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Dynamic Balancing of Underactuated Robots

Abstract

This thesis presents the control of planar underactuated systems that have one

less control input than the number of degrees of freedom. The underactuated robots

are studied to achieve dynamically stable motions commonly encountered during

robot locomotion. This work emphasizes the relation between the underactuated

systems and biped locomotion and builds on the previous works in the literature on

underactuated robot locomotion.

Two planar system models are treated: an acrobatic robot and a compass biped

with torso. The dynamic stability of fast periodic trajectories of these systems are

regulated by designing asymptotically stable feedback controllers. The resulting

internal dynamics of the systems are analyzed and shaped to achieve energy effi-

ciency and robustness of the closed-loop system trajectories. In particular, Bézier

polynomial approximations and parameter optimization methods are used to sys-

tematically construct the internal dynamics of the systems. Simulation results are

presented for dynamically stable orbits of the acrobatic robot and the compass biped

with torso.



Özet

Tahrik derecesi serbestlik derecesinden az olan düzlemsel mekanik sistemlerin

kontrolü zor bir problemdir. Bu mekanik sistemler iki ayaklı robotlarda sıkça rast-

lanan dinamik kararlı hareketi modellemek için kullanılmaktadır. Bu çalışmada

serbestlik derecesinden sayıca az tahrikli sistemler ile iki ayaklı yürüyen robotlar

arasındaki baǧlantı ele alınmıştır.

İki adet düzlemsel sistem modeli incelenmektedir; bunlar akrobatik robot ve

yürüyen robottur. Bu sistemlerin hızlı periyodik yörüngelerinin dinamik kararlılıkları

asimtotik kararlı geribesleme kontrölörleriyle gerçekleştirilmiştir. Oluşan sistemin

iç dinamikleri incelenip enerji tasarrufu ve kapalı-çevrim gürbüz kontrol saǧlamak

için şekillendirilmiştir. Özellikle, sistemin iç dinamiǧini şekillendirmek için siste-

matik olarak Bézier polinom yaklaşımları ve parametre optimizasyon yöntemleri

kullanılmıştır. Simulasyon sonuçları, akrobatik robot ve yürüyen robotun dinamik

kararlı yörüngelerini sunmaktadır .
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Chapter 1

Introduction

This thesis covers the design of nonlinear controllers for a class of underactuated

mechanical systems to simulate dynamic balancing and biped locomotion. The

mathematical models of these systems, their corresponding feedback controllers and

stability analysis are presented. The robot models studied in this work are simple,

yet they capture the important aspects of dynamic balancing and biped locomotion.

1.1 Motivation

Locomotive robots with the purpose of operating in unstructured environments

motivated studying biped robots. In the design of these robots, the central issue

is stability where static equilibrium is not achieved at each instant of time due to

gravity and the free moving feet. Dynamic stability problems are inherent to these

type of systems such that they have unpowered interaction with the world. In order

to get an accurate understanding of dynamic stability with no statically stable mo-

tions, it is instructive to explore the behavior of underactuated mechanical systems.

The existence of uncontrollable degrees of freedom in underactuated mechanical sys-

tems is a characteristic complexity in the case of stability. Considering these, an

overview in literature on control of simple underactuated systems, biped robots and

their control methodologies are given.

1.2 Underactuated Systems

Underactuated systems possess less degrees of actuation than their independent

configuration variables. These systems may exhibit complex internal dynamics and

lack feedback linearizability; therefore, their control has been a challenging subject

1



in robotics.

Inverted-pendulum type underactuated systems have been used as the most com-

mon testbeds to study underactuated control architectures. The problems studied

include swing-up of the pendulum from its downward position to upward equilib-

rium and then switching to a linear controller for balancing around this equilibrium

[57]. A similar example uses energy based methods for swing-up control [52] of the

Acrobot [51], a robot represents the example of a gymnast on a high bar. Other

studies on underactuated systems using energy based methods include balancing of

the Pendubot [55], the cart-pole system [10], and the rotating inverted pendulum

[1]. Hauser and Murray further studied the Acrobot in [24] where they applied

approximate linearization to move the Acrobot through the set of inverted equilib-

rium positions. Another related approach proposed in [5] is the design of balancing

controller with the use of spline approximations. Some other Acrobot related works

are considered in [2], [52]. These approaches include partial feedback linearization

as an initial step for control of underactuated systems.

The studies on underactuated mechanical systems also include the control of

the brachiating robots that are proposed in [34], [48]. Saito et al. used feedforward

methods to control a two-link robot brachiating on a ladder while in [34] the dynamic

task is encoded by a lower dimensional system with feedback methods.

Passivity-based methods are other popular approaches that are applied to the

swing-up control problem of underactuated systems, such as inverted pendulums

[52]. The drawback of this approach can be named as the lack of experimental

applications. Some other methods are adaptive control [22] and sliding mode control

techniques [58] which have been also applied to underactuated systems with limited

applications.

