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ABSTRACT

DECISION ANALYSIS IN COMPETITIVE AND COOPERATIVE

ENVIRONMENTS

·Ipek Gürsel Tapk¬

Ph.D., Economics

Supervisor: Assoc. Prof. Özgür K¬br¬s

Spring 2010, X+62 pages

This thesis contains three chapters in which we axiomatically analyze individual and

collective decision problems in competitive and cooperative environments. In Chapter

1, we give a general introduction. In Chapter 2, we propose a theory of revealed

preferences that allows both the status-quo bias and indecisiveness between any two

alternatives. We extend a standard choice problem by adding a status-quo alternative

and we incorporate standard choice theory as a special case. We characterize choice rules

that satisfy two rationality requirements, status-quo bias, and strong SQ-irrelevance. In

Chapter 3, we analyze bargaining situations where the agents�payo¤s from disagreement

depend on who among them breaks down the negotiations. We model such problems

as a superset of the standard domain of Nash. On our extended domain, we analyze

the implications of two central properties which, on the Nash domain, are known to

be incompatible: strong monotonicity and scale invariance. We characterize bargaining

rules that satisfy strong monotonicity, scale invariance, weak Pareto optimality, and

continuity. In Chapter 4, we analyze markets in which the price of a traded commodity

is �xed at a level where the supply and the demand are possibly unequal. The agents

have single peaked preferences on their consumption and production choices. For such

markets, we analyze the implications of population changes as formalized by consistency

and population monotonicity properties. We characterize trade rules that satisfy Pareto

optimality, no-envy, and consistency as well as population monotonicity together with

Pareto optimality, no-envy, and strategy-proofness.

Keywords: decision analysis, axiomatic, bargaining, status-quo, market disequi-
librium.
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ÖZET

DECISION ANALYSIS IN COMPETITIVE AND COOPERATIVE

ENVIRONMENTS

·Ipek Gürsel Tapk¬

Doktor, Ekonomi

Dan¬̧sman: Doç. Dr. Özgür K¬br¬s

Bahar 2010, X+62 sayfa

Bu tez, rekabetçi ve i̧sbirlikçi ortamlardaki ki̧sisel ve grup karar problemlerinin

aksiyomatik bir şekilde incelendi¼gi üç bölümden oluşmaktad¬r. ·Ilk bölümde, genel bir

giri̧s yap¬lmaktad¬r. ·Ikinci bölümde, statükoya sapma ve herhangi iki alternatif aras¬nda

karars¬z kalma durumlar¬na izin veren bir teori önerilmektedir. Standart seçim prob-

lemlerini, probleme bir statüko alternati� eklenerek genelleştirmek yolu ile standart

seçim teorisi modele dahil edilmektedir. Statükoya sapma, statükodan güçlü ba¼g¬ms¬zl¬k

ve di¼ger iki rasyonalite özelliklerini sa¼glayan seçim kurallar¬karakterize edilmektedir.
·Ikinci bölümde anlaşmazl¬k sonucunun anlaşmazl¬¼ga yol açan bireyin kimli¼gine ba¼gl¬

oldu¼gu pazarl¬k problemleri analiz edilmektedir. Bu problemler, Nash modelinin bir

üst uzay¬olarak modellenmektedir. Nash�in uzay¬nda tutarl¬olmayan, güçlü monoton-

luk ve ölçekten ba¼g¬ms¬zl¬k özelliklerinin bu uzaydaki sonuçlar¬incelenmektedir. Güçlü

monotonluk, ölçekten ba¼g¬ms¬zl¬k, zay¬f Pareto verimlili¼gi, ve süreklilik özelliklerini

sa¼glayan pazarl¬k kurallar¬karakterize edilmektedir. Dördüncü bölümde, �yat¬n, arz

ve talebin eşit olmad¬¼g¬bir de¼gerde sabitlendi¼gi piyasalar incelenmektedir. Bireylerin

tüketim ve üretim miktarlar¬üzerine tek doruklu terichlerinin oldu¼gu varsay¬lmaktad¬r.

Bu tip piyasalarda, nüfus de¼gi̧siminin etkileri tutarl¬l¬k ve nüfusta monotonluk özel-

likleri ile incelenmektedir. Pareto verimlili¼gi, haset do¼gurmama, ve tutarl¬l¬k özellik-

lerini sa¼glayan ticaret kurallar¬ ile Pareto verimlili¼gi, haset do¼gurmama, stratejiden

korunakl¬l¬k, ve nüfusta monotonluk özelliklerini sa¼glayan ticaret kurallar¬karakterize

edilmektedir.

Anahtar kelimeler: karar analizi, aksiyomatik, pazarl¬k, statüko, temizlenmemi̧s
piyasa.
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CHAPTER 1

INTRODUCTION

In the last 60 years, axiomatic analysis has been one of the primary methods to

investigate economic problems in many branches of literature. An economic problem

is given by specifying the available alternatives and the agents�characteristics (such

as, preferences, endowments, etc). Given a class of problems, a rule associates a set of

alternatives to each problem. The aim is to identify well-behaved rules. According to

the axiomatic method, the desirability of a rule is evaluated in terms of its properties.

A property is a mathematical formulation of a desirable requirement that we would

like to impose on rules. Therefore, the objective of this analysis is to understand

and to describe the implications of lists of properties of interest. It usually results in

characterization theorems that identify a particular rule or possibly a family of rules as

the only rule or family of rules, satisfying a given list of properties. Quoting Thomson

(2010),

�... Characterization theorems are extremely valuable, being on the boundary
between the realm of the possible and the realm of the impossible. Tracing
out this boundary is the ultimate goal of the axiomatic program. �

Axiomatic analysis is widely used in both positive and normative economics. How-

ever, the interpretation of properties as well as �ndings di¤er in positive and normative

economics. Positive economics concerns the description and explanation of an economic

phenomenon. Therefore, in positive economics, axiomatic analysis is used to explain

the observed phenomenon. The introduced axioms are aimed to be on the common

properties of this phenomenon. As an example, consider Property � in decision the-

ory. This property says that if an alternative is chosen from a set of alternatives, then

it should also be chosen from any subset that contains it. In a positive approach to

describe choices made by individuals, a researcher who observes this type of behavior

in experiments introduces Property � to restrict the description to this type of eco-

nomic environments. Normative economics incorporates normative judgements about

what the economy ought to be like or what particular policy actions ought to be rec-

ommended to achieve a desirable goal. Therefore, in normative economics, axiomatic

analysis is used to identify rules that satisfy a list of desirable properties. The intro-

duced axioms are aimed to be recommended for the economy. As an example, consider

Pareto optimality axiom. This axiom is used in many di¤erent branches of economics
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and it says that it is impossible to make one person better o¤without making someone

else worse o¤. In a normative approach, a researcher usually imposes Pareto optimality

because an economic system that is Pareto ine¢ cient implies that a certain change (for

example, in allocation of goods) may result in some individuals being made better o¤

with no individual being made worse o¤.

The �rst examples of the axiomatic method in positive economics are Samuelson

(1938) and von-Neumann and Morgenstern (1944). Samuelson (1938) incorporated the

axiomatic method to decision theory. He introduced the well-known �weak axiom of

revealed preferences� on consumer demand functions and by this axiom he laid the

foundations of revealed preference theory. Von Neumann and Morgenstern�s (1944)

book, Theory of Games and Economic Behavior, is widely considered the groundbreak-

ing text that created game theory. They also developed a concept, known as the �Von

Neumann-Morgenstern Utility�that represents preferences in situations of uncertainty.

They provided the set of necessary and su¢ cient axioms for preferences to be repre-

sentable by a Von Neumann-Morgenstern utility.

The �rst examples of the axiomatic method in normative economics are Arrow

(1951) and Nash (1950).1 With an application of the axiomatic method, Arrow (1951)

put the discipline of social choice theory in a structured and axiomatic framework and

this led to the birth of social choice theory in its modern form. This methodology

helped him to prove the celebrated Arrovian impossibility theorem which says that

there is no social welfare function satisfying a set of desirable conditions. Nash�s (1950)

work is one of the early and important application of axiomatic study. He introduced

the axiomatic method to bargaining theory. He imposed a set of general assumptions

that the bargaining outcome should satisfy and and showed that these assumptions

actually determine the outcome uniquely.

Recently, axiomatic analysis has been used in many economic contexts. A noncom-

prehensive list of examples is as follows:

(i) A bankruptcy problem consists of a liquidation value of a bankrupt �rm and

creditors� claims on this value. A rule associates with each such problem a recom-

mendation that specifes how the liquidation value is divided among its creditors. The

axioms are about what the division ought to be like (see O�Neill (1982) and Aumann

and Maschler (1985)).

(ii) A fair allocation problem consists of a social endowment and agents�preferences

over this endowment. A rule associates with each such problem an allocation that

1Nash wrote in his paper that his approach is positive. Later, however, it is also regarded as a
normative exercise.
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speci�es how the social endowment is allocated among the agents. The axioms are

about how the endowment should be allocated fairly (see Moulin (1995) and Thomson

(2010) for the review fo this literature).

(iii) A cost allocation problem consists of a list of quantities demanded by a set

of agents for a good and the cost of producing the good at various levels. A rule

associates with each such problem a recommendation that speci�es how the cost of

satisfying aggregate demand is divided among the agents. The axioms are used to be

recommended for the division of the good (see Taumann (1988) and Kolpin (1996)).

(iv) A matching problem consists of two sets of agents and preference relation of

each agent over the members of the other set. A rule associates with each problem a

matching that speci�es how the agents are paired. The axioms are about how they

should be paired (see Sasaki and Toda (1992) and Kara and Sönmez (1996, 1997)).

In this thesis, we use the axiomatic method to analyze both individual and collective

decision problems in di¤erent economic contexts. We use the axiomatic analysis as

both a positive and a normative tool. Chapter 2 is about describing choices made by

individuals. Our axioms here are designed to describe observed behavior and thus our

approach is positive. Chapter 3 is about describing bargaining stituations where the

disagreement outcome depends on who breaks down the negotiation. Our axioms in

this chapter are again designed to describe the observed phenomenon and thus our

approach is positive. Chapter 4 is about designing trade mechanisms in nonclearing

markets. Our axioms in this chapter are designed to be recommended for the designed

mechanisms and thus our approach is normative.

This thesis is organized as follows.

In Chapter 2, we axiomatically analyze decision problems of individuals. Standard

revealed preference theory has been criticized for not being able to address two phe-

nomena: (i) incomplete preferences and (ii) status-quo bias. Our aim in this chapter

is to propose a theory of revealed preferences that allows both of these features.

One of the most widely discussed axioms of utility theory is the completeness axiom

which does not leave room for an individual to remain indecisive on any occasion. In

daily life there are many situations in which an individual has incomplete preferences

and thereby exhibits indecisiveness. This casual observation is supported by exper-

imental studies. Danan and Ziegelmeyer (2004) experimentally test the descriptive

validity of the completeness axiom and they show that a signi�cant number of subjects

(around two-thirds) violate it. In an experiment, Brady and Ansolabehere (1989) �nd

that approximately 20 percent of their subjects have incomplete preferences over the

candidates in the 1976 and 1984 Democratic Presidential primaries.
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The second feature, status-quo bias, refers to an agent whose choice behaviour is

a¤ected by the existence of an alternative he holds at the time of choice (called the

status-quo). This phenomenon is documented not only by experimental studies but

also by empirical work in the case of actual markets (see Kahneman, Knetsch and

Thaler (1991) for surveys). Particularly, Samuelson and Zeckhauser (1988) report on

several decision-making experiments where a signi�cant number of their subjects exhibit

a status-quo bias.

Motivated by these observations, we propose a theory that encompasses both (i)

incomplete preferences and (ii) status-quo bias. In our model, a choice problem is (i)

a feasible set S of alternatives and (ii) a status-quo point x in S (allowed to be null

when there is no status-quo). Our main result is that if an agent�s choice behavior

satis�es a set of basic properties, then it is rationalizable2 by a pair of incomplete

preference relations (one �more incomplete� than the other): when there is a status-

quo, the agent �rst compares the non-status-quo alternatives to the status-quo by using

the more incomplete preference relation. He chooses the status-quo if no alternative is

strictly preferred to it. However, if there are some alternatives that are strictly preferred

to the status-quo, then among them the agent chooses alternatives that maximize the

second (less incomplete) preference relation.3 This is related to Masatlioglu and Ok

(2005) that models the status-quo bias as an agent having an incomplete preference

relation that he uses to compare the status-quo to another alternative (and whenever

indecisive, to choose the status-quo).

In Chapter 3, we analyze bargaining situations where the agents�payo¤s from dis-

agreement depend on who among them breaks down the negotiations. A typical bar-

gaining problem, as modeled by Nash (1950) and the vast literature that follows, is

made up of two elements. The �rst is a set of alternative agreements on which the

agents negotiate. The second element is an alternative realized in case of disagreement.

This �disagreement outcome�does not however contain detailed information about the

nature of disagreement. Particularly, it is assumed in the existing literature that the

realized disagreement alternative is independent of who among the agents disagree(s).

In real life examples of bargaining, however, the identity of the agent who terminates

the negotiations turns out to have a signi�cant e¤ect on the agents� �disagreement

payo¤s�. The reunion negotiations between the northern and the southern parts of

Cyprus that took place at the beginning of 2004 constitute a good example. Due to

2An agent�s choice behaviour is rationalizable if there exists a preference relation such that for any
choice problem, its maximizers coincide with the agent�s choices.

3Note that, this is di¤erent than simply maximizing the second preference relation on the whole
set.
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a very strong support from the international community towards the island�s reunion,

neither party preferred to be the one to disagree. Also, each preferred the other�s

disagreement to some agreements which they in turn preferred to leaving the negotiation

table themselves.4 Wage negotiations between �rms and labor unions constitute another

example to the dependence of the disagreement payo¤s on the identity of the disagreer.

There, the disagreement action of the union, a strike, and that of the �rm, a lockout,

can be signi�cantly di¤erent in terms of their payo¤ implications. Finally, note that

the bargaining framework is frequently used in economic models of family (see e.g.

Becker (1981), Manser and Brown (1980), Sen (1983) and the following literature): the

married couple bargains on alternative joint-decisions and divorce is their disagreement

alternative. In the current models, payo¤s from divorce do not depend on who in the

couple leaves the marriage. However, it seems to us that this is hardly the case in

reality.

We therefore extend Nash�s (1950) standard model to a nonanonymous-disagreement

model of bargaining by allowing the agents�payo¤s from disagreement to depend on

who among them disagrees. For this, we replace the disagreement payo¤ vector in the

Nash (1950) model with a disagreement payo¤ matrix. The ith row of this matrix is the

payo¤ vector that results from agent i terminating the negotiations.

On our extended domain, we analyze the implications of two central properties

which, on the Nash domain, are known to be incompatible (Thomson (2010)). The

�rst property, called strong monotonicity (Kalai, 1977) states that an expansion of the

set of possible agreements should not make any agent worse-o¤. The second property,

called scale invariance (Nash, 1950) ensures the invariance of the physical bargaining

outcome with respect to utility-representation changes that leave the underlying von

Neumann-Morgenstern (1944) preferences intact.

Our �rst result establishes the existence of nonanonymous-disagreement bargaining

rules that are both strongly monotonic and scale invariant. Next, we show that strong

monotonicity, scale invariance, weak Pareto optimality, and continuity characterize the

class of monotone path rules which assign each disagreement matrix to a monotone

increasing path in the payo¤ space and for a given problem, picks the maximal feasible

point of this monotone path as the solution. Then, we add scale invariance to this list

4There is a vast number of articles that discuss the issue. For example, see the Economist articles
dated April 17, 2004 (volume 371, issue 8371), Cyprus: A Greek Wrecker (page 11) and Cyprus: A
Derailment Coming (page 25); also see Greece�s Election: Sprinting Start? dated March 13, 2004
(volume 370, issue 8366, page 31). Also see the special issue on Cyprus of International Debates
(2005, 3:3). Finally, an interview (in Turkish) with a former Turkish minister of external a¤airs, which
appeared in the daily newspaper Radikal on February 16, 2004, presents a detailed discussion of the
implications of disagreement.
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characterize a subclass of monotone path rules.

We also analyze two-agent problems. We show that a scale invariant monotone

path rule for two-agent problems can be fully de�ned by the speci�cation of at most

eight monotone paths.

Finally, we introduce a symmetric monotone path rule that we call the Cardinal

Egalitarian rule. This is a nondecomposable rule and it is a scale invariant version of

the well-known Egalitarian rule (Kalai, 1977). We show that the Cardinal Egalitarian

rule is weakly Pareto optimal, strongly monotonic, scale invariant, symmetric and that

it is the only rule to satisfy these properties on a class of two-agent problems where the

agents disagree on their strict ranking of the disagreement alternatives (as, for example,

was the case for the 2004 Cyprus negotiations).

In Chapter 4, we analyze markets in which the price of a traded commodity is �xed

at a level where the supply and the demand are possibly unequal. This stickiness of

prices is observed in many markets, either because the price adjustment process is slow

or because the price is controlled from the outside of the market.

The main question is the following: in such markets, how should a central authority

design a mechanism (hereafter, a trade rule) that determines the trade? In this paper,

we axiomatically analyze trade rules on the basis of some well-known properties in the

literature.

In our model, buyers and sellers constitute two exogenously di¤erentiated sets.

There is only one traded commodity and sellers face demand from buyers. Buyers

might be individuals or producers that use the commodity as input. We assume that

the buyers have strictly convex preferences on consumption bundles. Thus, they have

single-peaked preferences on the boundary of their budget sets, and therefore, on their

consumption of the commodity. Similarly, we assume that the sellers have strictly

convex production sets. Thus, their pro�ts are single-peaked in their output.

A trade rule maps each economy to a feasible trade. In our model, it is made up

of two components: a trade-volume rule and an allocation rule. The trade-volume rule

determines the trade-volume that will be carried out in the economy and thus, the

total consumption and the total production. Then, the allocation rule allocates the

total consumption among the buyers and the total production among the sellers.

The following papers study the design of a mechanism that determines the trade

in nonclearing markets. Barberà and Jackson (1995) analyze a pure exchange economy

with a arbitrary number of agents and commodities. Each agent has a positive endow-

ment of the commodities and a continuous, strictly convex, and monotonic preference

relation on his consumption. The authors look for strategy proof rules that facilitate

6



trade in this exchange economy.

Our model is closely related to K¬br¬s and Küçükşenel (2009) and Bochet, ·Ilk¬l¬ç,

and Moulin (2009). K¬br¬s and Küçükşenel (2009) analyze a class of trade rules each

of which is a composition of the Uniform rule with a trade-volume rule that picks

the median of total demand, total supply and an exogenous constant. They show

that this class uniquely satis�es Pareto optimality, strategy proofness, no-envy, and an

informational simplicity axiom called independence of trade-volume. Bochet, ·Ilk¬l¬ç,

and Moulin (2009) introduces a graph structure to this setting and they assume that

a trade between a buyer and a seller is possible only if there is a link between them.

