

q
x

b

 
  
  

(4.22)

The initial gyroscope bias estimate 
0|0Ĝb is set to a zero vector. This choice is 

motivated by observations in our experiments: Estimate convergence to actual values 

was faster with small initial bias. 

The quaternion estimate is initialized using the body frame gravity vector estimate 

0Ag obtained in the first computational cycle by the accelerometer based method 

described in the previous chapter. The value of the z -axis Euler angle  used in (3.20)

is zero for the initial quaternion estimate 0|0q̂ .

4.5 Preserving the Unity Norm of the Quaternion Estimate

The estimation procedure presented in Sections 4.1-4.3 does not include a 

mechanism to preserve the unit norm of the quaternion. Therefore a numerical norm 

correction method is employed after the estimation in each computational cycle. The 

value 1q  can be imposed on the estimated quaternion by introducing  1 q q as a 

correction term. If the norm is greater or less than one, a portion of the quaternion will 

be subtracted from or added to the corrected quaternion according to
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  kkkkkkkkU qqqq ||||
ˆˆ1ˆˆ  (4.23)

where kkq |ˆ is the last estimated quaternion, and kkUq |
ˆ is the norm corrected quaternion. 

kkUq |
ˆ replaces 1|1ˆ  kkq in the next iteration of the prediction.
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5 EXPERIMENTAL RESULTS

In this chapter, implementation results are presented with two orientation 

estimation techniques. One of them is the method presented in Chapter 3 the estimation 

with accelerometer data only. As in previous chapters, this method is referred to as 

“Accelerometer Kalman Filter” (AKF). The second method implemented is the one 

presented in Chapter 4: “Gyroscope Extended Kalman Filter” (GEKF). In order to test 

the proposed estimation algorithms, experiments are conducted on a 3D robotic 

platform. The next section introduces the test setup and experimental results follow.

5.1 Experimental 3D platform

An experimental platform is designed and built to test the algorithms. It is 

equipped with encoders and an IMU at the top of the platform.

5.1.1 The IMU

The IMU used for the measurement is the crossbow VG440 as in Figure  5-1. Its 

outputs are 3-axes acceleration and 3-axes angular velocity. The outputs are filtered 

using analog low-pass filters and then sampled and converted to digital data at a 

frequency of 1 kHz. The sensor data is filtered and down-sampled to 100Hz by the on 

board DSP using FIR filters [51]. Therefore, delay time in the output estimated results is 

expected.
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Figure  5-1: IMU Crossbow VG440 with its frame

5.1.2 3D Robotic Platform

A 3D manipulator (Figure  5-2) is designed at the Sabanci University Robotics 

Research Laboratory for the experiments. The links of the platform are machined and 

assembled at Sabanci University too. The orientation of the tool end can be computed 

exactly using the joint position measurements obtained from the three encoders attached 

to the motors. Orientation obtained from actual robot joint positions is used as a base for 

comparison in the evaluation of the performance of the estimation algorithms. The 

comparison is made over z-y-x-Euler angles. The robot joint angles are used in a 

forward kinematics scheme to obtain a rotation matrix representing the tool frame 

(sensor frame) orientation. Inverse kinematics is used then to compute the 

corresponding z-y-x-Euler angles of the tool frame. The output of the AKF algorithm is 

readily in the form of x- and y-Euler angles and the unit quaternion representation 

obtained from the GEKF is converted to z-y-x-Euler angles by using ((2.31)-(2.33)) in 

order to serve in the comparisons.
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Figure  5-2: Experimental 3D Platform
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An independent joint PID controller is employed for the position control of the 

manipulator (Figure  5-3). The controller parameters are listed in Table  5-1. A controller 

sampling time of 1 ms is used. Step, sinusoidal and superposition of step and sinusoidal 

position references can be generated for the robot joint over a graphical user interface.

Figure  5-3: System control

Table  5-1: Controller Parameters

Motor 1 Motor 2 Motor 3

Kp (proportional gain) 15 40 21

Ki(integral gain) 5 0.05 0.09

Kd(derivative gain) 4 7 2

5.2 Experimental Results

In this section, the predicted orientations using the proposed estimation algorithms

are compared against the exact orientation (calculated using the motor encoder data). 