Underactuated mechanisms are interpreted by some researchers as systems with

second order nonholonomic constraints. The stability of these systems are achieved

with continuously differentiable state feedbacks [6] and [47].

In addition to the traditional methods, hybrid and switching-based control meth-

ods have been adopted recently in control of underactuated mechanical systems and

bipedal locomotion of walking robots [53],[54].
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1.3 Biped Locomotion

There have been numerous studies in literature over legged locomotion. Legged

robots range from multi-legged robots to one-legged hoppers. In the design of these

systems, stability is the main concern. For example, if the robot loses its stability, it

can fall and damage its environment. So understanding and control of stability has

crucial importance. The notion of stability can be classified into three categories:

static stability, quasi-static stability and dynamic stability. In static stability, the

objective is to keep the center of mass within the support area of its contact on

the ground. Robots with multi-legs can achieve static stability while lifting one

or more legs and still keep their static balance. In quasi-static stability, robots

can demonstrate static stability with limited dynamic behavior and their center of

pressure usually needs to stay in their support area. In dynamic stability, the robot’s

center of mass leaves the support area of its contact during its motion.

Since the objective of this study is to achieve dynamically balanced walking

in legged locomotion, further discussion covers analysis and literature overview on

biped robots.

A biped robot is an open kinematic chain which can have one or two contacts

with the ground. The robot consists of links which represent the legs and torso

connected at a joint called the hip. The leg that is contacting with the ground is

named as the stance leg and the other link is called the swing leg. The foot of the

robot can be classified as a point or a flat foot.

Bipeds generally have high degrees of freedom and they tend to have big flat feet

and full actuation. These robots demonstrate static or quasi-static walking. But,

with the design of unactuated ankles meaning point footed designs, true dynamic

motions can be studied.

In literature, bipeds are generally categorized according to their types of actu-

ation such as unactuated and actuated bipeds. Unactuated bipeds are the passive

ones where the gravity powers walking whereas actuated bipeds require external

power source.

McGeer researched on passive walking [37] and he showed that bipeds could move

dynamically without the need of actuation, only using the potential energy that was

gained while walking down a slope. Some examples of passive-dynamic machines are
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included in references [19], [16], [17], [11]. In passive walking, the energy loss with

the heel-strike collision is compensated by the work done by the gravity. The lost

energy of passive-dynamic machines can also be provided with minimum actuation

where actuators does enough to provide the lost energy. For example, stable and

periodic dynamic walking on level ground can be achieved with minimum actuation

as proposed in [43], [12], [56].

Besides passive walking, recently there is considerable effort in the development

of actuated biped robots. With actuated bipeds relatively more versatile and human

like machines are intended to develop. Some of the research on fully actuated bipeds

can be named as Waseda University robot [31], MIT Leg Lab robot named Spring

Flamingo [42], the Technical University of Munich biped Johnie [18], the BIP at

INRIA [14] and Sabancı University biped SURALP [13]. These robots are shown to

achieve effective and robust locomotion. However, the fully actuated bipeds tend to

rely on a characteristic bent knee stance support with a flat foot restriction, making

the walking control different than the one generally employed by humans.

For obtaining an efficient and more natural looking bipedal gait, in literature

researchers have investigated dynamic walking. In dynamic bipedal walking, the

ground contacts are considered inherently unilateral and underactuated. To address

this behavior, underactuated robots are studied in legged locomotion. In literature,

some of the research on underactuated bipeds are [15], [8], [40], [36], [7].

The mostly adopted control strategy in the actuated bipeds is based on the zero

moment point (ZMP) principle [60] where ZMP is kept within the safe area of the

support polygon. With ZMP, the dynamic motions such as dynamic walking or

running can not be achieved. For example Honda’s sophisticated humanoid robot

[25] demonstrates of this approach, however the quasi-static walking is not human

like and is inefficient. Actuated dynamic walking approaches that do not use the

ZMP principle are also proposed in literature. Pratt et al. introduced a virtual

model control strategy where the aim is to exploit the natural dynamics of the

biped [42]. One other approach is on the concept of hybrid zero dynamics [61].

In the literature, control algorithms of most of these robots are through trajec-

tory tracking, where the trajectories are generated off-line or on-line with a high level

motion planner. The most commonly used control algorithms have time-dependent
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trajectories and make use of PID control [39], computed torque method and sliding

mode control [38], [41], [46] to track the trajectories.

In addition to tracking time-dependent trajectories, bipeds can also be controlled

with time-independent tracking algorithms. In [40], dynamic walking is achieved

with a single actuator and the trajectory is slaved to the robot’s state. In [21], the

walking is controlled by imposing constraints on the biped which are parameterized

by the robot’s state. The RABBIT is controlled through trajectory tracking by

time-scaling the pre-computed trajectories [7]. Some other control methods include

controlling energy and the angular momentum [26], [27], [19], [33], [44], [45], [49].