They characterize the egalitarian transfer mechanism by the combination of Pareto

optimality, strategy proofness, voluntary trade, and equal treatment of equals.

In all these papers, the authors analyze markets with a �xed population. In this

thesis, we allow the population to be variable and analyze the implications of these

population changes. We introduce a class of Uniform trade rules each of which is a

composition of the Uniform rule and a trade-volume rule. We axiomatically analyze

Uniform trade rules on the basis of some central properties concerning variations of

the population, namely, consistency and population monotonicity. We also analyze the

implications of standard properties such as Pareto optimality, strategy-proofness, and

no-envy, and an informational simplicity property, strong independence of trade volume.

We �rst show that a particular subclass of Uniform trade rules uniquely satis�es

consistency together with Pareto optimality, no-envy, and strong independence of trade

volume. Next, we add strong independence of trade volume to the list and characterize

a smaller subclass that satis�es those properties.

Next, we note that there are trade rules that simultaneously satisfy three properties,

which are incompatible on standart single peaked domain: Pareto optimality, no-envy,

and population monotonicity. We characterize the subclass that additionally satis�es

strategy-proofness. Finally, we also add strong independence of trade volume to the list.

To sum up, in this thesis, we axiomatically analyze both individual and collective

decision problems in three di¤erent contexts. In Chapter 2, we use this analysis to

introduce a revealed preference theory that allows both status-quo bias and indecisivi-

ness between any two alternatives. In Chapter 3, we introduce bargaining problems

in which the disagrement outcome depends on who causes the disagreement and we

axiomatically analyze bargaining rules on these problems. In Chapter 4, we axiomat-

ically analyze markets in which the price is �xed at a level where the supply and the

demand are possibly unequal.
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CHAPTER 2

REVEALED INCOMPLETE PREFERENCES UNDER STATUS-QUO BIAS

2.1 Introduction

Recently, (standard) revealed preference theory has been criticized for not being

able to address two phenomena: (i) incomplete preferences and (ii) status-quo bias.

The aim of this chapter is to propose a theory of revealed preferences that allows both

of these features.

Quoting Aumann (1962), �... Of all the axioms of utility theory, the complete-

ness axiom is perhaps the most questionable�. Aumann argues that in daily life there

are many situations in which an individual has incomplete preferences and thereby ex-

hibits indecisiveness. His arguments are supported by experimental studies. Danan

and Ziegelmeyer (2004) experimentally test the descriptive validity of the completeness

axiom and they show that a signi�cant number of subjects (around two-thirds) violate

completeness. In an experiment, Brady and Ansolabehere (1989) �nd that approxi-

mately 20 percent of their subjects have incomplete preferences over the candidates

in the 1976 and 1984 Democratic Presidential primaries. Similar results are obtained

by Eliaz and Ok (2006) who show that completeness of the revealed preferences is

closely related to a Property � (Sen, 1971) of choice and that this property is violated

by a signi�cant number of subjects. (Therefore, they weaken Property � to represent

incomplete preferences.)

The second feature, status-quo bias, refers to an agent whose choice behaviour

is a¤ected by the existence of an alternative he holds at the time of choice (called

the status-quo). This phenomenon has been repeatedly demonstrated in experiments

(see Kahneman, Knetsch and Thaler (1991) for surveys). Particularly, Samuelson and

Zeckhauser (1988) report on several decision-making experiments where a signi�cant

number of their subjects exhibit a status-quo bias. Masatlioglu and Ok (2005) model

the status-quo bias as an agent having an incomplete preference relation that he uses

to compare the status-quo to another alternative (and whenever indecisive, to choose

the status-quo).

There is no experimental study that demonstrates both incomplete preferences and

a status-quo bias. However, we believe that there are choice situations in which a

decision maker can exhibit both features. As an example, consider a professor who

has job o¤ers. He may be evaluating these o¤ers with respect to several criteria and
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thus, may be indecisive between some of them. In addition, his current job (if it

exists) may bias his choices. Models that exhibit both features are already used in

political theory. For example, Ashworth (2005) considers voters whose preferences are

incomplete. He also assumes that there is a status-quo action that the voters take

unless some alternative dominates it.

Motivated by these observations, we propose a theory that encompasses bothMasatli-

oglu and Ok (2005) and Eliaz and Ok (2006). In our model, a choice problem is (i) a

feasible set S of alternatives and (ii) a status-quo point x in S (allowed to be null when

there is no status-quo). Our main result is that if an agent�s choice behavior satis�es

a set of basic properties, then it is rationalizable1 by a pair of incomplete preference

relations (one �more incomplete�than the other): when there is a status-quo, the agent

�rst compares the non-status-quo alternatives to the status-quo by using the more in-

complete preference relation. He chooses the status-quo if no alternative is strictly

preferred to it. However, if there are some alternatives that are strictly preferred to the

status-quo, then among them the agent chooses alternatives that maximize the second

(less incomplete) preference relation.2 ; 3

Existence of two distinct preference relations is essential in capturing certain charac-

teristics of the choice behaviour that we observe. We show that agents whose choice be-

haviour can be rationalized by a single (however incomplete) preference relation satisfy

a property that signi�cantly limits the implications of status-quo bias (see Corollaries

1 and 2).

Our model is rich enough to make a distinction between an agent being indecisive or

indi¤erent between two alternatives. There is an observational distinction between these

two cases (e.g. see Eliaz and Ok (2006)). In both of them, the agent�s choices switch

between the two alternatives in repetitions of the same choice problem. However, an

agent being indecisive between two alternatives also implies that in terms of comparison

to some third alternatives, these two alternatives di¤er. This feature of indecisiveness

leads to certain �inconsistencies�in the choice behavior (which do not exist in the case

of indi¤erence)4.

1An agent�s choice behaviour is rationalizable if there exists a preference relation such that for any
choice problem, its maximizers coincide with the agent�s choices.

2This process is similar to Masatlioglu and Ok (2005). However, they require one of the preference
relations to be complete. As a result, the agent in their model is never indecisive between two non-
status-quo alternatives.

3Note that, this is di¤erent than simply maximizing the second preference relation on the whole
set.

4As an example, consider the following voter. He has two favorite parties, A and B. If he has to
vote between one of these two, he could vote for either. First, let him face the problem of voting among
A, X, and Y . Suppose that he votes for A. Now, in this choice problem, replace A with B. Being
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In addition to Masatlioglu and Ok (2005) and Eliaz and Ok (2006), our model

is similar to Zhou (1997) and Bossert and Sprumont (2003). However, these authors

do not consider incomplete preferences and they only analyze problems with a status-

quo (thus unlike them, we can also discuss properties that link the choice behaviour

in problems with and without a status-quo). Our model is also similar to Tversky-

Kahneman (1991) and Sagi (2003) who analyze cases where an agent�s preferences are

dependent on a reference state (which, in our case, is a status-quo alternative). However,

these authors focus on properties of preferences (rather than choices as we do).

2.2 Properties of a Choice Correspondence

Let X be a nonempty metric space of alternatives and X be the set of all

nonempty closed subsets of X. A choice problem is a pair (S; x) where S 2 X and

x 2 S or x = �.5 The set of all choice problems is C(X). If x 2 S, then (S; x) is a
choice problem with a status-quo and we denote the set of such choice problems by

Csq(X). If x = �, then (S; �) is a choice problem without a status-quo. A choice
correspondence is a map c : C(X)! X such that for all (S; x) 2 C(X), c(S; x) � S.

A binary relation � on a nonempty set X is called a preorder if it is re�exive
(x � x for all x 2 X) and transitive (x � y and y � z imply x � z for all x; y; z 2 X).
An antisymmetric (x � y and y � x imply x = y for all x; y 2 X) preorder is called a
partial order and a complete (x � y or y � x for all x; y 2 X) partial order is called
a linear order. Let � be any binary relation on X. Let x; y 2 X. Then, x � y if and
only if x � y and y � x and x � y if and only if x � y and y � x. Let � and �0 be
two binary relations on X and x; y 2 X. Then, �0 is an extension of � if and only if

x � y implies x �0 y and x � y implies x �0 y.
Let x 2 X and S 2 X . Following Masatlioglu and Ok (2005), we let U�(S; x) =

fy 2 Sj y � xg be the strict upper contour set of x in S with respect to
� and M(S;�) = fx 2 Sj U�(S; x) = ;g be the set of all maximal elements in
S with respect to �. For any positive integer n and any function u : X ! Rn,
Uu(S; x) = fy 2 Sj u(y) > u(x)g is the upper contour set of x in S with respect
to u6 andM(S;u) = fy 2 Sj Uu(S; y) = ;g is the set of all maximal elements in S
with respect to u.

indi¤erent between A and B means that he chooses B in this problem. However, being indecisive
between A and B refers to the case in which he chooses an alternative di¤erent than B. For further
discussion, please see Eliaz and Ok (2006).

5� denotes a null alternative and is used to represent cases when there is no status-quo.
6For vectors in Rn, the inequalities are de�ned as follows: x � y if and only if xi � yi for all

i = 1; :::; n and x > y if and only if x � y and x 6= y.
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Now, we de�ne some properties. The �rst two are borrowed from Masatlioglu and

Ok (2005). Property � is a straightforward extension of the �standard Property ��in

the revealed preference theory.

Property � : For any (S; x); (T; x) 2 C(X) if y 2 T � S and y 2 c(S; x), then
y 2 c(T; x).

For the second property, suppose y is not worse than any other alternative in a fea-

sible set S, including the status-quo alternative x (if there is one). Then, status-quo bias

requires that when y becomes the status-quo, it will be revealed strictly preferred to

every other alternative in S. (For a detailed discussion, see Masatlioglu and Ok (2005)).

Status-quo Bias: For any (S; x) 2 C(X), if y 2 c(S; x), then c(S; y) = fyg.

Now, we introduce a new property which is a weakening of the counterpart of Sen�s

(1971) Property � for choice problems with status-quo (see Masatlioglu and Ok (2005)

for a stronger formulation). To see the main di¤erence between properties � and �0,

take any alternative y from a feasible set of alternatives S and suppose there is a cho-

sen alternative z in S such that the following condition holds: there is a subset T of

S containing both y and z such that both are chosen in T . Property � then says that

y must also be chosen from S. Our weaker Property �0 on the other hand requires the

above condition to hold for every chosen z in S for y also to be chosen.

Property �0: For any (S; x) 2 C(X) and y 2 S, if for all z 2 c(S; x), there exists
T � S such that x; y; z 2 T 7 and y; z 2 c(T; x), then y 2 c(S; x).

Properties �0 and � are together equivalent to a �revealed non-inferiority� property

(introduced by Eliaz and Ok (2006)) which is weaker than the weak axiom of revealed

preferences.

The following three properties relate the choice behavior of a decision maker across

problems with and without a status-quo. The �rst two of them are borrowed form

Masatlioglu and Ok (2005). (For a detailed discussion of these properties, see their

paper.)

7If x = �, then consider only y; z 2 T .
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Dominance: For any (T; x) 2 C(X), if c(T; x) = fyg for some T � S, and

y 2 c(S; �), then y 2 c(S; x).

SQ-irrelevance: For any (S; x) 2 Csq(X), if y 2 c(S; x) and x =2 c(T; x) for any
nonempty T � S with T 6= fxg, then y 2 c(S; �).

For the third property, take any alternative x from a set S. Suppose that x is never

chosen from a subset T 6= fxg of S despite the fact that it is the status-quo. Thus,
x does not play a signi�cant role in the choice problem (S; x). In such cases, strong

SQ-irrelevance requires that dropping out the status-quo alternative does not a¤ect the

agent�s choices.

Strong SQ-irrelevance: For all (S; x) 2 Csq(X), if x =2 c(T; x) for any nonempty
T � S such that T 6= fxg, then c(S; �) = c(S; x).

Strong SQ-irrelavence is weaker than the combination of Masatlioglu and Ok (2005)�s

�dominance� and �SQ-irrelevance�. It implies �status-quo irrelevance�, but not �dom-

inance� as noted in the following example: let X = fx; y; zg and
c(fx; y; zg; �) = fyg, c(fx; yg; �) = fyg, c(fx; zg; �) = fzg, c(fy; zg; �) = fyg.
c(fx; y; xg; x) = fx; zg, c(fx; yg; x) = fyg, c(fx; zg; x) = fxg.

However, together with Property � and �0, strong SQ-irrelevance implies both proper-

ties.

Lemma 1 (i) If a choice correspondence c satis�es SQ-irrelevance and dominance,
then it satis�es strong SQ-irrelevance.

(ii) If a choice correspondence c satis�es Property �, Property �0, and strong SQ-

irrelevance, then it satis�es SQ-irrelevance and dominance.

Proof. (i) Let c satisfy SQ-irrelevance and dominance. Let (S; x) 2 Csq(X).
Suppose x =2 c(T; x) for any nonempty T � S such that T 6= fxg. Then, for any z 2
Snfxg, c(fx; zg; x) = fzg. Let y 2 S. First, let y 2 c(S; �). Since c(fx; yg; x) = fyg, by
dominance, y 2 c(S; x). Second, let y 2 c(S; x). Then, by SQ-irrelevance, y 2 c(S; �).
Therefore, c(S; x) = c(S; �) and c satis�es strong SQ-irrelevance.

(ii) Let c satisfy the given properties. To show that c satis�es SQ-irrelevance,

let (S; x) 2 Csq(X) and y 2 S. Suppose that y 2 c(S; x) and x =2 c(T; x) for any

nonempty T � S such that T 6= fxg. By strong SQ-irrelevance, c(S; x) = c(S; �).
Thus, y 2 c(S; �). To show that c satis�es dominance, let y 2 c(S; �) and suppose there
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is T � S such that (T; x) 2 Csq(X) and c(T; x) = fyg. Suppose for a contradiction
that y =2 c(S; x). Then by Property �0, there is z 2 c(S; x) such that there is no

T 0 � S with x; y; z 2 T 0 and y; z 2 c(T 0; x). Note that z 6= x, because otherwise

by Property �, x 2 c(T; x). Now, consider the problem (fx; y; zg; x). By Property �,
z 2 c(fx; y; zg; x). Then, y =2 c(fx; y; zg; x). Also, x =2 c(fx; y; zg; x), because otherwise,
by Property �, x 2 c(fx; yg; x) and this implies by Property �0 that x 2 c(T; x). Thus,
c(fx; y; zg; x) = fzg. By Property �, z 2 c(fx; zg; x). This implies by Property �0

that c(fx; zg; x) = fzg, because otherwise x 2 c(fx; y; zg; x). Thus, x =2 c(T 0; x) for
any T 0 � fx; y; zg with T 0 6= fxg. Then, by strong SQ-irrelevance, c(fx; y; zg; �) =
c(fx; y; zg; x). Thus, c(fx; y; zg; �) = fzg. But y 2 c(S; �) implies by Property � that
y 2 c(fx; y; zg; �), a contradiction.

Thus, the class of choice correspondences that satisfy Property �, Property �0, and

strong SQ-irrelevance is the same as the class of choice correspondences that satisfy

Property �, Property �0, dominance, and SQ-irrelevance. For simplicity, we use strong

SQ-irrelevance instead of dominance and SQ-irrelevance.

2.3 Results

The following lemma discusses the implications of the properties introduced in

Section 2.

Lemma 2 If the choice correspondence c on C(X) satis�es Property �, Property �0,
status-quo bias, and strong SQ-irrelevance, then there is a partial order � and a preorder
�0 such that �0 is an extension of � and

c(S; �) =M(S;�0) for all S 2 X ;

and

c(S; x) =

(
fxg if U�(S; x) = ;,

M(U�(S; x);�0) otherwise

for all (S; x) 2 Csq(X).

Proof. Assume that c satis�es the given properties. For any S 2 X , x 2 S and
y =2 S, let Sy;�x = (S [ fyg) n fxg. Let

P(c) := f(x; y) 2 X �X : x 6= y and c(fx; yg; �) = fx; ygg;
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and let I(c) be the set of pairs of alternatives (x; y) 2 X �X such that there is a �nite

set S 2 X with x 2 S and y =2 S and at least one of the following is true:
i) x 2 c(S; �) but y =2 c(Sy;�x; �);
ii) x =2 c(S; �) but y 2 c(Sy;�x; �);
iii) c(S; �) n fxg 6= c(Sy;�x; �) n fyg:

Now, consider the binary relations �, �0, and �0 de�ned on X by

x � y if and only if x 2 c(fx; yg; y);
x �0 y if and only if c(fx; yg; �) = fxg and x 6= y;
x �0 y if and only if (x; y) 2 P(c)nI(c) or x = y:

Note that, �0 is symmetric. To see this, take any (x; y) 2 P(c)nI(c). Note that
(y; x) 2 P(c). Then we have to show that (y; x) =2 I(c). Take any �nite T 2 X with

y 2 T and x =2 T . Let S = Tx;�y. Since (x; y) =2 I(c), we have x 2 c(S; �) if and
only if y 2 c(Sy;�x; �). That is y 2 c(T; �) if and only if x 2 c(Tx;�y; �). Moreover,
c(Tx;�y; �)nfxg = c(S; �)nfxg = c(Sy;�x; �)nfyg = c(T; �)nfyg: Then (y; x) =2 I(c).

Also, note that �0 is asymmetric and disjoint from �0. Then, de�ne �0 := �0 [ �0.
Thus, �0 is a binary relation on X with symmetric and asymmetric parts �0 and �0.

To show that �0 is an extension of �, �rst let x; y 2 X be such that x � y.

Then, x 2 c(fx; yg; y) and y 2 c(fx; yg; x). By status-quo bias, x 2 c(fx; yg; y) implies
c(fx; yg; x) = fxg. Thus, x = y and by de�nition of �0, x �0 y. Now, suppose x � y.
Then, x 2 c(fx; yg; y) and y =2 c(fx; yg; x). By status-quo bias, c(fx; yg; x) = fxg and
c(fx; yg; y) = fxg. Thus, x 6= y and by strong SQ-irrelevance, c(fx; yg; �) = fxg. Thus
x �0 y.

Now, we want to prove that for all S 2 X , c(S; �) = M(S;�0). First, let x 2 S
be such that x 2 c(S; �). Suppose for a contradiction that x =2 M(S;�0). Then,
there is y 2 S such that y �0 x. Then, c(fx; yg; �) = fyg. On the other hand, since
x 2 c(S; �), Property � implies x 2 c(fx; yg; �). Thus, x = y contradicting y �0 x and
so c(S; �) �M(S;�0).