The employed estimation sampling time is 0.01 sec. With this sampling time, it is 

reasonable to expect that the estimation algorithms presented can be implemented in 

microcontroller based computing units, without overloading them, too.
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5.2.1 Mode one: Step input

Figure  5-4 shows the estimation using both the sensor fusion algorithm (GEKF) 

and accelerometer Kalman filter (AKF) with exact orientation of the robot (RD) for the 

step input case. The estimation from both filters matches the exact value. The GEKF is 

smoother especially when sudden changes occur.
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Figure  5-4: Step input for robot joint angles. GEKF: Estimation using the sensor fusion 

in the extended Kalman filter, AKF: Estimation using the accelerometer Kalman filter 

only, and RD: Robot data.

5.2.2 Mode Two: Sinusoidal Input

Figure  5-5 and its zoomed version, Figure  5-6, indicate the success of the sensor 

fusion with the GEKF estimation algorithm with sinusoidal motion. The AKF 

estimation based on the accelerometer only is no longer reliable. Although the z-Euler 

angle estimation solely relies on the gyroscope measurements, its estimation is reliable 
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most of the time. The zero point of the z-Euler angle estimation is the initial angle of the 

platform at the beginning of the estimation 
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Figure  5-5: Sinusoidal input for robot joint angles. GEKF: Estimation using the sensor 

fusion in the extended Kalman filter, AKF: Estimation using the accelerometer Kalman 

filter only, and RD: Robot data.
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Figure  5-6: A zoom into Figure  5-5
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5.2.3 Mode Three: Step and Sinusoidal Input

In this mode a step references are applied to the platform for each of the three 

joints and after that a sinusoidal angle is applied too with variable amplitude and 

frequency. As it is clear from Figure  5-7 and its zoomed versions (Figure  5-8 and Figure 

5-9), the GEKF algorithm estimates the orientation of the platform accurately. In the 

beginning of the estimation, the z-Euler angle is estimated with a considerably large 

error. However, the algorithm corrected this error as shown after the 20th second. The 

AKF estimation of an angle is sensitive to the other angles motion. This is apparent 

from the signals between the 13th and the 17th seconds where the actual x- angle is 

constant while the actual y-angle is sinusoidal: The AKF generated x-angle estimate is 

not constant in this period.
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Figure  5-7: Step and sinusoidal joint position references. GEKF: Estimation using the 

sensor fusion in the extended Kalman filter, AKF: Estimation using the accelerometer 

Kalman filter only, and RD: Robot data.
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Figure  5-8: A zoomed into Figure  5-7.
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Figure  5-9: Another zoomed into Figure  5-7

5.2.4 A note on the drifts

Our longer duration experiments indicate that the estimates drift after around two 

minutes with the estimators proposed in this thesis. A tuning algorithm for the EKF 

feedback is needed in order to balance the bias estimate as in [51].

5.3 Results comparing with previous work

An EKF is implemented in [34] with sampling frequency 1 kHz based on 

inclinometer and gyroscope as explained before. As in our study, this work compares 

the estimated angles with angles computed from robot joint encoder data too. The 

results are close to each other in low frequency motion. [34] presents estimates with two 

Hz motion frequency as high frequency results, while in this thesis the experiments are 

conducted at more than three Hz. Also, in this thesis, the angular motion ranges are 

larger than the ones in [34] which reports a motion range of  30o.
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6 CONCLUSION AND FUTURE WORK

In this thesis, an accelerometer signal decomposition is carried out and the gravity 

vector is estimated using an Accelerometer Kalman filter (AKF). x- and y-Euler angles 

are calculated using the estimated gravity vector and then transformed into quaternion 

representation. A second estimator, a full orientation estimation algorithm termed 

Gyroscope Extended Kalman Filter (GEKF) is designed and implemented too. This 

estimator fuses the estimated quaternion from the accelerometer and the estimated 

quaternion for the gyroscope readings. As a result, the z-y-x-Euler angles are estimated. 

An experimental robotic platform was built and equipped with encoders. The 

encoder outputs are used in order to calculate the exact actual z-y-x-Euler angles. These 

actual angles are considered as references with which the estimated orientations are 

compared. 

The estimated z-y-x-Euler angles calculated in the experiments using the GEKF 

algorithm match their reference counterparts accurately for a wide range of angular 

motion and frequencies. The algorithm runs smoothly. The experiments indicate that 

proposed GEKF is a robust and reliable orientation estimation scheme.
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