Second, let x 2 M(S;�0) and suppose for a contradiction that x =2 c(S; �). Then,
by Property �0, there is y 2 Snfxg such that y 2 c(S; �) and for all T � S with x; y 2 T ,
x =2 c(T; �). Then, c(fx; yg; �) = fyg. Thus, y �0 x, contradicting x 2M(S;�0) and so
M(S;�0) � c(S; �).
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Claim 1: For any (S; x) 2 Csq(X),

c(S; x) �
(

fxg if U�(S; x) = ;,
U�(S; x) otherwise.

Proof of Claim 1: Assume U�(S; x) = ;. Let y 2 S n fxg and for a contradiction,
suppose y 2 c(S; x). By Property � and status-quo bias , c(fx; yg; x) = fyg. Thus,
y � x contradicting U�(S; x) = ;. Therefore, c(S; x) = fxg.

Now, let U�(S; x) 6= ; and �rst suppose x 2 c(S; x). Thus, by Property � and

status-quo bias, for all z 2 S, c(fx; zg; x) = fxg. Then, there is no z 2 S such that
z � x, contradicting U�(S; x) 6= ;. Thus, x =2 c(S; x). Then, let y 2 S n fxg be such
that y 2 c(S; x). By Property � and status-quo bias, c(fx; yg; x) = fyg. Thus, y � x
and so y 2 U�(S; x).

Claim 2: For any (S; x) 2 Csq(X), if U�(S; x) 6= ;, c(S; x) = c(U�(S; x); �).
Proof of Claim 2:We �rst show that c(S; x) � c(U�(S; x); �). Let y 2 c(S; x). By Claim
1, y 2 U�(S; x). Thus, by Property �, y 2 c(S; x) implies y 2 c(U�(S; x)[fxg; x). Also
by Claim 1, for any nonempty T � U�(S; x), c(T [ fxg; x) � U�(T [ fxg; x). Thus,
x =2 c(T [ fxg; x). Then, by strong SQ-irrelevance, y 2 c(U�(S; x) [ fxg; �). Then, by
Property �, y 2 c(U�(S; x); �). Thus, c(S; x) � c(U�(S; x); �).

Now, we want to show c(U�(S; x); �) � c(S; x). Let y 2 c(U�(S; x); �). Since

(i) � � �0, and (ii) c(U�(S; x) [ fxg; �) = M(U�(S; x) [ fxg;�0), we have x =2
c(U�(S; x) [ fxg; �). Then, by Property �, for any z 2 c(U�(S; x) [ fxg; �), we
have y; z 2 c(U�(S; x); �). Thus, by Property �0, y 2 c(U�(S; x) [ fxg; �). On the
other hand, by Claim 1, for any T � U�(S; x) with T 6= ;, x =2 c(T [ fxg; x).
Then, by strong SQ-irrelevance, y 2 c(U�(S; x) [ fxg; x). Since U�(S; x) 6= ;, by
Claim 1, c(S; x) � U�(S; x). Thus, x =2 c(S; x). Then, by Property �, for any

z 2 c(S; x), we have y; z 2 c(U�(S; x) [ fxg; x). Thus, by Property �0, y 2 c(S; x).
Thus, c(U�(S; x); �) � c(S; x) and so c(S; x) = c(U�(S; x); �).

Thus, by c(S; �) =M(S;�0) and by claims 1 and 2, we prove that for all (S; x) 2
Csq(X),

c(S; x) =

(
fxg if U�(S; x) = ;,

M(U�(S; x);�0) otherwise.
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The proofs of � being a partial order and �0 being a preorder are identical to
Masatlioglu and Ok (2005, page 22) and Eliaz and Ok (2006, page 82), respectively.

Note that, the agent in our model can be both indecisive and indi¤erent between

two non-status-quo alternatives.

The following theorem shows that whenever X is �nite, a choice correspondence,

c satis�es our properties if and only if it is �rationalizable�by a pair of vector-valued

utility functions (one aggregating the other). Vector-valued utility functions exist also

in Masatlioglu and Ok (2005) who interpret them as an evaluation of the alternatives

on the basis of various distinct criteria. The ith component of the vector-valued util-

ity function represents the agent�s ranking of the alternatives with respect to the ith

criterion. While in Masatlioglu and Ok (2005) the agent uses a real-valued function to

aggregate these criteria (so that he has complete preferences on the alternatives), the

agent in our model cannot always do so.

Theorem Let X be �nite. A choice correspondence c on C(X) satis�es Property �,
Property �0, strong SQ-irrelevance, and status-quo bias if and only if there are posi-

tive integers n;m such that n � m, an injective function u : X ! Rn, and a strictly
increasing map f : u(X)! Rm such that for all S 2 X ,

c(S; �) =M(S;f(u))

and

c(S; x) =

(
fxg if Uu(S; x) = ;,

M(Uu(S; x);f(u)) otherwise

for all (S; x) 2 Csq(X).

Proof. It is straightforward to show that the described choice correspondence

satis�es the given properties. Conversely, let c be a choice correspondence on C(X).
Assume that it satis�es the given properties. Consider the partial order � and the

preorder �0 constructed in the Lemma.
Claim 1: There is a positive integer n and an injective function u : X ! Rn such that
for all x; y 2 X,

y � x if and only if u(y) � u(x):

Proof of Claim 1: Let L(�) stand for the set of all linear orders �� such that �� is an
extension of �. Since X is �nite, L(�) is a nonempty and �nite set. Then, enumerate
L(�) = (�i)ni=1 and note that �= \ni=1 �i. Since for each i = 1; :::; n, �i is a linear
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order on a �nite set X, there exists a function ui : X ! R such that

x �i y if and only if ui(x) � ui(y):

Let u = (u1; :::; un). Then, for all x; y 2 X,

x � y if and only if u(x) � u(y):

Since � is antisymmetric, u must be injective.
Claim 2: There is a positive integer m with m � n and a function u0 : X ! Rm such
that for all x; y 2 X,

y �0 x if and only if u0(y) � u0(x):

Proof of Claim 2: We can show the existence of m and u0 : X ! Rm by using the

same argument as in Claim 1. Since �0 is an extension of �, L(�) = (�i)ni=1, and
L(�0) = (�0i)mi=1, we have m � n.

To complete the proof, we de�ne f : u(X) ! Rm by f(u(x)) := u0(x). Since u

is injective, f is well-de�ned. Moreover, if u(x) > u(y) for some x; y 2 X, by Claim
1, x � y. Then, by the lemma and Claim 2, x �0 y and f(u(x)) = u0(x) > u0(y) =
f(u(y)). Thus, f is strictly increasing.

Thus, by Claim 1 and 2 and by the lemma,

c(S; �) =M(S;f(u0))

and

c(S; x) =

(
fxg if Uu(S; x) = ;,

M(Uu(S; x);f(u0)) otherwise.

Note that if the agent�s choice behaviour satis�es our properties, then similar to

Masatlioglu and Ok (2005) the status-quo alternative a¤ects the agent�s choice in the

following ways: (i) it eliminates the alternatives that do not give higher utility in all

evaluation criteria, (ii) it becomes the unique choice if all alternatives are eliminated,

(iii) it a¤ects the agent�s choices even if it is not chosen itself (please see Masatlioglu

and Ok (2005) for an example).
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2.4 Independence of Unique Choice from the Status-quo

In this section, we analyze the conditions under which the two preference relations

can be replaced with a single one. There are agents whose choice behaviour can satisfy

all of our properties and yet cannot be rationalized by a single preference relation. In

fact, if a choice behaviour can be rationalized by a single incomplete preference relation,

it then has to satisfy a property that we call independence of unique choice from the

status-quo. To understand this property , suppose x is the unique choice when there is

no status-quo in the problem. Now, consider the e¤ect of a non-status-quo alternative,

y being the status-quo. Independence of unique choice from the status-quo then requires

that x should be also chosen from the latter problem. That is if x is revealed to be

superior to any alternative in the feasible set, making y the status-quo does not cause

it to be revealed superior to x.

Independence of unique choice from the status-quo: For all S 2 X and

x; y 2 S such that x 6= y, if c(S; �) = fxg, then x 2 c(S; y).

This property restricts the power of the status-quo bias signi�cantly. Since x is

chosen uniquely, it is strictly preferred to y when there is no status-quo. Then, in-

dependence of unique choice from the status-quo requires that y being a status-quo

alternative does not create a �too�strong status-quo bias towards itself, i.e. y cannot

be revealed strictly preferred to x. This contradicts with one of the well-known ex-

perimental observations, �the preference reversal phenomenon as an endowment e¤ect�

(Slovic and Lichtenstein (1968)).

Unfortunately, it turns out that independence of unique choice from the status-quo

is both necessary and su¢ cient for a choice behaviour to be rationalized by a single

incomplete preference relation.

Corollary 1 (to Lemma 2) If the choice correspondence c on C(X) satis�es Property
�, Property �0, strong SQ-irrelevance, status-quo bias, and independence of unique

choice from the status-quo, then there is a partial order � such that

c(S; �) =M(S;�) forall S 2 X

and

c(S; x) =

(
fxg if U�(S; x) = ;,

M(U�(S; x);�) otherwise
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for all (S; x) 2 Csq(X).
Proof. Suppose that the choice correspondence c satis�es the given properties.

Then, by Lemma 2, there is a partial order � and a preorder �0 such that �0 is an
extension of � and

c(S; �) =M(S;�0) forall S 2 X ;

and

c(S; x) =

(
fxg if U�(S; x) = ;,

M(U�(S; x);�0) otherwise

for all (S; x) 2 Csq(X).
Let � and �0 be de�ned as in the proof of Lemma 2. It is su¢ cient to show that for

any S 2 X ,M(S;�0) =M(S;�). For this, �rst let x 2 S be such that x 2 M(S;�0)
and suppose for a contradiction that x =2 M(S;�). Then, there is y 2 S such that
y � x. Since �0 is an extension of � , y �0 x, contradicting x 2 M(S;�0). Second, let
x 2M(S;�) and suppose for a contradiction that x =2M(S;�0). Then, there is y 2 S
such that y �0 x. Thus, c(fx; yg; �) = fyg. Then, by independence of unique choice
from the status-quo, y 2 c(fx; yg; x) and by status-quo bias, c(fx; yg; x) = fyg. Thus,
y � x, contradicting x 2M(S;�). Thus, we have the desired conclusion.

The implications of the independence of unique choice from the status-quo on the

representation of the revealed preferences in Theorem are as follows:

Corollary 2 (to the Theorem) Let X be a nonempty �nite set. A choice correspon-

dence c on C(X) satis�es Property �, Property �0, strong SQ-irrelevance, status-quo
bias, and independence of unique choice from the status-quo if and only if there is a

positive integer n and a function u : X ! Rn such that for all S 2 X ,

c(S; �) =M(S;u)

and

c(S; x) =

(
fxg if Uu(S; x) = ;,

M(Uu(S; x);u) otherwise

for all (S; x) 2 Csq(X):
Proof. It is straightforward to show that the choice correspondence satis�es the

given properties. Conversely, let c satisfy the given properties. Consider the partial

order � constructed in the Lemma.
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Claim: There exist a positive integer n and an injective function u : X ! Rn such that
for all x; y 2 X,

y � x if and only if u(y) � u(x):

Proof of Claim: The proof is the same as the proof of Claim 1 in Theorem.

Thus, by the Claim and Corollary 1,

c(S; �) =M(S;u)

and

c(S; x) =

(
fxg if Uu(S; x) = ;,

M(Uu(S; x);u) otherwise

for all (S; x) 2 Csq(X):
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CHAPTER 3

BARGAINING WITH NONANONYMOUS DISAGREEMENT: MONOTONIC

RULES

3.1 Introduction

A typical bargaining problem, as modeled by Nash (1950) and the vast literature

that follows, is made up of two elements. The �rst is a set of alternative agreements

on which the agents negotiate. The second element is an alternative realized in case

of disagreement. This �disagreement outcome�does not however contain detailed in-

formation about the nature of disagreement. Particularly, it is assumed in the existing

literature that the realized disagreement alternative is independent of who among the

agents disagree(s).

In real life examples of bargaining, however, the identity of the agent who termi-

nates the negotiations turns out to have a signi�cant e¤ect on the agents��disagreement

payo¤s�. The 2004 reunion negotiations between the northern and the southern parts

of Cyprus constitute a good example. Due to a very strong support from the interna-

tional community towards the island�s reunion, neither party preferred to be the one

to disagree. Also, each preferred the other�s disagreement to some agreements which

they in turn preferred to leaving the negotiation table themselves.1 Wage negotiations

between �rms and labor unions constitute another example to the dependence of the

disagreement payo¤s on the identity of the disagreer. There, the disagreement action

of the union, a strike, and that of the �rm, a lockout, can be signi�cantly di¤erent in

terms of their payo¤ implications.2

Note that, neither of these examples can be fully represented in the con�nes of

Nash�s (1950) standard model. We therefore extend this model to a nonanonymous-
disagreement model of bargaining by allowing the agents�payo¤s from disagreement

to depend on who among them disagrees. For this, we replace the disagreement payo¤

1There is a vast number of articles that discuss the issue. For example, see the Economist articles
dated April 17, 2004 (volume 371, issue 8371), Cyprus: A Greek Wrecker (page 11) and Cyprus: A
Derailment Coming (page 25); also see Greece�s Election: Sprinting Start? dated March 13, 2004
(volume 370, issue 8366, page 31). Also see the special issue on Cyprus of International Debates
(2005, 3:3). Finally, an interview (in Turkish) with a former Turkish minister of external a¤airs, which
appeared in the daily newspaper Radikal on February 16, 2004, presents a detailed discussion of the
implications of disagreement.

2A similar case may arise between two countries negotiating at the brink of a war. Among the
two possible disagreement outcomes, each country might prefer the one where it leaves the negotiation
table �rst and makes an (unexpected) �preemptive strike�against the other.
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vector in the Nash (1950) model with a disagreement payo¤ matrix. The ith row of this

matrix is the payo¤ vector that results from agent i terminating the negotiations. The

standard (anonymous-disagreement) domain of Nash (1950) is a �measure-zero�
subset of ours where all rows of the disagreement matrix are identical.

Our domain extension signi�cantly increases the amount of admissible rules. Every

bargaining rule on the Nash domain has counterparts on our domain (we call such

rules decomposable since they are a composition of a rule from the Nash domain and
a function that transforms disagreement matrices to disagreement vectors). But our

domain also o¤ers an abundance of rules that are nondecomposable (that is, they
are not counterparts of rules from the Nash domain).

On our extended domain, we analyze the implications of two central properties

which, on the Nash domain, are known to be incompatible (Thomson (2010)). The �rst

property, called strong monotonicity (Kalai, 1977) states that an expansion of the
set of possible agreements should not make any agent worse-o¤. Kalai (1977) motivates

it as both a normative and a positive property and argues that �if additional options

were made available to the individuals in a given situation, then no one of them should

lose utility because of the availability of these new options�. The second property,

called scale invariance (Nash, 1950) ensures the invariance of the physical bargaining
outcome with respect to utility-representation changes that leave the underlying von

Neumann-Morgenstern (1944) preferences intact. Scale invariant rules use information

only about the agents�preferences (and not their utility representation) to determine

the bargaining outcome.

Our �rst result establishes the existence of nonanonymous-disagreement bargain-

ing rules that are both strongly monotonic and scale invariant. More speci�cally, in

Subsection 3.3.1, we �rst present a class of monotone path rules which assign each
disagreement matrix to a monotone increasing path in the payo¤ space and for a given

problem, picks the maximal feasible point of this monotone path as the solution.3 In

Theorem 3, we show that strong monotonicity, scale invariance, weak Pareto optimality,

and �continuity �characterize the whole class of monotone path rules. Next, we show

in Theorem 4 that adding scale invariance to this list characterizes a class of monotone

path rules.

In this subsection, we also analyze two-agent problems. We show in Proposition 6

that a scale invariant monotone path rule for two-agent problems can be fully de�ned

3This monotone path can be interpreted as an agenda in which the agents jointly improve their
payo¤s until doing so is no more feasible. On the Nash domain, monotone path rules are introduced
by Thomson and Myerson (1980) and further discussed by Peters and Tijs (1984) (also see Thomson
(2010)).

22



by the speci�cation of at most eight monotone paths.

Finally, in Subsection 3.3.2, we introduce a symmetric monotone path rule that we

call the Cardinal Egalitarian rule. This is a nondecomposable rule and it is a scale
invariant version of the well-known Egalitarian rule (Kalai, 1977). (The Egalitarian

rule violates scale invariance since it makes interpersonal utility comparisons.) The

Cardinal Egalitarian rule coincides with the Egalitarian rule on a class of normalized

problems and solves every other problem by using scale invariance and this normalized

class. In Theorem 7, we show that the Cardinal Egalitarian rule is weakly Pareto

optimal, strongly monotonic, scale invariant, symmetric and that it is the only rule to

satisfy these properties on a class of two-agent problems where the agents disagree on

their strict ranking of the disagreement alternatives (as, for example, was the case for

the 2004 Cyprus negotiations).

K¬br¬s and Tapk¬(2007) show that the class of decomposable rules is a nowhere dense

subset of all bargaining rules. This class, however, contains the (uncountably many)

extensions of each rule that has been analyzed in the literature until now. Thus, we then

enquire if the counterparts of some standard results on the Nash domain continue to

hold for decomposable rules on our extended domain. We �rst show that an extension of

the Kalai-Smorodinsky bargaining rule uniquely satis�es the Kalai-Smorodinsky (1975)

properties. This uniqueness result, however, turns out to be an exception. An in�nite

number of decomposable rules survive the Nash (1950), Kalai (1977), Perles-Maschler

(1981), and Thomson (1981) properties even though, on the Nash domain each of these

results characterizes a single rule. In that paper, we also observe that extensions to our

domain of a standard independence property (by Peters, 1986) imply decomposability.

Gupta and Livne (1988) analyze bargaining problems with an additional reference

point (in the feasible set), interpreted as a past agreement. Chun and Thomson (1992)

analyze an alternative model where the reference point is not feasible (and is interpreted

as a vector of �incompatible�claims). Both studies characterize rules that allocate gains

proportionally to the reference point. Neither of these two papers focus on disagreement.

Livne (1988) and Smorodinsky (2005), on the other hand, analyze cases where the

implications of disagreement are uncertain. They thus extend the Nash (1950) model

to allow probabilistic disagreement points. They characterize alternative extensions of

the Nash rule to their domain. Finally, Basu (1996) analyzes cases where disagreement

leads to a noncooperative game with multiple equilibria and to model them, he extends

the Nash model to allow for a set of disagreement points over which the players do not

have probability distributions. He characterizes an extension of the Kalai-Smorodinsky

(1975) rule to this domain.
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Chun and Thomson (1990a and 1990b) and Peters and van Damme (1991) remain

in the Nash (1950) model but they introduce axioms to represent cases where the agents

are not certain about the implications of disagreement. Chun and Thomson (1990a)

show that a basic set of properties characterize the weighted Egalitarian rules. Chun and

Thomson (1990b) and Peters and van Damme (1991) show that the Nash rule uniquely

satis�es alternative sets of properties. Some other papers that discuss disagreement-

related properties on the Nash (1950) model are Dagan, Volij, and Winter (2002), Livne

(1986), and Thomson (1987).

The common feature of all of the above papers (and the current cooperative bargain-

ing literature for that matter) is that the implications of disagreement are independent

of the identity of the agent who causes it. On the other hand, there are noncooperative

bargaining models in which agents are allowed to leave and take an outside option.

Shaked and Sutton (1984) present one of the �rst examples. Ponsatí and Sákovics

(1998) analyze a model where both agents can leave at each period (but the resulting

payo¤s are independent of who leaves) and Corominas-Bosch (2000) analyzes a model

where the disagreement payo¤s depend on who the last agent to reject an o¤er was (but

the agents are not allowed to leave, disagreement is randomly determined by nature).

Our model can be seen as to provide a cooperative counterpart to these noncooperative

models.

3.2 Model

Let N = f1; :::; ng be the set of agents. For each i 2 N , let ei 2 RN be the vector
whose ith coordinate is 1 and every other coordinate is 0. Let 1 2 RN (respectively,

0) be the vector whose every coordinate is 1 (respectively, 0). For vectors in RN ,
inequalities are de�ned as: x 5 y if and only if xi 5 yi for each i 2 N ; x � y if and only
if x 5 y and x 6= y; x < y if and only if xi < yi for each i 2 N . For each S � RN , Int(S)
denotes the interior of S and Cl(S) denotes the closure of S. For each S � RN and
s 2 S, convfSg denotes the convex hull of S and s-compfSg = fx 2 RN j s 5 x 5 y
for some y 2 Sg denotes the s-comprehensive hull of S. The set S is s-comprehensive
if s-compfSg � S. The set S is strictly s-comprehensive if it is s-comprehensive and

for each x; y 2 S such that x � y � s, there is z 2 S such that z > y.

Let the Euclidean metric be de�ned as kx� yk =
qP

(xi � yi)2 for x; y 2 RN

and let theHausdor¤metric be de�ned as �H(S1; S2) = maxi2f1;2gmaxx2Si miny2Sj kx� yk
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Figure 3.1: A typical bargaining problem with nonanonymous disagreement.

for compact sets S1; S2 � RN . Let

D =

2664
D11 � � � D1n

...
. . .

...

Dn1 � � � Dnn

3775 =
2664
D1

...

Dn

3775 2 RN�N

be a matrix in RN�N . The ith row vector Di = (Di1; :::; Din) 2 RN represents the

disagreement payo¤ pro�le that arises from agent i terminating the negotiations. For

each i 2 N , let di(D) = maxfDji j j 2 Ng be the maximum payo¤ agent i can get

from disagreement and let di(D) = minfDji j j 2 Ng be the minimal payo¤. Let
d(D) = (di(D))i2N and d(D) = (di(D))i2N . Let the metric �M on RN�N be de�ned
as �M(D;D0) = maxi2N kDi �D0

ik for D;D0 2 RN�N :

Let � be the set of all permutations � on N . A function f : R! R is positive

a¢ ne if there is a 2 R++ and b 2 R such that f(x) = ax+ b for each x 2 R. Let � be
the set of all � = (�1; :::; �n) where each �i : R! R is a positive a¢ ne function.

For � 2 �, S � RN , and D 2 RN�N , let �(S) = fy 2 RN j y = (x�(i))i2N for

some x 2 Sg and �(D) = (D�(i)�(j))i;j2N . The set S (respectively, the matrix D) is

symmetric if for every permutation � 2 �, �(S) = S (respectively, �(D) = D). For
� 2 �, let �(S) = f(�1(x1); :::; �n(xn)) j x 2 Sg and

�(D) =

2664
�1(D11) � � � �n(D1n)

...
. . .

...

�1(Dn1) � � � �n(Dnn)

3775 =
2664
�(D1)
...

�(Dn)

3775 2 RN�N .
A (nonanonymous-disagreement bargaining) problem for N is a pair (S;D)

where S � RN and D 2 RN�N satisfy (see Figure 3.1): (i) for each i 2 N , Di 2 S; (ii)
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S is compact, convex, and d(D)-comprehensive; (iii) there is x 2 S such that x > d(D).
Assumptions (i), (ii) and a counterpart of (iii) are standard in the literature.4 They

essentially come out of problems where the agents have expected utility functions on a

bounded set of lotteries.

Let B be the class of all problems for agents in N . Let B= = f(S;D) 2 B j D1 =

D2 = ::: = Dng be the subclass of problems with anonymous disagreement. Let
B6= = B n B= be the subclass of problems with nonanonymous disagreement.

Let B26= be the class of two-agent problems with nonanonymous disagree-
ment. Problems in B26= can be grouped into three distinct classes. In the �rst class
of problems, the disagreement of one agent is strictly preferred by both agents to the

disagreement of the other:

B2>> = f(S;D) 2 B26= j there are i; j 2 f1; 2g such that i 6= j and for all k 2 f1; 2g; Dik > Djkg:

The second class of problems represents cases where one agent is indi¤erent between

the two disagreement alternatives and the other has strict preferences:

B2>= = f(S;D) 2 B26= j there are i; j; k; l 2 f1; 2g such that i 6= j, k 6= l, Dik > Djk and Dil = Djlg:

In the third class of problems, the agents disagree on their (strict) ranking of the two

disagreement alternatives:

B2>< = f(S;D) 2 B26= j there are i; j 2 f1; 2g such that i 6= j, Di1 > Dj1, and Di2 < Dj2g:

Let themetric�B on B be de�ned as �B((S;D); (S 0; D0)) = maxf�H(S; S 0); �M(D;D0)g
for (S;D); (S 0; D0) 2 B. Given (S;D) 2 B, the set of Pareto optimal alternatives is
PO(S;D) = fx 2 S j y � x implies y 62 Sg and the set of weakly Pareto optimal
alternatives is WPO(S;D) = fx 2 S j y > x implies y 62 Sg:

A (nonanonymous-disagreement bargaining) rule F : B ! RN is a function
that satis�es F (S;D) 2 S for each (S;D) 2 B. Let F be the class of all rules. A

rule F is Pareto optimal if for each (S;D) 2 B, F (S;D) 2 PO(S;D). It is weakly
Pareto optimal if for each (S;D) 2 B, F (S;D) 2 WPO(S;D). It is symmetric
if for each (S;D) 2 B with symmetric S and D, F (S;D) is also symmetric, that is,
F1(S;D) = ::: = Fn(S;D).

4When Assumption 3 is violated, the agents are not guaranteed to reach an agreement. Particularly,
for each alternative x, there will be an agent who receives higher payo¤ from someone (including
himself) leaving the negotiation table. It will be in the interest of this agent then to follow strategies
that induce disagreement rather than to accept x.
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Figure 3.2: The construction of Step 1 in the proof of Theorem 3.

The following property requires small changes in the data of a problem not to have

a big e¤ect on the agreement. A rule F is set-continuous if for every D 2 RN�N

and for every sequence f(Sm; D)gm2N � B that converges with respect to �B to some
(S;D) 2 B, we have limm!1 F (S

m; D) = F (S;D).

Next, we present two central properties in bargaining theory. The �rst one requires

the physical bargaining outcome to be invariant under utility-representation changes

as long as the underlying von Neumann-Morgenstern (1944) preference information is

unchanged. A rule F is scale invariant if for each (S;D) 2 B and each � 2 �,

F (�(S); �(D)) = �(F (S;D)). The second property requires that an expansion of the

set of possible agreements make no agent worse-o¤. A rule F is strongly monotonic
(Kalai, 1977) if for each (S;D); (T;D) 2 B, T � S implies F (T;D) 5 F (S;D).

3.3 Results

3.3.1 Monotone Path Rules On our domain, a very large class of rules simultane-

ously satisfy three properties which, on the Nash domain, B=, are incompatible: weak
Pareto optimality, strong monotonicity, and scale invariance (see Thomson (2010) for

a discussion). We introduce them next.

A monotone path on RN is the image G � RN of a function g : R+ ! RN which
is such that for all i 2 N; gi : R+ ! R is continuous and nondecreasing and for some
j 2 N , gj(R+) = [gj(0);1). Let G be the set of all monotone paths.

Let p : RN�N ! G be a path generator (function) that maps each disagreement
matrix D to a monotone path p(D) such that (i) x = min p(D) is the unique member

of p(D) that satis�es d(D) 5 x 5 d(D) and xi = di(D) for some i 2 N , and (ii)

there are no x; y 2 p(D) such that x 6= y and xi = yi > di(D) for some i 2 N .

Condition (i) requires the path p(D) to start from a point x that is at the weak Pareto

boundary of the rectangular set in-between d(D) and d(D): Condition (ii) strengthens

the monotonicity requirement on the path p(D). For example, in R2 it requires the
path not to be vertical (respectively, horizontal) on the half-space of vectors whose �rst
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(respectively, second) coordinate is greater than that of d(D). The path generator p is

scale invariant if for each D 2 RN�N and � 2 �, p(�(D)) = �(p(D)).
The monotone path rule Fp : B ! RN with respect to the path generator

p maps each (S;D) 2 B to the maximal point of S along p(D), that is, F p(S;D) =
WPO(S;D) \ p(D).5

The following theorem shows that monotone path rules uniquely satisfy three basic

properties.

Theorem 3 A rule F : B ! RN is weakly Pareto optimal, strongly monotonic, and

set-continuous if and only if it is a monotone path rule F p.

Proof. Monotone path rules by de�nition are weakly Pareto optimal. Strong

monotonicity follows from the monotonicity of the paths p(D) and set-continuity follows

from Condition (ii) on the path generator p:

For the uniqueness part of the �rst statement, let F : B ! RN be a rule that is

weakly Pareto optimal, strongly monotonic, and set-continuous.

Step 1. (de�ne p) Fix arbitrary D 2 RN�N and for each r 2 R+, let xr(D) = d(D)+r1
(see Figure 3.2). Let f : R+ ! [0; 1] be an increasing continuous function such that

f(0) = 0 and limr!1 f(r) = 1. For each i 2 N , let yr;i 2 RN be such that yr;ii = �1 and
for j 6= i, yr;ij = f(r). Note that yr;i is a vector whose ith coordinate is �1 and whose
jth coordinate is f (r) : It is used to construct the following line segment: let Lr;i(D) =

fxr(D)+lyr;i j 0 5 l 5 xri (D)�di(D)g. Now let SrD = d(D)-comp fLr;1(D); :::; Lr;n(D)g
and note that for all r 2 R++; (i) SrD is strictly d(D)-comprehensive and (ii) F (SrD; D) 2
PO(SrD; D). Finally, de�ne p(D) = ClfF (SrD; D) j r 2 R++g. Note that, for each D 2
RN�N ; p(D) is ordered with respect to � by strong monotonicity of F: Let F p : B ! RN

be de�ned as follows: for each (S;D) 2 B, F p(S;D) = max (p(D) \WPO(S;D)) :

Step 2. (F = F p) Now let (S;D) 2 B and let x� = F p(S;D) (see Figure 3.3).

Then by de�nition of p, there is r 2 R++ such that x� = F p(SrD; D) = F (SrD; D).

Let T = S \ SrD and note that x� 2 T . Since x� 2 PO(SrD; D), we also have x� 2
PO(T;D). Now, by strong monotonicity of F , F (T;D) 5 x�. First assume that y � x�

implies y 62 WPO(T;D). Then weak Pareto optimality of F implies F (T;D) = x�.

Alternatively if there is y � x� such that y 2 WPO(T;D), let fTmgm2N ! T be

such that for each m 2 N, Tm � SrD is strictly d(D)-comprehensive (this is possible

since SrD is strictly d(D)-comprehensive) and x
� 2 PO(Tm; D) (this is possible since

x� 2 PO(SrD; D)). Then by the previous case, F (Tm; D) = x� for each m 2 N and

5Continuity and monotonicity of the path p(D) guarantee that this intersection is nonempty while
Condition (ii) on the generator function p guarantees that it is a singleton.
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Figure 3.3: The construction of Step 2 in the proof of Theorem 3.

by set-continuity of F , F (T;D) = x�. Finally, T � S, by strong monotonicity of F

implies x� 5 F (S;D). If x� 2 PO(S;D), this implies x� = F (S;D). Alternatively if

x� 2 WPO(S;D) nPO(S;D), let fSmgm2N ! S be such that for each m 2 N, T � Sm

and x� 2 PO(Sm; D) (this is possible since x� 2 PO(T;D)). Then by the previous
case, F (Sm; D) = x� and by set-continuity of F , F (S;D) = x�.

Step 3. (F = F p is a monotone path rule) We show that for each (S;D) 2 B, the set
p(D) \WPO(S;D) is a singleton and thus, F p(S;D) = p(D) \WPO(S;D): Suppose
(S;D) 2 B is such that there is y � F p(S;D) satisfying y 2 p(D) \ WPO(S;D).
Let fSmgm2N ! S be such that for each m 2 N, p(D) \WPO(Sm; D) = fyg : Then
for each m 2 N, F p(Sm; D) = y: This, by set-continuity of F p implies F p(S;D) = y;
contradicting y 6= F p(S;D).

The following theorem characterizes scale invariant monotone path rules. Note that

the domain reduces from B to B6= as we introduce scale invariance. This is because the
stated properties (of Theorem 4) are not compatible on B=.

Theorem 4 A rule on B6=, F : B6= ! RN is weakly Pareto optimal, strongly monotonic,
set-continuous, and scale invariant if and only if it is a monotone path rule F p where

p is scale invariant.

Proof. The proof of Theorem 3 does not rely on the existence of a problem in B=:
Therefore, its statement also holds on the subclass B6= of B: That is, a rule F : B6= ! RN

is weakly Pareto optimal, strongly monotonic, and set-continuous if and only if it is a

monotone path rule F p on B6=: Therefore, to prove Theorem 4 it su¢ ces to show that

F = F p is scale invariant if and only if p is scale invariant. For this, let (S;D) 2 B6=
and � 2 �.

First note that F p(�(S); �(D)) = WPO(�(S); �(D))\p(�(D)) andWPO(�(S); �(D)) =
�(WPO(S;D)). Then, �(F p(S;D)) = � (WPO (S;D) \ p (D)) = � (WPO (S;D)) \
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� (p (D)) = WPO(�(S); �(D)) \ � (p (D)) : Therefore, p(�(D)) = � (p (D)) implies

F p(�(S); �(D)) = �(F p(S;D)) (that is, scale invariance of p implies scale invariance

of F p).

For the other direction, suppose p(�(D)) 6= � (p (D)) for some D 2 RN�N and

� 2 �. For each ! 2 RN++ satisfying
P
!i = 1 and r >

P
!idi(�(D)), let T r;! =

fx 2 RN j
P
!ixi 5 r and x = d(�(D))g and note that (T r;!; �(D)) 2 B6=. Now, by

p(�(D)) 6= � (p (D)) and the fact that both p (� (D)) and � (p (D)) are images of contin-
uous functions, there is !� 2 RN++ satisfying

P
!�i = 1 and r

� >
P
!�i di(�(D)) such that

WPO(T r
�;!� ; �(D))\p(�(D)) 6= WPO(T r�;!� ; �(D))\� (p (D)). But the expression on

the left is F p(T r
�;!� ; �(D)) and the expression on the right is �(F p(��1

�
T r

�;!�
�
; D)):

This contradicts scale invariance of F p (therefore, scale invariance of F p implies scale

invariance of p).

Remark 5 On B=, the Nash (1950) bargaining rule uniquely satis�es weak Pareto op-
timality, symmetry, scale invariance, and an �independence of irrelevant alternatives�

property. On B, a large class of monotone path rules satisfy all of these properties.
They are characterized by scale invariant and �symmetric�path generators.

Two-agent problems are central in bargaining theory. We next show that for this

case, scale invariant monotone path rules have a very simple form (for its proof, please

see the Appendix).

Proposition 6 On B26=, a scale invariant monotone path rule can be completely char-
acterized by at most eight distinct paths. On B2>=; these paths are either vertical or
horizontal.

With more than two agents, Proposition 6 no more holds: constructing a monotone

path rule potentially involves the speci�cation of an in�nite number of paths.6

3.3.2 Cardinal Egalitarian Rule In this subsection, we analyze the implications

of symmetry together with strong monotonicity and scale invariance. Symmetry is a

weakening of �anonymity�which requires that agents with identical payo¤ functions

receive the same payo¤. It thus concerns negotiations where the agents have equal

�bargaining power�. Implications of symmetry has been analyzed by many authors

including Nash (1950), Kalai and Smorodinsky (1975), and Kalai (1977).

6This has got to do with the fact that with two agents, all disagreement matrices are divided into
eight equivalence classes: two matrices in the same class are related by a positive a¢ ne transformation.
In an equivalence class, it is su¢ cient to specify a monotone path for one matrix; scale invariance then
de�nes the paths of the other matrices. With more agents however, the number of equivalence classes
becomes in�nite.
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We �rst present a symmetric monotone path rule. The Cardinal Egalitarian
rule, FCE picks the maximizer, for each D 2 RN�N ; of the linear monotone path that
passes through d(D) and d(D): pCE(D) = fd(D) + r(d(D)� d(D)) j r 2 R+g; that is,
FCE = F p

CE
.7

The Cardinal Egalitarian rule is well-de�ned for all nonanonymous-disagreement

problems, B6=, independent of the number of agents. Additional to the properties

stated in the next theorem, it is set-continuous. Also, it is a �nondecomposable�rule.

That is, it can not be written as a composition of a rule from the Nash domain and a

function that transforms disagreement matrices to disagreement vectors (for more on

decomposability, see K¬br¬s and Tapk¬(2007)).

The Cardinal Egalitarian solution to a problem utilizes, for each agent, the dif-

ference between his maximum and minimum disagreement payo¤s. Agents for whom

this di¤erence is higher receive a higher share of the surplus (over d (D)) than others.

As a result of this feature, the Cardinal Egalitarian rule violates �disagreement payo¤

monotonicity�; that is, an increase in an agent�s disagreement payo¤ can make him

worse-o¤ (because, it can decrease the aforementioned di¤erence). Also note that, for

problems where d(D) and d(D) are much closer to each other than they are to the

problem�s Pareto boundary, the Cardinal Egalitarian solution can be very sensitive to

small changes in D: This sensitivity increases as d(D) and d(D) get closer to each other.

The following result analyzes the properties of the Cardinal Egalitarian rule.

Theorem 7 The Cardinal Egalitarian rule, FCE, is weakly Pareto optimal, strongly
monotonic, scale invariant, and symmetric on B6=. Furthermore on B2><, it is the
unique rule that satis�es these properties.

Proof. It is straightforward to show that FCE satis�es these properties. Conversely
let F be any rule on B2>< that satis�es them. Take any (S;D) 2 B2><. We want to show
that F (S;D) = FCE(S;D).

Consider the positive a¢ ne transformation � 2 � such that �i(x) = xi�di(D)
di(D)�di(D)

for

i 2 N . Note that �(d(D)) = 1 and �(d(D)) = 0. Then, by de�nition FCE(�(S); �(D)) =

(s; s), for some s > 1. Consider S 0 = 0-compf(s; s)g. Note that �(D) =
"
1 0

0 1

#
or

7We call this rule the Cardinal Egalitarian rule because it is a version of the Egalitar-
ian rule (Kalai, 1977) that is covariant under cardinal (i.e. positive a¢ ne) transformations.
To see this, let (S;D) be called a normalized problem when D is any one of the matrices��

1 0
0 1

�
;

�
0 1
1 0

�
;

�
1 1
0 0

�
;

�
0 0
1 1

��
: For such problems, the Cardinal Egalitarian rule co-

incides with the Egalitarian rule. Any other problem is a cardinal transformation of a normalized
problem and its Cardinal Egalitarian solution is the same cardinal transformation of the Egalitarian
solution to the associated normalized problem.
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Figure 3.4: Constructing S 0 (on the left) and Sx (on the right) in the proof of Theorem
7.

�(D) =

"
0 1

1 0

#
. Since S 0 is symmetric, (S 0; �(D)) is a symmetric problem. Then, by

symmetry and weak Pareto optimality of F , F (S 0; �(D)) = (s; s). Since �(S) � S 0,

strong monotonicity of F implies F (�(S); �(D)) = F (S 0; �(D)).
Now if (s; s) 2 PO(�(S); �(D)) (as in Figure 3.4, left), then F (�(S); �(D)) =

(s; s) = FCE(�(S); �(D)). Alternatively, assume that (s; s) 2 WPO(�(S); �(D)) (as
in Figure 3.4, right). Suppose F (�(S); �(D)) = x � (s; s). Let rx 2 R be such that
s < rx < maxfx1; x2g. Let Sx � RN be such that Sx = convf0-compfrx; rxg; �(S)g.
Note that (Sx; �(D)) 2 B 6= and FCE(Sx; �(D)) = (rx; rx) 2 PO(Sx; �(D)). So by the
previous argument, F (Sx; �(D)) = (rx; rx). Also since s < rx, Sx � �(S). Thus by

strong monotonicity of F , F (Sx; �(D)) = (rx; rx) = x = F (�(S); �(D)), contradicting
rx < maxfx1; x2g. Therefore, F (�(S); �(D)) = (s; s).

Finally, by scale invariance of F and FCE, F (S;D) = ��1(F (�(S); �(D))) =

��1(FCE(�(S);

�(D))) = FCE(S;D):

Since there are no symmetric problems in B2>> [ B2>=, any rule is symmetric on
those classes of problems. Therefore, the properties of Theorem 7 do not pinpoint a

single rule on B2>> [ B2>=. Also, we do not state uniqueness for more than two agents.
The following is an example of a rule that satis�es all the above properties and that is

di¤erent from the Cardinal Egalitarian rule for problems with more than two agents.

Let � : RN�N ! RN�N be de�ned as

[�(D)]ji =

(
Dji if Dji = di(D),

minfDji j Dji 6= di(D)g otherwise.

Then, let F � 2 F 6= be de�ned as F �(S;D) = FCE(S; �(D)) for each (S;D) 2 B 6=.

Remark 8 The properties weak Pareto optimality, strong monotonicity, set-continuity,
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scale invariance, and symmetry are logically independent. For this, note that the rule

F 1 de�ned as F 1(S;D) = d(D) satis�es all properties except weak Pareto optimality.

The rule F 2 de�ned as F 2(S;D) = (maxfx1 j x 2 S and x2 = d2(D)g; d2(D)) satis�es
all properties except symmetry. The rule F 3 de�ned as F 3(S;D) = argmax

x2S

min
i2N

xi �

di(D) satis�es all properties except scale invariance. Finally, let m
�
i = maxfxi j x 2

S and x = d(D)g and de�ne F 4 as F 4(S;D) = argmax
x2S

min
i2N

xi�di(D)
m�
i�di(D)

. This rule

satis�es all properties except strong monotonicity. Finally, let F 5 coincide with FCE

everywhere except B2>>: There, let F 5 be as explained in Claim 1 of the proof of Proposi-
tion 6 where Gi = [1;1+1ei][f1+1ei+rej j r 2 R+g for i 6= j. Since each Gi violates
Condition (ii) in the de�nition of the path generators, F 5 violates set-continuity but it

satis�es all the other properties above.

3.4 Conclusion

In this chapter, we analyze bargaining processes where the disagreement outcome

depends on who terminates the negotiations. We present a cooperative bargaining

model that captures this feature and we carry out an axiomatic analysis of the implica-

tions of strong monotonicity, scale invariance, and symmetry on weakly Pareto optimal

bargaining rules.

One restriction of our model is that it does not specify the outcome of a coalition

of agents jointly terminating the negotiations. Modeling coordinated disagreement by

a coalition would bring in questions about the bargaining process in that coalition and

move us further towards a non-transferable utility game analysis. In this model, we

remain in the bargaining framework and only consider individual deviations.

In our opinion, it is essential to complement our analysis with a noncooperative

approach. Studies such as Shaked and Sutton (1984), Ponsatí and Sákovics (1998), and

Corominas-Bosch (2000) present an excellent starting point. The equilibria of these

models, however, use only partial information on the implications of disagreement. For

example, an agent�s payo¤ from his opponent leaving has no e¤ect on the equilibrium

(except in extreme cases where the problem�s individually rational region is empty).8

Therefore, the design and analysis of noncooperative bargaining games which, in equi-

librium, use full disagreement information remains an important open question.
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Figure 3.5: The con�guration of the monotone paths in Proposition 6.

3.5 Appendix

Proof. (Proposition 6) Let F p be a scale invariant monotone path rule. Note

that B26= = B2>> [ B2>= [ B2><: Let G1 = p

 "
1 1

0 0

#!
, G2 = p

 "
0 0

1 1

#!
; G3 =

p

 "
1 0

0 1

#!
; G4 = p

 "
0 1

1 0

#!
; G11 = p

 "
1 0

0 0

#!
, G12 = p

 "
0 1

0 0

#!
,

G21 = p

 "
0 0

1 0

#!
, and G22 = p

 "
0 0

0 1

#!
:

Claim 1: On B2>>; G1 and G2 su¢ ce to describe F p. To see this, let (S;D) 2
B2>> and assume Di > Dj. Let �1(x) =

x�Dj1
Di1�Dj1 and �2(x) =

x�Dj2
Di2�Dj2 . Note that

�(Di) = 1 and �(Dj) = 0: Thus p (� (D)) = Gi. Then, by scale invariance, F p(S;D) =

��1(F p(�(S); �(D))) = ��1(WPO(�(S); �(D)) \Gi) only uses the path Gi:
Claim 2: On B2><; G3 and G4 su¢ ce to describe F p. The proof is similar to Claim 1.

Claim 3: On B2>=; G11, G12, G21, and G22 su¢ ce to describe F p. To see this, let
(S;D) 2 B2>= and assume Dik > Djk and for l 6= k; Dil = Djl. Let �k(x) =

x�Djk
Dik�Djk

and for l 6= k, let �l(x) = x � Dil. Note that �(Di) = ek and �(Dj) = 0. There-

fore, �(p(D)) = Gik. Then by scale invariance, F p(S;D) = ��1(F p(�(S); �(D))) =

��1(WPO(�(S); �(D)) \Gik) only uses the path Gik.
By Claims 1,2 and 3, F p can be completely characterized by at most eight distinct

paths (two for B2>>, two for B2><, and four for B2>=).
Claim 4: The paths Gik on B2>= are either vertical or horizontal (see Figure 3.5). To
see this, let D be as in Figure 3.5 (that is, Di = ek and Dj = 0). Thus p (D) = Gik:

Note that, for each r 2 R+ and �r 2 � de�ned as �rk (x) = x and �rl (x) = rx; we have
�r (D) = D: Thus p (�r (D)) = Gik: Now, let y 2 Gik be such that yl > 0: (If there is no
such y; Gik is a vertical line on the k-axis and we are done.) Then �

r (y) 2 �r (p (D)) =
p (�r (D)) = Gik: Since �

r (y) 2 Gik holds for all r; Gik is horizontal.

8Thus, our conjecture is that these noncooperative games implement decomposable rules.
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CHAPTER 4

TRADE RULES FOR UNCLEARED MARKETS WITH A VARIABLE

POPULATION

4.1 Introduction

We analyze markets in which the price of a traded commodity is �xed at a level

where the supply and the demand are possibly unequal. This stickiness of prices is ob-

served in many markets, either because the price adjustment process is slow or because

the price is controlled from the outside of the market. There is a wide literature about

this phenomenon, for a review, see Bènassy (1993).

The agricultural sector such as the hazelnut market provides a typical example. For

political reasons, the markets in this sector are usually regulated and because of these

regulations, the demand and the supply may not be equal. In fact, there is usually

an excess supply. For example, in hazelnut market, the prices are determined by the

government and as a result, there is usually an excess supply. For example, in Turkey,

the government sets a maximum amount of production for each farmer and up to that

amount, it purchases all the supply. The public health sector provides another example.

The prices of public hospitals are determined by a central authority and by law, the

hospitals have to attend all the patients even though there is usually an excess demand.

The main question is the following: in such markets, how should a central authority

design a mechanism (hereafter, a trade rule) that determines the trade? In this paper,

we axiomatically analyze trade rules on the basis of some good properties.1

In our model, buyers and sellers constitute two exogenously di¤erentiated sets.

There is only one traded commodity and sellers face demand from buyers. Buyers

might be individuals or producers that use the commodity as input. We assume that

the buyers have strictly convex preferences on consumption bundles. Thus, they have

single-peaked preferences on the boundary of their budget sets, and therefore, on their

consumption of the commodity. Similarly, we assume that the sellers have strictly

convex production sets. Thus, their pro�ts are single-peaked in their output.

A trade rule maps each economy to a feasible trade. In our model, it is made up

of two components: a trade-volume rule and an allocation rule. The trade-volume rule

1Bènassy (2002) discusses some properties that a trade rule should satisfy such as Pareto optimality,
voluntary trade, and strategy proofness. He also mentions the possibility of designing a good mechanism
that determines the trade. However, he does not study it. He rather uses a trade rule that clears the
short side of the market and uniformly rations the long side of it.
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determines the trade-volume that will be carried out in the economy and thus, the

total consumption and the total production. Then, the allocation rule allocates the

total consumption among the buyers and the total production among the sellers.

Trade-volume rules are related to Moulin (1980) who analyzes the determination

of a one-dimensional policy issue among agents with single-peaked preferences. Partic-

ularly, when there is only one buyer and one seller, the trade-volume is exactly like a

public good for these two agents. However, this is no more true when there are multiple

buyers and sellers.

The problem faced by the allocation rule is to allocate a social endowment (that

is, the trade volume) among agents with single peaked preferences. This problem is

extensively analyzed by Sprumont (1991) who proposed and analyzed a �Uniform rule�

which later became a central rule of that literature (for example, see Dagan (1996),

Ching (1992, 1994), Thomson (1994)). Since we analyze markets with multiple buyers

and sellers, our domain is an extension of Sprumont�s domain.2 Thus, Sprumont�s

uniform rule will also play an important role in this paper.

Let us note that our model is not a simple conjunction of Moulin (1980) and Spru-

mont (1991). The interaction between the determination of the agent�s shares and the

trade-volume makes the model much richer. For example, the agents can manipulate

their shares also by manipulating the trade-volume. Also, requirements like Pareto

optimality, or �fairness�become much more demanding as what is to be allocated be-

comes endogenous. Another important di¤erence is the existence of two types of agents

(buyers and sellers) in our model. This duality limits the implications of requirements

like anonymity, no-envy, and population monotonicity.

Our model is also related to Thomson (1995) and Klaus, Peters, and Storcken

(1997, 1998). They analyze the reallocation of an in�nitely divisible commodity among

agents with single peaked preferences and individual endowments. The agents whose

endowments are greater than their peaks are considered as suppliers and those whose

endowments are less than their peaks as demanders. These authors also characterize a

Uniform reallocation rule. Note that, in their model the suppliers and the demanders

are not di¤erentiated. The identities of the agents depend on the relation between their

peaks and endowments. Thus, a supplier by misrepresenting his preferences can turn

into a demander. In our model, however, producers and consumers are exogenously

distinct identities. This di¤erence has important implications over the properties ana-

lyzed. For example, fairness properties are much weaker in our model since they only

2It coincides with the just-buyer markets (when there is no seller in the market) and the just-seller
markets (when there is no buyer in the market) in our model.
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compare agents on the same side of the market. Also, in our model the agents do not

have exogenously given endowments.

The following papers study the design of a mechanism that determines the trade

in nonclearing markets. Barbera and Jackson (1995) analyze a pure exchange economy

with a arbitrary number of agents and commodities. Each agent has a positive endow-

ment of the commodities and a continuous, strictly convex, and monotonic preference

relation on his consumption. The authors look for strategy proof rules that facilitate

trade in this exchange economy.

Our model is closely related to K¬br¬s and Küçükşenel (2009) and Bochet, ·Ilk¬l¬ç,

and Moulin (2009). K¬br¬s and Küçükşenel (2009) analyze a class of trade rules each

of which is a composition of the Uniform rule with a trade-volume rule that picks

the median of total demand, total supply and an exogenous constant. They show

that this class uniquely satis�es Pareto optimality, strategy proofness, no-envy, and an

informational simplicity axiom called independence of trade-volume. Bochet, ·Ilk¬l¬ç,

and Moulin (2009) introduces a graph structure to this setting and they assume that

a trade between a buyer and a seller is possible only if there is a link between them.

They characterize the egalitarian transfer mechanism by the combination of Pareto

optimality, strategy proofness, voluntary trade, and equal treatment of equals.

In all these papers, the authors analyze markets with a �xed population. In this

thesis, we allow the population to be variable and analyze the implications of these

population changes. We introduce a class of Uniform trade rules each of which is a

composition of the Uniform rule and a trade-volume rule. We axiomatically analyze

Uniform trade rules on the basis of some central properties concerning variations of

the population, namely, consistency and population monotonicity. We also analyze the

implications of standard properties such as Pareto optimality, strategy-proofness, and

no-envy, and an informational simplicity property, strong independence of trade volume.

Consistency has been analyzed in many contexts such as bargaining, coalitional

form games, and taxation (for a detailed discussion, see Section 4:2). Loosely speaking,

a rule is consistent if a recommendation it makes for an economy always agrees with

its recommendations for the associated reduced economies obtained by the departure

of some of the agents with their promised shares. Consistency, however, is not well-

de�ned for closed economies. Therefore, we analyze a speci�c type of an open economy

by allowing possible transfers to/from outside the economy (for a detailed discussion,

see Section 4:2). We show in Theorem 1 that a particular subclass of Uniform trade

rules uniquely satis�es consistency together with Pareto optimality, no-envy, and strong

independence of trade volume. Next, we add strong independence of trade volume to
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the list and characterize a smaller subclass that satis�es those properties. We note that

each member of this subclass either clears the short side or the long side of any given

market.

Population monotonicity has also been widely analyzed in many di¤erent contexts

such as in classical economies, single-peaked preferences, and public goods (for a detailed

discussion, see Section 4:2). Loosely speaking, it requires that for a given economy, upon

the departure (equivalently, arrival) of some agents, the welfare level of the remaining

agents should be a¤ected in the same direction. Since in our model, the agents on

di¤erent sides of the market are exogenously di¤erentiated, we analyze a population

monotonicity property which only compares agents on the same side of the market. We

�rst note that there are trade rules that simultaneously satisfy three properties, which

are incompatible on Sprumont�s domain: Pareto optimality, no-envy, and population

monotonicity. In Theorem 2, we characterize the subclass that additionally satis�es

strategy-proofness. In Theorem 3, we also add strong independence of trade volume to

the list. We note that these subclasses contain rules that do not always clear the short

side3 of the market. In fact, when we impose the strong independence of trade volume

in Theorem 3, we �nd that if we only consider the markets with a transfer, then the

only trade rule satisfying the desired properties is the one that always clears the long

side of the market and rations the other side by Uniform rule.

This chapter is organized as follows. In Section 4:2, we introduce the model. In

Section 4:3:1, we analyze the implications of consistency and in Section 4:3:2, the

implications of population monotonicity. In Section 4:4, we conclude.

4.2 Model

There are countably in�nite universal sets, B of potential buyers and S of potential
sellers. Let B \ S = ;. There is a perfectly divisible commodity that each seller

produces and each buyer consumes. Let R++ be the consumption/ production space
for each agent. Let R be a preference relation over R++ and P be the strict preference
relation associated with R. The preference relation R is single-peaked if there is
p(R) 2 R++ called the peak of R, such that for all x; y 2 R++, x < y � p(R) or

x > y � p(R) implies y P x. Each i 2 B [ S is endowed with a continuous single-
peaked preference relation Ri over R++. Let R denote the set of all continuous and

single-peaked preference relations on R++.

3The short side of a market is where the total volume of desired transaction is smallest. It is thus
the demand side if there is excess supply and the supply side if there is excess demand. The other side
is called the long side.
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Given a �nite set B � B of buyers and a �nite set S � S of sellers such that either
B 6= ; or S 6= ;, let N = B [ S be a society. Let N be the set of all societies. Let

N6=; be the set of societies with a nonempty set of buyers and sellers. A preference

pro�le RN for a society N is a list (Ri)i2N such that for each i 2 N , Ri 2 R. Let
RN denote the set of all pro�les for the society N . Given N 0 � N and RN 2 RN , let

RN 0 = (Ri)i2N 0 denote the restriction of RN to N 0.

A market for society N = B [ S is a list (RB; RS; T ) where (RB; RS) 2 RN

is a pro�le of preferences for buyers and sellers and T 2 R is a transfer. Note that
T can both be positive and negative. A positive T represents a transfer made from

outside. Thus, it is added to the production of the sellers and together they form the

total supply. On the other hand, a negative T represents a transfer that must be made

from the economy to the outside. Thus, it is considered as an addition to the total

demand.

Given a market (RB; RS; T ) for a society N = (B [ S), a (feasible) trade is a
vector z 2 RB[S++ such that

P
B zb =

P
S zs + T . Let Z(RB; RS; T ) denote the set of all

trades for (RB; RS; T ).

There are two special subclasses of markets. A market (RB; RS; T ) is a just-buyer
market if B 6= ; and S = ;. For such markets, the feasible trades are as follows. If
T � 0, Z(RB; RS; T ) = fz 2 RB++ :

P
B zb = Tg. If T < 0, then Z(RB; RS; T ) = ;.

(This is trivial because if there is no seller, all the agents are demanders, and thus, the

supply is zero. Thus, if the outside transfer is positive, it would be equal to the total

supply and it is divided among the buyers. However, if there is a negative transfer (that

is, a transfer must be made to outside), since there is no seller, the transfer cannot be

realized. Thus, in that case there is no trade.) A market (RB; RS; T ) is a just-seller
market if B = ; and S 6= ;. For such markets, the feasible trades are as follows. If
T � 0, Z(RB; RS; T ) = fz 2 RS++ :

P
S zs + T = 0g. If T > 0, then Z(RB; RS; T ) = ;.

(The explanation is similar to above.) Note that just-buyer markets and just-seller

markets mathematically coincide with the allocation problems analyzed by Sprumont

(1991). Thus, his domain is a restriction of ours.

Since the markets with no feasible trade are trivial, we restrict ourselves to the set of

markets for which the set of trades is nonempty. LetMN = f(RB; RS; T ) : (RB; RS) 2
RN ; T 2 R; and Z(RB; RS; T ) 6= ;g be the set all markets for society N = B [ S and
let

M =
[
N2N

MN
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be the set of all markets. LetMB = f(RB; RS; T ) 2M : B 6= ;; S = ;; and T � 0g be
the set of just-buyer markets andMS = f(RB; RS; T ) 2 M : B = ;; S 6= ;; and T �
0g be the set of just-seller markets.

For the analysis of the properties, the following subclasses of markets turn out

to be important. Let M2
6= = f(RB; RS; T ) 2 M : there are b; b0 2 B; and s; s0 2

S such that p(Rb) 6= p(Rb0) and p(Rs) 6= p(Rs0)g be the set of markets in which there
are at least two buyers and two sellers with di¤erent peaks, respectively. Also, let

Mnt = f(RB; RS; T ) 2 M : T = 0g be the set markets with no outside transfer. For
notational simplicity, we will denote each (RB; RS; T ) 2Mnt as (RB; RS).

Let h(RB; RS; T ) denote the short side of the market (RB; RS; T ), that is,

h(RB; RS; T ) =

(
B if

P
B p(Rb) <

P
S p(Rs) + T;

S if
P

S p(Rs) + T <
P

B p(Rb):

Similarly, let l(RB; RS; T ) denote the long side of the market (RB; RS; T ), that is,

l(RB; RS; T ) =

(
S if

P
B p(Rb) <

P
S p(Rs) + T;

B if
P

S p(Rs) + T <
P

B p(Rb):

A trade z 2 Z(RB; RS; T ) is Pareto optimal with respect to (RB; RS; T )

if there is no z0 2 Z(RB; RS; T ) such that for all i 2 B [ S, z0iRizi and for some
j 2 B[S, z0jPjzj. The following lemma shows that in our framework, Pareto optimality
is equivalent to the following three properties: (i) each agent in the short side of the

market receives a share greater than or equal to his peak, (ii) each agent in the long

side of the market receives a share less than or equal to his peak, and (iii) the total

consumption is between the total supply and the total demand. Its proof is simple (see

K¬br¬s and Küçükşenel (2009)).

Lemma 9 For each (B [ S) 2 N and (RB; RS; T ) 2MB[S, a trade z 2 Z(RB; RS; T )
is Pareto optimal with respect to (RB; RS; T ) if and only if forK 2 fB; Sg, h(RB; RS; T ) =
K implies (i) for each k 2 K, p(Rk) � zk, (ii) for each l 2 N n K, zl � p(Rl), and

(iii)
P

B zb 2 [
P

B p(Rb);
P

S p(Rs) + T ]:
4

A trade rule �rst determines the volume of trade that will be carried out in the

economy and therefore, the total production and the total consumption. Then, it

4By
P

B zb 2 [
P

B p(Rb);
P

S p(Rs)+T ], we mean the total consumption is between the total supply
and the total demand, that is if h(RB ; RS ; T ) = S, then consider [

P
S p(RS) + T;

P
B p(Rb)]. In the

rest of the paper, for simplicity we will sometimes use an interval notation in a similar meaning.
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allocates the total production among the sellers and the total consumption among the

buyers. Before de�ning a trade rule, we will �rst de�ne a trade-volume rule.

A trade-volume rule 
 :M ! R2++ associates each market (RB; RS; T ) with a
vector
(RB; RS; T ) = (
B(RB; RS; T );
S(RB; RS; T )) whose �rst coordinate, 
B(RB; RS; T )

is the total consumption of the buyers and the second coordinate, 
S(RB; RS; T ) is the

total production of the sellers. Note that, for each market (RB; RS; T ) and a trade-

volume rule 
, 
B(RB; RS; T ) = 
S(RB; RS; T ) + T . Thus, the volume of 
B deter-

mines the volume of 
S. Therefore, with an abuse of notation, we will sometimes call


B a trade-volume rule.

In a just-buyer market, the transfer is divided among the buyers. Thus, the to-

tal consumption is equal to the transfer. In a just-seller market, however, the sellers

produce an amount that corresponds to the transfer. Thus, in that case, the total

production is equal to the absolute value of the transfer. Therefore, each trade-volume

rule 
 satis�es the following:


(RB; RS; T ) =

8><>:
(T; 0) if (RB; RS; T ) 2MB

(0;�T ) if (RB; RS; T ) 2MS

(
B(RB; RS; T );
S(RB; RS; T )) otherwise

Note that, the trade-volume is �xed for the just-buyer and the just-seller markets.

Thus, for simplicity, we will de�ne a trade-volume rule only by the volume it chooses

for the other markets.

Let V be the set of all trade-volume rules. Let V [short;long] be the set of trade-volume
rules, 
 each of which chooses a trade-volume between the total demand and supply of

the market, that is, for each market (RB; RS; T ),


(RB; RS; T ) 2 [
X
B

p(Rb);
X
S

p(Rs) + T ]:

The following subclass of V [short;long] will be used extensively in rest of the paper. Let
Vfshort;longg be the set of trade-volume rules, 
 each of which alternates between picking
the total demand/supply of the short and the long side of the market, that is, for each

market (RB; RS; T ),


(RB; RS; T ) 2 f
X
B

p(Rb);
X
S

p(Rs) + Tg:
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Particularly, the following two members of Vfshort;longg will be important in our analysis.
The �rst one, 
long always chooses the desired trade level of the long side, that is, for

each (RB; RS; T ) 2M,


long(RB; RS; T ) =

( P
S p(Rs) + T if h(RB; RS; T ) = BP
B p(Rb) if h(RB; RS; T ) = S

The second one, 
short always chooses the desired trade level of the short side. However,

for the markets, (RB; RS; T ) such that h(RB; RS; T ) = B and
P

B p(Rb) � T , we have
that 
shortS � 0. Similarly, for the markets, (RB; RS; T ) such that h(RB; RS; T ) = S andP

S p(Rs)+T � 0, we have that 
shortB � 0. Thus, 
short is only de�ned for the markets
in which

P
B p(Rb) > T and

P
S p(Rs) + T > 0. Formally, for each (RB; RS; T ) 2 M

such that
P

B p(Rb) > T and
P

S p(Rs) + T > 0,


short(RB; RS; T ) =

( P
B p(Rb) if h(RB; RS; T ) = BP

S p(Rs) + T if h(RB; RS; T ) = S

For a given market (RB; RS; T ) 2M and K 2 fB; Sg, we say that a trade-volume
rule 
 favors K in (RB; RS; T ) if


(RB; RS; T ) =

( P
B p(Rb) if K = BP

S p(Rs) + T if K = S

An allocation rule f : MB [ MS ! [M2MB[MSZ(M) associates each just-

buyer and just-seller market (RK ; T ) for K 2 fB; Sg, with a trade z 2 Z(RK ; T ).

For example, Uniform rule, U , introduced by Sprumont (1991) is very central in the

literature. In our paper, also, it will be used extensively. Formally, it is de�ned as

follows: for each K 2 fB; Sg, (RK ; T ) 2MK, and k 2 K,

Uk(RK ; T ) =

(
minfp(Rk); �g if

P
K p(Rk) � T

maxfp(Rk); �g if
P

K p(Rk) � T

where � and � are uniquely determined by the equations,
P

K minfp(Rk); �g = T andP
K maxfp(Rk); �g = T .
A trade rule F : M ! [M2MZ(M) is a composition of a trade-volume rule 


and an allocation rule f : F = f � 
. More precisely, for each market (RB; RS; T ) and
K 2 fB; Sg, FK(RB; RS; T ) = f(RK ;
K(RB; RS; T )). A trade rule, F = U �
, that is
composed of the Uniform rule and a trade-volume rule 
 is called the uniform trade
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rule with respect to 
. In our analysis, U � 
 for some 
 2 Vfshort;longg turns out
to be central. K¬br¬s and Küçükşenel (2009) characterize a particular class of Uniform

trade rules for which 
 is the median of total demand, total supply, and an exogenous

constant.

Let (RB; RS; T ) 2 MB[S and F be a trade rule. Let USF (RB; RS; T ) = fi 2
B [ S : Fi(RB; RS; T ) 6= p(Ri)g be the unsatis�ed agents in (RB; RS; T ) with
respect to F . Note that, if F = f � 
long, then for each market (RB; RS; T ) 2 M,

USF (RB; RS; T ) = h(RB; RS; T ). Otherwise, however, there is a market (RB; RS; T ) 2
M such that USF (RB; RS; T ) \B 6= ;, USF (RB; RS; T ) \ S 6= ;.

Now, we introduce properties of a trade rule. We start with e¢ ciency. A trade rule

F is Pareto optimal if for each (RB; RS; T ) 2 M, the trade F (RB; RS; T ) is Pareto

optimal with respect to (RB; RS; T ).

Now, we present a fairness property. A trade is envy free if each buyer (respectively,

seller) prefers his own consumption (respectively, production) to that of every other

buyer (respectively, seller). A trade rule satis�es no-envy if for each N = (B[S) 2 N ,
(RB; RS; T ) 2 MN , K 2 fB; Sg, and i; j 2 K, Fi(RB; RS; T )RiFj(RB; RS; T ). Since
in our model the agents on di¤erent sides of the market are exogenously di¤erentiated,

this property only compares agents on the same side of the market.

The following is a property on nonmanipulability. It requires that regardless of

the others� preferences, an agent is best-o¤ with the trade associated with his true

preferences. Formally, a trade rule F is strategy proof if for each N = (B [ S) 2 N ,
(RB; RS; T ) 2MN , i 2 N , and R0i 2 R, Fi(Ri; RNni; T ) Ri Fi(R0i; RNni; T ).

Next, we present some properties concerning possible variations in the number of

agents. The �rst one is an adaptation of the standard consistency property to our

domain. This property has been analyzed extensively in the context of bargaining by

Lensberg (1987), single-peaked preferences by Thomson (1994), coalitional form games

by Peleg (1986) and Hart and Mas-Colell (1989), taxation by Aumann and Maschler

(1985) and Young (1987), cost allocation by Moulin (1985), fair allocation in classical

economics by Thomson (1988), and matching by Sasaki and Toda (1992). To explain

consistency, consider a trade rule F and a market (RB; RS; T ). Suppose that F chooses

the trade z. Imagine that some buyers and sellers leave with their shares they have

been already assigned. This leads to a reduced market that the remaining agents are

now facing. Consistency is about how the remaining agents�shares should be a¤ected

in this reduced market. If F is consistent, it should assign to them the same shares as in

the initial market. However, without a transfer from outside, the recommendation for

an economy may not be feasible for its reduced markets. This is one reason we consider
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open economies. This practice is similar to the analysis of consistency in economies

with individual endowments. For example, Thomson (1992) introduced a �generalized

economy�that consists of a preference pro�le of the agents, an endowment pro�le, and

a trade vector that is updated in the reduced economies. The trade vector in that

model corresponds in our model to the transfer. This leads to a reduced problem in

which the remaining agents, (B0 [ S 0) are now facing an updated transfer from T to

T �
P

BnB0 zb +
P

SnS0 zs. Formally, given a trade rule F , for each N = (B [ S) 2 N ,
(RB; RS; T ) 2MN , and N 0 = (B0 [S 0) � N , a reduced market of (RB; RS; T ) for
N 0 at z � F (RB; RS; T ) is rzN 0(RB; RS; T ) = (RB0 ; RS0 ; T �

P
BnB0 zb +

P
SnS0 zs).

A trade rule F is consistent if for each N = (B [ S) 2 N , (RB; RS; T ) 2 MN , and

N 0 = (B0 [ S 0) � N , if z = F (RB; RS; T ), then zN 0 = F (rzN 0(RB; RS; T )).

Consistency can also be de�ned for trade-volume rules in a similar way. A trade-

volume rule 
 is consistent if for each N = (B [ S) 2 N , (RB; RS; T ) 2 MN , N 0 =

(B0 [ S 0) � N , and z 2 Z(RB; RS; T ), 
(rzN 0(RB; RS; T )) =
P

B0 zb0.

The second property concerning the population changes is population monotonic-

ity. It has been extensively analyzed in classical economies by Chichilnisky and Thom-

son (1987), Thomson (1987), Chun and Thomson (1988), Moulin (1992), and Chun

(1986), on domains of economies with indivisible goods by Alkan (1989), Tadenuma

and Thomson (1990, 1993), Moulin (1990), Bevia (1992), and Fleurbaey (1993), on

domains of economies with both private and public goods by Thomson (1987), Moulin

(1990), in single-peaked preferences by Thomson (1995), and Klaus (2001). Popu-

lation monotonicity requires that upon the arrival (equivalently, departure) of some

agents, the welfare levels of all remaining buyers and sellers should be a¤ected in the

same direction. Since in our model agents on di¤erent sides of the market are ex-

ogenously di¤erentiated, population monotonicity only compares agents on the same

side of the market. Formally, a trade rule F is population monotonic if for each
(B [ S) 2 N6=;, (RB; RS; T ) 2 MB[S, (B0 [ S 0) � (B [ S), K 2 fB0; S 0g, ei-
ther (i) for each i 2 K, Fi(RB0 ; RS0 ; T ) Ri Fi(RB; RS; T ), or (ii) for each i 2 K,

Fi(RB; RS; T ) Ri Fi(RB0 ; RS0 ; T ).5

There are two types of population expansions. For a given market, by the arrival of

some agents, the short side of the market may remain the same. We call them simple

population expansions. Alternatively, the arrival of su¢ ciently many sellers (buyers)

may turn an economy in which the short side is the buyers (sellers) into one in which the

short side is the sellers (buyers). We call them radical population expansions. Formally,

5Population monotonicity only analyzes societies with a nonempty set of buyers and sellers. If we
include just-buyer markets and just-seller markets, by Thomson (1995) there is no trade rule that
satis�es Pareto optimality, no-envy, and population monotonicity.
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let (B [ S) 2 N and (RB; RS; T ) 2 MB[S. Then, the set of simple population
expansions of (RB; RS; T ) is de�ned as rsim(RB; RS; T ) = f(B0 [ S 0) � (B [ S) :
h(RB; RS; T ) = K and h(RB0 ; RS0 ; T ) = K 0 for K 2 fB; Sgg and the set of radical
population expansions of (RB; RS; T ) is de�ned as rrad(RB; RS; T ) = f(B0[S 0) �
(B [ S) : h(RB; RS; T ) = K and h(RB0 ; RS0 ; T ) = L0 for K 2 fB; Sg and L = N nKg.
Population monotonicity allows both type of expansions.

Lastly, we present the following informational simplicity property. Strong inde-

pendence of trade-volume requires the trade-volume rule only to depend on the total

demand and supply but not on their individual components and the agents� identi-

ties. This property is a stronger version of independence of trade volume introduced by

K¬br¬s and Küçükşenel (2009). In contrast to strong independence of trade-volume, in-

dependence of trade volume relates two problems with the same set of agents. Formally,


 satis�es strong independence of trade volume if for each N = (B [ S) 2 N ,
N 0 = (B0 [ S 0) 2 N , (RB; RS; T ) 2 MN , and (R0B0 ; R

0
S0 ; T ) 2 MN 0

,
P

b2B p(Rb) =P
b02B0 p(R

0
b0) and

P
s2S p(Rs) =

P
s02S0 p(R

0
s0) imply 
(RB; RS; T ) = 
(R

0
B0 ; R

0
S0 ; T ).

4.3 Results

4.3.1 Consistency The following theorem shows that the subclass of Uniform

trade rules F = U � 
 where 
 2 V [short;long] is consistent uniquely satis�es Pareto
optimality, no-envy, and consistency.

Theorem 1 A trade rule F = f �
 satis�es Pareto optimality, no-envy, and consistency
if and only if f = U and 
 satis�es the following:

(1.1) 
 2 V [short;long],
(1.2) 
 is consistent.

Next, we add strong independence of trade volume to the list and we show in The-

orem 2 that under the assumption of strong independence of trade volume, the subclass

of Uniform trade rules F = U �
 where 
 2 Vfshort;longg is consistent uniquely satis�es
Pareto optimality, no-envy and consistency.

Theorem 2 Let 
 2 V satisfy strong independence of trade volume. A trade rule

F = f � 
 satis�es Pareto optimality, no-envy, and consistency if and only if f = U

and 
 satis�es the following:

(1.1) 
 2 Vfshort;longg,
(1.2) 
 is consistent.
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4.3.2 Population Monotonicity Our �rst observation is that there are trade rules

that simultaneously satisfy three properties which, on Sprumont�s domain, are incom-

patible: Pareto optimality, no-envy, and population monotonicity (see Thomson (1995)

for a discussion).

Lemma 10 The Uniform trade rule, U �
long satis�es Pareto optimality, no-envy, and
population monotonicity.

Next, we characterize trade rules that satisfy population monotonicity together with

Pareto optimality, no-envy, and strategy proofness. We show that each of these rules is

a Uniform trade rule with respect to a trade volume rule, 
 that satis�es the following

three properties:

Property (i): Formally, 
 2 Vfshort;longg on M2
6= and 
 2 V [short;long] on M nM2

6=.

This property requires that for each market, 
 chooses a trade volume that is between

the total supply and the total demand. If, in addition, there are at least two buyers

and two sellers with di¤erent peaks, 
 either chooses the desired trade level of the short

side or the long side.

Property (ii): Formally, for each (RB; RS; T ) 2 M n fMB [MSg such that there
are K 2 fB; Sg, i 2 K \ USF (RB; RS; T ), and j 2 K with p(Ri) 6= p(Rj), and for

each (B0 [ S 0) 2 rrad(RB; RS; T ), we have that 
 favors K in (RB0 ; RS0 ; T ).6 For this

property, consider a market in which i is an unsatis�ed agent and j is another agent

on the same side as i but with a di¤erent peak. Now, consider a radical population

expansion of this market. Property (ii) requires that then 
 should favor the side that

i belongs to.

Property (iii): Formally, for each (RB; RS; T ) 2 M, i 2 USF (RB; RS; T ), and R0i 2
R n fRig, we have the following two conditions:

(i) if i 2 h(RB; RS; T ) and p(R0i) < zi, then
(R0i; RNnfig; T ) 2 [
(RN ; T );
P

j2l(RB ;RS ;T ) p(Rj)],

(ii) if i 2 l(RB; RS; T ) and p(R0i) > zi, then
(R0i; RNnfig; T ) 2 [
P

j2h(RB ;RS ;T ) p(Rj);
(RN ; T )].

For this property, consider a market in which i is an unsatis�ed agent that belongs to the

short (respectively, long) side of it. Suppose that i changes his preference relation in a

way that the new peak is less (respectively, more) than the initial share, Fi(RB; RS; T ).

Then, Property (iii) requires that the volume of trade moves towards the desired trade

6Note that, by the population expansion K becomes K 0 in the new market. By the abuse of
notation, however, we use K.
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level of the long (respectively, short) side.

Theorem 3 A trade rule F = f � 
 satis�es Pareto optimality, no-envy, strategy-

proofness, and population monotonicity if and only if f = U and 
 satis�es:

(3.1) Property (i),

(3.2) Property (ii),

(3.3) Property (iii).

In the following theorem we add strong independence of trade volume to the list and

analyze the implications of it with population monotonicity and the other properties.

We characterize the following class: onMnMnt, 
 is 
long whereas onMnt, it is either


short or 
long.

Theorem 4 Let 
 2 V satisfy strong independence of trade volume. Then, a trade
rule F = f � 
 satis�es Pareto optimality, no-envy, strategy-proofness, and population
monotonicity if and only if f = U and 
 satis�es the following:

(4.1) onMnMnt, 
 = 
long.

(4.2) onMnt, 
 = 
short or 
 = 
long.

4.4 Conclusion

In this section, we discuss some of our results and we list some open questions.

We show in Theorem 1 that the Uniform trade rules with consistent trade volume

rules, 
 that always choose a trade level between the total demand and supply of the

market uniquely satisfy Pareto optimality, no envy, and consistency. However, once

we also impose strong independence of trade volume, the associated trade volumes, 


cannot choose any in-between trade level: the trade level must be either the desired

trade level of the short side or the long side, that is 
 2 Vfshort;longg (Theorem 2).

In addition, we show that on M n Mnt as well as on Mnt, there are in�nitely

many rules satisfying Pareto optimality, no envy, strategy proofness, and population

monotonicity. In Theorem 2, we characterize them. Once we impose strong indepen-

dence of trade volume to the list, we show in Theorem 3 that on M nMnt, there is

only one rule, U � 
long and on Mnt, only two rules, U � 
short and U � 
long that
satisfy the desired properties. Therefore, although strong independence of trade volume

gives informational simplicity, at the same time it limits the number of rules very much.

Thus, it is a very strong property.
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It is useful to note that replacing strategy proofness with peak only in Theorem 3 has

similar implications. Peak only is an informational simplicity property and it requires

the trade only to depend on agents�peaks but not on the whole preference relation.

Replacing strategy proofness with peak only changes Theorem 3 as follows (The proof

is similar to that of Theorem 3. Because of the space limitation, we omit it. However,

it is available upon request.):

Theorem 5 A trade rule F = f �
 satis�es Pareto optimality, no-envy, peak only, and
population monotonicity if and only if f = U and 
 satis�es:

(5.1) Property (i) of Theorem 3.

(5.2) Property (ii) of Theorem 3.

It is also useful to analyze the implications of a weaker version of population

monotonicity, namely weak population monotonicity. This weaker property analyzes

only simple population expansions. Replacing weak population monotonicity with pop-

ulation monotonicity changes Theorem 3 as follows:

Theorem 6 A trade rule F = f � 
 satis�es Pareto optimality, no-envy, strategy

proofness, and weak population monotonicity if and only if f = U and 
 satis�es:

(6.1) 
 2 V [short;long],
(6.2) Property (iii) of Theorem 3.

In this paper, we analyze markets in which there is only one traded commodity. We

do this by picking a market in disequilibrium, isolating it from other related markets,

and then producing a trade for it. Our properties focus on a trade rule at that particular

market and not on its implications on related markets. Therefore, we do not analyze

the implications of a trade rule on the overall economy. This analysis is an important

follow up to our work.

4.5 Appendix

To prove Theorem 1, we use the following two lemmas. The �rst one analyzes

the relationship between the properties satis�ed by a trade rule F = f � 
, and its
component f . It shows that Pareto optimality, no-envy, and consistency satis�ed by F

passes on to f .

Lemma 11 If a trade rule F = f � 
 satis�es one of the following properties, then f
also satis�es that property: Pareto optimality, no-envy, and consistency.
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Proof. First, suppose for a contradiction F = f � 
 satis�es Pareto optimal-

ity whereas f does not. Then, there is K 2 fB; Sg and (RK ; T ) 2 MK such that

f(RK ; T ) is not Pareto optimal with respect to (RK ; T ). Then, since (RK ; T ) 2 M
and F (RK ; T ) = f(RK ; T ), F (RK ; T ) is not Pareto optimal with respect to (RK ; T ), a

contradiction to F being Pareto optimal. The other properties can be proved similarly.

The second lemma is by Dagan (1996) on the allocation rule f . For its proof, see

Dagan (1996).

Lemma 12 (Dagan, 1996) If the potential number of agents is at least 4 and if an
economy consists of at least 2 agents, then f satis�es Pareto optimality, no-envy, and

bilateral-consistency if and only if f = U .

Proof. (Theorem 1) The if part is straightforward and thus, omitted. The only
if part is as follows. Since F satis�es Pareto optimality, no-envy, and consistency, by

Lemma 11, f also satis�es those properties. Then, by Lemma 12, f = U .

Now, let N = (B [ S) 2 N , (RB; RS; T ) 2 MN and (B0 [ S 0) 2 N be such that

(B0[S 0) � (B[S). Let z � F (RB; RS; T ) and z0zB0[S0(RB; RS; T )). Since F is consistent,
for each i 2 (B0 [ S 0), z0i = zi. Then, by the de�nition of 
, 
(rzB0[S0(RB; RS; T )) =P

B0 z
0
b0 =

P
B0 zb0. Thus, 
 is consistent.

To prove Theorem 2, in addition to lemmas 11 and 12, we also use the following

lemma. It shows that for Pareto optimal rules, a reduced market has the same short

side as the original.

Lemma 13 Let F be a Pareto optimal trade rule. Then, for each N = (B [ S) 2 N ,
(RB; RS; T ) 2MN , and N 0 = (B0 [S 0) � N such that N 0 2 N6=;, if z = F (RB; RS; T ),

then we have

(i) h(RB; RS; T ) = B implies h(rzB0[S0(RB; RS; T )) = B
0, and

(ii) h(RB; RS; T ) = S implies h(rzB0[S0(RB; RS; T )) = S
0.

Proof. Let N = (B [S) 2 N , (RB; RS; T ) 2MN , and (B0[S 0) � N be such that

B0 6= ; and S 0 6= ;. Let z � F (RB; RS; T ). First, suppose h(RB; RS; T ) = B. Since F
is Pareto optimal, z is Pareto optimal with respect to (RB; RS; T ). Then, by Lemma 9,

for each b 2 B, p(Rb) � zb and for each s 2 S, zs � p(Rs). Then,
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X
BnB0

zb +
X
B0

p(Rb) �
X
B

zb

=
X
S

zs + T

�
X
S0

p(Rs) +
X
SnS0

zs + T:

That is
P

B0 p(Rb) �
P

S0 p(Rs)+T�
P

BnB0 zb+
P

SnS0 zs. Note that r
z
B0[S0(RB; RS; T ) =

(RB0 ; RS0 ; T
0) for T 0 = T �

P
BnB0 zb+

P
SnS0 zs. Thus, h(r

z
B0[S0(RB; RS; T )) = B

0. This

proves (i). The proof of (ii) is similar.

Proof. (Theorem 2) The if part is straightforward and thus, omitted. The only
if part is as follows. Since F satis�es Pareto optimality, no-envy, and consistency, by

Theorem 1, F = U and 
 2 V [short;long] satis�es consistency. Now, by using strong
independence of trade volume, we will show that 
 2 Vfshort;longg.

For this, letN = (B[S) 2 N , (RB; RS; T ) 2MN . First, assume that h(RB; RS; T ) =

S. Let
P

B p(Rb) = a,
P

S p(Rs) + T = d, and 
(RB; RS; T ) = c. By Theorem 1,

c 2 [d; a]. Suppose for a contradiction c =2 fa; dg, that is c 2 (d; a). Let " 2 R+ be
such that " < minf c

n
; 2(a�c)
(n�2) ;

2(n�1)(c�d)
(m�1)(n�2)g. Also let m;n 2 N be such that n � 3 and

m > maxf3; c�T
d�T g.

Let (RB0 ; RS0 ; T ) 2MB0[S0 be such that jB0j = n, jS 0j = m, and
p(Rb01) =

c
n
� ", p(Rb02) = � � � = p(Rb0n) =

a
n�1 �

c
n(n�1) +

"
n�1 ,

p(Rs01) =
c
m
� T

m
+ "(m�1)(n�2)

2(m�2)(n�1) , p(Rs02) =
d

m�1 �
T
m
� c

m(m�1) +
(n�2)(m�3)"
2(n�1)(m�2) ,

p(Rs03) = � � � = p(Rs0m) =
d

m�1 �
T
m
� c

m(m�1) �
(n�2)"

(n�1)(m�2) .

Also, let (R0B0 ; R
0
S0 ; T ) 2MB0[S0 be such that

p(R0b01
) = c

n
� "

2
, p(R0b02

) = a
n�1 �

c
n(n�1) �

(n�3)"
2(n�1) , p(R0b03

) = � � � = p(R0b0n) =
a
n�1 �

c
n(n�1) +

"
n�1 ,

p(R0s01
) = c

m
� T

m
+ "(m�1)(n�2)

(m�2)(n�1) , p(R0s02
) = � � � = p(R0s0m) =

d
m�1 �

T
m
� c

m(m�1) �
(n�2)"

(n�1)(m�2) .

Note that by the choice of " andm, for each k 2 (B0[S 0), p(Rk0) � 0 and p(R0k0) � 0.
Also,

P
B0 p(Rb0) =

P
B0 p(R

0
b0) = a and

P
S0 p(Rs0) =

P
S0 p(R

0
s0) = d � T . Then, by

strong independence of trade volume, 
(RB0 ; RS0 ; T ) = 
(R0B0 ; R
0
S0 ; T ) = c.

For eachK 2 fB0; S 0g, let zK � FK(RB0 ; RS0 ; T ) = U(RK ; c) and z0K � FK(R0B0 ; R0S0 ; T ) =
U(R0K ; c). Since for each i = 2; � � �; n, p(Rb01) <

c
n
< p(Rb0i), p(R

0
b01
) < c

n
< p(R0b0i

), and
1

(n�1)(c�p(R
0
b01
)) < p(R0b0i

), we have zb01 = p(Rb01) =
c
n
�", zb0i =

1
n�1(c�p(Rb01)) =

c
n
+ "
n�1 ,

z0b01
= p(R0b01

) = c
n
� "

2
, and z0b0i =

1
n�1(c� p(R

0
b01
)) = c

n
+ "

2(n�1) .
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Since for each i = 2; � � �;m, p(Rs0i) <
c�T
m

< p(Rb01), p(R
0
s0i
) < c�T

m
< p(R0s01

),

and 1
(m�1)(c � T � p(Rs01)) > p(R0s0i

), we have zs01 = p(Rs01) =
c
m
� T

m
+ "(m�1)(n�2)

2(m�2)(n�1) ,

zs0i =
1

m�1(c� T � p(Rs01)) =
c
m
� T

m
� "(n�2)

2(m�2)(n�1) , z
0
s01
= p(R0s01

) = c
m
� T

m
+ "(m�1)(n�2)

(m�2)(n�1) ,

and z0s0i =
1

m�1(c� T � p(R
0
s01
)) = c

m
� T

m
� "(n�2)

(m�2)(n�1) .

Now, let T 0 = 2T
m
+ 2(m�n)c

mn
� 3(n�2)"

2(n�1) and consider the following two reduced problems:

(i) rzfb01;b02;s01;s02g
(RB0 ; RS0 ; T ) = (Rb01 ; Rb02 ; Rs01 ; Rs02 ; T

0),

(ii) rz
0

fb01;b02;s01;s02g
(R0B0 ; R

0
S0 ; T ) = (R

0
b01
; R0b02

; R0s01
; R0s02

; T 0).

Note that, p(Rb01) + p(Rb02) = p(R0b01
) + p(R0b02

) and p(Rs01) + p(Rs02) = p(R0s01
) +

p(R0s02
). Then, by strong independence of trade volume, 
(rzfb01;b02;s01;s02g(RB0 ; RS0 ; T )) =


(rz
0

fb01;b02;s01;s02g
(R0B0 ; R

0
S0 ; T )). By consistency, for i = 1; 2, Fb0i(r

z
b01;b

0
2;s

0
1;s

0
2
(RB0 ; RS0 ; T )) =

zb0i and Fb0i(r
z0

b01;b
0
2;s

0
1;s

0
2
(R0B0 ; R

0
S0 ; T )) = z

0
b0i
. Then,


(rzfb01;b02;s01;s02g
(RB0 ; RS0 ; T )) = zb01 + zb02 =

2c
n
+ (2�n)"

n�1 and


(rz
0

fb01;b02;s01;s02g
(R0B0 ; R

0
S0 ; T )) = z

0
b01
+ z0b02

= 2c
n
+ (2�n)"

2(n�1) .

Then, 
(rzfb01;b02;s01;s0mg(RB0 ; RS0 ; T )) 6= 
(rz
0

fb01;b02;s01;s02g
(R0B0 ; R

0
S0 ; T )), a contradiction.

Thus, 
(RB; RS; T ) 2 f
P

B p(b);
P

S p(s) + Tg.
Proof. (Lemma 10) Let (B [ S) 2 N and (RB; RS; T ) 2 MB[S. Without loss

of generality, let
P

B p(Rb) �
P

S p(Rs) + T . Then, 

long(RB; RS; T ) =

P
S p(Rs) + T .

Let z � U � 
long(RB; RS; T ). Then, by the de�nition of U , for each b 2 B, zb � p(Rb)
and for each s 2 S, zs = p(Rs). Let (B0 [ S 0) � (B [ S). Suppose �rst,

P
B0 p(Rb0) �P

S0 p(Rs0) + T . Then, 

long(RB0 ; RS0 ; T ) =

P
S0 p(Rs0) + T . Let z

0long(RB0 ; RS0 ; T ).

Then, by the de�nition of U , for each s0 2 S 0, z0s0 = p(Rs0). Thus, for each s0 2 S 0,
z0s0 Is0 zs0.

Claim: We have either (i) for each b0 2 B0, p(Rb0) � z0b0 � zb0 or (ii) for each

b0 2 B0, z0b0 � zb0.
Proof of Claim: Suppose for a contradiction there are ~b;�b 2 B0 such that

z0~b > z~b and z
0
�b
< z�b. By de�nition, z0~b = maxf�0; p(R~b)g where �

0 is such thatP
B0 maxf�

0; p(Rb0)g =
P

B0 p(Rb0) and z~b = maxf�; p(R~b)g where � is such thatP
Bmaxf�; p(Rb)g =

P
B p(Rb). Since z

0
~b
> z~b, �

0 > �. Then, z0�b = maxf�
0; p(R�b)g �

maxf�; p(R�b)g = z�b, a contradiction to z0�b < z�b.
Thus, we have either (i) for each b0 2 B0, z0b0 Rb0 zb0 or (ii) for each b0 2 B0, zb0 Rb0 z0b0.
Now, suppose

P
S0 p(Rs0)+T �

P
B0 p(Rb0). Then, 


long(RB0 ; RS0 ; T ) =
P

B0 p(Rb0).

Then, for each b0 2 B0, z0b0 = p(Rb0). Thus, for each b0 2 B0, z0b0 Rb0 zb0. Also, for each
s0 2 S 0, z0s0 � p(Rs0), that is zs0 Rs0 z0s0. Therefore, F = U � 
long is population
monotonic.

We prove Theorem 3 with the help of the following three lemmas. The �rst one

states that if a Uniform trade rule, U �
 satis�es Pareto optimality and strategy proof-
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ness, then it satis�es the following property: the trade remains the same when unsat-

is�ed agents change their preference relations without changing their peaks.

Lemma 14 If F = U � 
 satis�es Pareto optimality and strategy proofness, then for
each N = (B [S) 2 N , (RB; RS; T ) 2MN , N 0F (RB; RS; T ), and R0N 0 2 RN 0

such that

p(R0N 0) = p(RN 0), we have F (RB; RS; T ) = F (R0N 0 ; RNnN 0 ; T ).

Proof. Let U � 
 satisfy Pareto optimality and strategy proofness. Let N =

(B [ S) 2 N and (RB; RS; T ) 2 MN . Let N 0F (RB; RS; T ) and R0N 0 2 RN 0
be such

that p(R0N 0) = p(RN 0). Let K 2 fB; Sg and let i 2 N 0 \K. Let z � F (RB; RS; T ) and
z0 � F (R0i; RNnfig; T ). Without loss of generality, let zi > p(Ri).

Claim 1. (z0i = zi) Suppose not. Since p(Ri) = p(R
0
i), h(R

0
i; RNnfig; T ) = h(RN ; T ).

Then, by Lemma 9, z0i � p(Ri) = p(R0i). If z
0
i > zi, then when the true preference

relation of i is R0i, he manipulates z
0 by pretending as if his true preference relation is

Ri. Similarly, if zi > z0i, then when the true preference relation of i is Ri, he manipulates

z by pretending as if his true preference relation is R0i. Thus, z
0
i = zi.

Claim 2. (
(RB; RS; T ) = 
(R0i; RBnfig; RS; T )) Since zi > p(Ri), by the de�nition
of U , zi = maxf�; p(Ri)g = � where � satis�es

P
K maxf�; p(Rk)g = 
(RB; RS; T ).

Similarly, z0i = maxf�0; p(Ri)g where �0 satis�es
P

K maxf�
0; p(Rk)g = 
(R0i; RNni; T ).

By Claim 1, z0i = zi = � 6= p(Ri). Then, z0i = �0 and so �0 = �. Thus, 
(RB; RS; T ) =

(R0i; RNnfig; T ).

Claim 3. (for each j 2 N n fig, z0j = zj) It follows from F = U � 
 and Claim 2.

By Claim 1 and 3, z0 = z. Now, let j 2 N 0 n fig and apply the same argument
to (R0i; RNnfig; T ). Repeating the similar argument to each k 2 N 0 proves that U �

(R0N 0 ; RNnN 0 ; T ) = U � 
(RB; RS; T ).

The second lemma shows that strategy proofness satis�ed by a trade rule F = f �

passes on to f . Since its proof is similar to the proof of Lemma 11, we omit it.

Lemma 15 If a trade rule F = f � 
 is strategy proof, then f is also strategy proof.

The third lemma is by Ching (1992) on the allocation rule, f .

Lemma 16 (Ching, 1992) An allocation rule, f satis�es Pareto optimality, no-envy,
and strategy proofness if and only if f = U .

Proof. (Theorem 3) The if part is easy to prove. The only if part is as follows.
Since F satis�es Pareto optimality, no-envy, and strategy proofness, by the lemmas 11

and 15, f also satis�es those properties. Then, by Lemma 16, f = U .
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Since F is Pareto optimal, by Lemma 9, 
 2 V [short;long]. Now, let (RB; RS; T ) 2
M2

6=. Let jBj = n and jSj = m. Note that, n � 2 and m � 2. First, suppose

h(RB; RS; T ) = S. Since 
 2 V [short;long], 
(RB; RS; T ) 2 [
P

S p(Rs) + T;
P

B p(Rb)].

Suppose for a contradiction, 
(RB; RS; T ) 2 (
P

S p(Rs) + T;
P

B p(Rb)). Without loss

of generality, enumerate B = fb1; � � �; bng and S = fs1; � � �; smg such that p(Rb1) �
p(Rb2) � � � � � p(Rbn) and p(Rs1) � p(Rs2) � � � � � p(Rsm). Let z � F (RB; RS; T ) =
U �
(RB; RS; T ). Then, by the de�nition of U , zb1 � p(Rb1), zbn < p(Rbn), zs1 > p(Rs1),
and zsm � p(Rsm). Now, let l be the smallest integer such that p(Rsm)l +

P
S p(Rs) +

T >
P

B p(Rb). Then, let S
0 = S [ fsm+1; � � �; sm+lg and for each i = 1; � � �; l, let

Rsm+i = Rsm. Note that h(RB; RS0 ; T ) = B. Let z0 � F (RB; RS0 ; T ). Since 
 2
V [short;long], 
(RB; RS0 ; T ) 2 [

P
B p(Rb);

P
S0 p(Rs0) + T ]. First, suppose

P
B p(Rb) <


(RB; RS0 ; T ) �
P

S0 p(Rs0) + T . Then, by the de�nition of U , we have one of the

following cases:

Case 1: Let zb1 = p(Rb1), zbn < p(Rbn), and z
0
b1
= z0bn > p(Rbn). Then, let R

0
bn
2 R

be such that p(R0bn) = p(Rbn) and z
0
bn
P 0bn zbn. By Lemma 14, F (RBnfbng; R

0
bn
; RS; T ) =

z and F (RBnfbng; R
0
bn
; RS0 ; T ) = z0. Then, we have zb1 Pb1 z

0
b1
and z0bn P

0
bn
zbn, a

contradiction to F satisfying population monotonicity.

Case 2: Let zb1 = p(Rb1), zbn < p(Rbn), z
0
b1
> p(Rb1), and z

0
bn
= p(Rbn). Then, we

have zb1 Pb1 z
0
b1
and z0bn Pbn zbn, a contradiction to F satisfying population monotonicity.

Case 3: Let zb1 = zbn < p(Rb1), and z
0
b1
= z0bn > p(Rbn). Then, consider R

0
b1

and R0bn such that p(R
0
b1
) = p(Rb1), p(R

0
bn
) = p(Rbn), zb1 P

0
b1
z0b1, and z

0
bn
P 0bn zbn. By

Lemma 14, F (RBnfb1;bng; R
0
b1
; R0bn ; RS; T ) = z and F (RBnfb1;bng; R

0
b1
; R0bn ; RS0 ; T ) = z0.

Then, we have zb1 P
0
b1
z0b1 and z

0
bn
P 0bn zbn, a contradiction to F satisfying population

monotonicity.

Case 4: Let zb1 = zbn < p(Rb1), z
0
b1
> p(Rb1), and z

0
bn
= p(Rbn). Then, consider R

0
b1

such that p(R0b1) = p(Rb1) and zb1 P
0
b1
z0b1. By Lemma 14, F (RBnfb1g; R

0
b1
; RS; T ) = z and

F (RBnfb1g; R
0
b1
; RS0 ; T ) = z

0. Then, we have zb1 P
0
b1
z0b1 and z

0
bn
Pbn zbn, a contradiction

to F satisfying population monotonicity.

Second, suppose 
(RB; RS0 ; T ) =
P

B p(Rb). Then, similar argument proves that

in each case of zs1 , z
0
s1
, zsm, and z

0
sm, there is a violation of population monotonicity.

Thus, 
(RB; RS; T ) 2 f
P

B p(Rb);
P

S p(Rs) + Tg. Similar argument proves the other
case in which h(RB; RS; T ) = B, for this just replace S with B. This proves (2:1).

For (2:2), let (RB; RS; T ) 2 M n fMB [ MSg and (B0 [ S 0rad(RB; RS; T ). Let
K 2 fB; Sg and i 2 K be such that i 2 USF (RB; RS; T ). Also, let j 2 K be

such that p(Rj) 6= p(Ri). First, let h(RB; RS; T ) = K. Let z � F (RB; RS; T ) and

z0 � F (RB0 ; RS0 ; T ). By Pareto optimality, Lemma 9 implies zi > p(Ri) and zj � p(Rj).
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Since (B0[S 0rad(RB; RS; T ), h(RB0 ; RS0 ; T ) = N 0nK 0 � L0. Suppose for a contradiction

 does not favor K 0 in (RB0 ; RS0 ; T ). Then, by Lemma 9, for each k0 2 K 0, z0k0 � p(Rk0).
Then, we have four cases:

Case 1: Let zi > p(Ri), zj = p(Rj), z0i = p(Ri), and z
0
j < p(Rj). Then, we have

z0i Pi zi and zj Pj z
0
j, a contradiction to F satisfying population monotonicity.

Case 2: Let zi > p(Ri), zj = p(Rj), z0i = z
0
j < minfp(Ri); p(Rj)g. Then, consider

R0i 2 R such that p(R0i) = p(Ri) and z
0
i P

0
i zi. By Lemma 14, F (R

0
i; R(B[S)nfig; T ) = z

and F (R0i; R(B0[S0)nfig; T ) = z
0. Then, we have z0i P

0
i zi and zj Pj z

0
j, a contradiction to

F satisfying population monotonicity.

Case 3: Let zi = zj > maxfp(Ri); p(Rj)g, z0i = p(Ri), and z0j < p(Rj). Then, con-
siderR0j 2 R such that p(R0j) = p(Rj) and zj P 0j z0j. By Lemma 14, F (R0j; R(B[S)nfjg; T ) =
z and F (R0j; R(B0[S0)nfjg; T ) = z

0. Then, we have z0i Pi zi and zj P
0
j z

0
j, a contradiction

to F satisfying population monotonicity.

Case 4: Let zi = zj > maxfp(Ri); p(Rj)g and z0i = z0j < minfp(Ri); p(Rj)g. Then,
let R0i 2 R be such that p(R0i) = p(Ri) and zi P 0i z

0
i. Also, let R0j 2 R be such

that p(R0j) = p(Rj) and z0j P
0
j zj. By Lemma 14, F (R

0
i; R

0
j; R(B[S)nfi;jg; T ) = z and

F (R0i; R
0
j; R(B0[S0)nfi;jg; T ) = z

0. Then, we have zi P 0i z
0
i and z

0
j P

0
j zj, a contradiction to

F satisfying population monotonicity.

Thus, if h(RB; RS; T ) = K, 
 must favor K 0 in (RB0 ; RS0 ; T ). If h(RB; RS; T ) =

N nK, the proof is very similar. Thus, 
 must favor K 0 in (RB0 ; RS0 ; T ). Therefore 


satis�es Property (ii) and this proves (3:2).

For 3:3, let (RB; RS; T ) 2 M and i 2 USF (RB; RS; T ). Without loss of generality,
let i 2 h(RB; RS; T ). Let R0i 2 R n fRig be such that p(R0i) < Fi(RB; RS; T ). Let

z � F (RB; RS; T ) and z0 � F (R0i; RNnfig; T ). Note that, since i 2 USF (RB; RS; T ) and
i 2 h(RB; RS; T ), zi > p(Ri). By strategy proofness and Lemma 6, z0i � zi, otherwise
when the true preference relation of i is Ri, he gains by declaring R0i. Note that, since

f = U , zi = maxfp(Ri); �g where � satis�es
P

Bmaxfp(Rb); �g = 
(RB; RS; T ) and

z0i = maxfp(R0i); �0g where �0 satis�es
P

Bmaxfp(R0b); �
0g = 
(R0i; RNnfig; T ). Since

zi > p(Ri), zi = �. Also, since z0i � zi > p(R
0
i), z

0
i = �

0. Then, since z0i � zi, �
0 � �.

Therefore, 
(R0i; RNnfig; T ) � 
(RB; RS; T ). By Pareto optimality, Lemma 9 implies

that 
(R0i; RNnfig; T ) 2 [
(RB; RS; T );
P

j2l(RB ;RS ;T ) p(Rj)]. The proof of the case in

which i 2 l(RB; RS; T ) is very similar. Thus, 
 satis�es Property (iii).
Proof. (Theorem 4) Let 
 satisfy strong independence of trade volume. Let F =

f�
 satisfy Pareto optimality, no-envy, strategy proofness, and population monotonicity.
By Theorem 2, f = U , 
 satis�es properties (ii) and (iii). Also, 
 satis�es Property

(i), that is, 
 2 Vfshort;longg on M2
6=, and 
 2 V [short;long] on M n M2

6=. Then, by
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strong independence of trade volume, 
 2 Vfshort;longg on M. We will prove (3:1) by

the following claims:

Claim 1. For each T > 0, (RB; RS; T ) 2MnMnt, 
(RB; RS; T ) = 
long(RB; RS; T ).

Proof of Claim 1. Let T > 0. Let (RB; RS; T ) 2 M nMnt. Let
P

B p(Rb) = a

and
P

S p(Rs) = d. First, suppose h(RB; RS; T ) = S, that is d + T < a. Then, let

B0 = fb01; b02g and S 0 = fs01; s02g. Let R(B0[S) 2 RB0[S0 be such that p(Rb01) = T=6,

p(Rb02) = T=3, p(Rs01) = d=3, and p(Rs02) = 2d=3. Note that (RB0 ; RS0 ; T ) 2 M nMnt.

Then, 
(RB0 ; RS0 ; T ) 2 f
P

B0 p(Rb0);
P

S0 p(Rs0) + Tg. Note that
P

B0 p(Rb0) = T=2

and
P

S0 p(Rs0) + T = d + T . Thus, h(RB0 ; RS0 ; T ) = B0 and
P

B0 p(Rb0) < T .

Then, by feasibility, 
(RB0 ; RS0 ; T ) =
P

S0 p(Rs0) + T = 
long(RB0 ; RS0 ; T ). Then,

Fb01(RB0 ; RS0 ; T ) > T=6. Now, let B
00 = B0 [ fb03g and Rb03 2 R be such that p(Rb03) =

a � T=2. Note that (RB00 ; RS0 ; T ) 2 M n f(Mnt [ M0)g and
P

B00 p(Rb0) = a, andP
S0 p(Rs0) = d. Then, by Theorem 2, 
 should favor B00 in (RB00 ; RS0 ; T ), that is


(RB00 ; RS0 ; T ) = 
long(RB00 ; RS0 ; T ). Then, by strong independence of trade volume,


(RB; RS; T ) = 
long(RB; RS; T ). Now, suppose h(RB; RS; T ) = B. By Theorem

2, 
(RB; RS; T ) 2 f
short(RB; RS; T );
long(RB; RS; T )g. Suppose for a contradic-

tion 
(RB; RS; T ) = 
short(RB; RS; T ). let B0 = fb01; b02g and S 0 = fs01; s02g. Let

R(B0[S) 2 RB0[S0 be such that p(Rb01) = a=3, p(Rb02) = 2a=3, p(Rs01) = d=3, and

p(Rs02) = 2d=3. Note that
P

B0 p(Rb0) = a and
P

S0 p(Rs0) = d. Then, by strong indepen-

dence of trade volume, 
(RB0 ; RS0 ; T ) = 
(RB; RS; T ) = 
short(RB; RS; T ). Then, s02 2
USF (RB0 ; RS0 ; T ). Now, let B00 = B0 [ fb03g and Rb03 2 R be such that p(Rb03) = d+ T .

Note that (RB00 ; RS0 ; T ) 2M nMnt and
P

B00 p(Rb0) = a+ d+ T , and
P

S0 p(Rs0) = d.

Note that, h(RB00 ; RS0 ; T ) = S. Then, (B00 [ S 00) 2 rrad(RB0 ; RS0 ; T ) and by Property
(ii), 
 should favor S 0 in (RB00 ; RS0 ; T ). Thus, 
(RB00 ; RS0 ; T ) = 
short(RB00 ; RS0 ; T ), a

contradiction to the �rst case.

Claim 2. For each T < 0, (RB; RS; T ) 2MnMnt, 
(RB; RS; T ) = 
long(RB; RS; T ).

Proof of Claim 2. The proof is very similar to the proof of Claim 1.

Thus, by claims 1 and 2, onMnMnt, 
 = 
long.

The following claims will prove 3:2.

Claim 3. Let (RB; RS); (R0B0 ; R
0
S0) 2 Mnt. Let K 2 fB; Sg. Suppose that

h(RB; RS) = K and h(R0B0 ; R
0
S0) = K

0. Then, we have either [
(RB; RS) = 
short(RB; RS)

and 
(R0B0 ; R
0
S0) = 


short(R0B0 ; R
0
S0)] or [
(RB; RS) = 


long(RB; RS) and 
(R0B0 ; R
0
S0) =


long(R0B0 ; R
0
S0)].

Proof of Claim 3. Without loss of generality, let K = B. Suppose for a

contradiction, 
(RB; RS) = 
short(RB; RS) and 
(R0B0 ; R
0
S0) = 
long(R0B0 ; R

0
S0). LetP

B p(Rb) = a,
P

B0 p(R
0
b0) = a

0,
P

S p(Rs) = d, and
P

S0 p(R
0
s0) = d

0. First, let a > a0

55



and d > d0. Now, let ~B = f~b1;~b2;~b3g and ~S = f~s1; ~s2; ~s3g. Also, let (R ~B; R ~S) 2Mnt be

such that p(R~b1) = a
0=3, p(R~b2) = 2a

0=3, p(R~b3) = a�a
0, p(R~s1) = d

0=3, p(R~s2) = 2d
0=3,

and p(R~s3) = d � d0. Note that
P

~B p(R~b) = a and
P

~S p(R~s) = d. Then, by

strong independence of trade volume, 
(R ~B; R ~S) = 
short(R ~B; R ~S) = a. Note that,

there is ~si 2 ~S such that ~si 2 USF (R ~B; R ~S). Similarly, let ~B0 = f~b01; ~b02g and
~S 0 = f~s1; ~s2g. (R ~B0 ; R ~S0) 2 Mnt be such that p(R~b01

) = a0=3, p(R~b02
) = 2a0=3,

p(R~s01
) = d0=3, p(R~s02

) = 2d0=3. Note that
P

~B0 p(R~b0) = a
0 and

P
~S0 p(R~s0) = d

0. Then,

by strong independence of trade volume, 
(R ~B0 ; R ~S0) = 

long(R ~B0 ; R ~S0) = d

0. Note that
~b01 2 USF (R ~B0 ; R ~S0). Now, let B

00 = ~B [ f~b4g and S 00 = ~S. Let R~b4 2 R be such that

p(R~b4) = d + d0 � a. Now, consider (RB00 ; RS00). Note that
P

B00 p(R~b) = d + d0 andP
S00 p(R~s) = d. Thus, h(RB00 ; RS00) = S

00. That is, (B00[S 00rad(R ~B; R ~S)\rrad(R ~B0 ; R ~S0).

Then, by Property (ii), we have the following: if we consider (R ~B; R ~S), 
 should favor

S 00. If we consider (R ~B0 ; R ~S0), 
 should favor B
00, a contradiction. Thus, we have ei-

ther [
(RB; RS) = 
short(RB; RS) and 
(R0B0 ; R
0
S0) = 


short(R0B0 ; R
0
S0)] or [
(RB; RS) =


long(RB; RS) and 
(R0B0 ; R
0
S0) = 


long(R0B0 ; R
0
S0)]. The proofs of the other relations of

a, a0, d, and d0 are very similar.

Claim 4. OnMnt, 
 = 
short or 
 = 
long.

Proof of Claim 4. By Claim 3, �rst suppose for each (RB; RS) 2 Mnt such

that h(RB; RS) = B, 
(RB; RS) = 
short(RB; RS). Let (RB; RS) 2 Mnt be such that

h(RB; RS) = B. Let
P

B p(Rb) = a and
P

S p(Rs) = d. Then, 
(RB; RS) = a. Now,

let B0 = fb01; b02g and S 0 = fs01; s02g. Let RB0 ; RS0 2 R be such that p(Rb01) = a=3,

p(Rb02) = 2a=3, p(Rs01) = d=3, and p(Rs02) = 2d=3. Note that,
P

B0 p(Rb0) = a andP
S0 p(Rs0) = d. Then, by strong independence of trade volume, 
(RB0 ; RS0) = a. Then,

s02 2 USF (RB0 ; RS0). Now, let B00 = B0 [ fb03g and Rb03 2 R be such that p(Rb03) = d.

Consider (RB00 ; RS0) 2 Mnt. Note that
P

B00 p(Rb00) = a + d. Thus, h(RB00 ; RS0) = S
0,

that is, (B00 [ S 0rad(RB0 ; RS0). Then, by Property (ii), 
 should favor S 0 in (RB00 ; RS0),
that is, 
(RB00 ; RS0) = 
short(RB00 ; RS0). Then, by Claim 1, for each (RB; RS) 2 Mnt

such that h(RB; RS) = S, 
(RB; RS) = 
short(RB; RS). The proof of the other case in

which for each (RB; RS) 2Mnt such that h(RB; RS) = B, 
(RB; RS) = 
long(RB; RS)

is similar. Thus, onMnt, 
 = 
short or 
 = 
long.
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