A classical technique to analyze the dynamics of these robots is done through

Poincaré maps. Poincaré sections are used to study the stability of walking. This

approach has been applied in literature to passive walkers [19] and bipeds [26], [27].

1.4 Objectives and Organization

This section presents the main objectives and organization of this thesis.

The main focus of this thesis is on applications of feedback control for stable

periodic motions in the class of underactuated systems. Raibert’s biomechanically

inspired design [45] has the initial influence on this thesis since his dynamically

balancing one-leg hopper had been very successful and become pioneering in the

locomotion literature where the design of dynamically balancing walkers are still

considered an open problem.

To achieve a human like walking in robot locomotion, dynamic aspects of loco-

motion need to be considered. This challenge comes with the nature of the foot

contact with the ground. In traditional robot walking, biped has flat foot which re-

stricts tipping over and constraints the biped to move statically or quasi-statically as

in ZMP method. ZMP method enforces the flat foot to stay on the ground without

tipping over. On the other hand, in natural human walking, the foot can tip over on

one of its edges and it can only exert compressive forces to the ground and thus this

makes the system underactuated. Therefore, the underactuated mechanical systems

will be investigated to achieve dynamic balancing tasks in biped locomotion.

In this thesis, two simple planar underactuated systems are presented for study-

ing the dynamic aspects of biped locomotion. The dynamically stable motions
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include the balancing and walking tasks. A two-link robot, that consists of two

revolute rigid links without actuation between the ground and the robot, is treated

for studying the balancing task in biped locomotion. The balancing task includes

stabilizing the system at its static equilibrium condition where the system is at rest

at its intended position such that sum of all forces and torques applied to it is equal

to zero. And one other balancing task is to stabilize the system around its equilib-

rium such that the system tracks periodic stable orbits achieving dynamic motions

where the center of mass of the robot lies outside the support base during its motion.

Next, a three-link robot is presented for studying the walking task. The three-link

robot consists of three revolute rigid links without any actuation at the joint con-

necting the robot to the ground. The walking task is different than the balancing

task which has the condition of support change with impacts. During walking, the

dynamically stable motions are desired since the system has point contact condition

with the ground and underactuation.

The control approach for the balancing and walking tasks includes trajectory

tracking by developing feedback controllers. For the first balancing task, the system

is enforced to converge to the desired trajectory using partial feedback linearization

and then a linear controller is applied to stabilize it around its equilibrium. For

the second balancing task and the walking task, output functions are defined and

setting these to zero constraints the systems to move in the desired trajectories. The

outputs are first expressed in an intuitive manner and then are parameterized using

polynomials. The parametrization of the trajectories with polynomials enables the

trajectories to be systematically designed using parameter optimization techniques.

Finally, the behaviors of the systems are studied through their stability analysis.

The thesis is organized as follows:

In Chapter 2, the dynamic models treated by this thesis are presented. Several

approaches covering set-point and trajectory tracking control of underactuated sys-

tems are covered throughout Chapters 3-5. In particular, Chapter 3 introduces an

example of an underactuated mechanical system named Acrobot which will be used

to present the key points developed in the later chapters. Set-point control method

is applied to stabilize the Acrobot around its unstable equilibrium point by using a

linearization-based technique. Chapter 4 uses the results of Chapter 3 to tackle the
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problem of underactuation in control. A trajectory tracking controller is provided in

order to track time-invariant periodic orbits on the Acrobot example. The control

design procedure covers achieving a continuous trajectory by using partial feedback

linearization method that is applied on the model to drive a set of outputs to zero

and analyzing the system’s resulting dynamics. The outputs are shaped to result

in the desired internal dynamics. In Chapter 5, a three-link robot is presented to

study the walking task. In this case, the time-invariant trajectory is completed with

an impact map to form a walking motion. The control inputs are used here to set

the outputs to zero. The outputs are designed together with the impact map to

reach a periodic stable orbit. Additional to an intuitive approach for output design,

a dynamic optimization approach is used to parameterize the outputs. The stabil-

ity of the trajectory is studied by using Poincaré mapping. Chapter 6 concludes

the thesis and discusses future work. The derivations of the equations of motion of

Acrobot are given in Appendix A. Finally, Appendix B presents the equations for

conservation of angular momentum at impact.

7



Chapter 2

Modeling

In this chapter, the modeling of the underactuated robots that are utilized in

this work are introduced. These underactuated systems possess one less degree of

actuation, with no actuation at the point connecting the stance leg to the ground.

Such robots consist of open kinematic chains and have motion only in the sagittal

plane.

The dynamics of motion is partitioned into two phases, swing phase and impact

phase. Swing phase describes the dynamics during single point contact with the

ground, while impact phase describes the collision of the kinematic chain with the

impact surface. To reach a walking model, the swing phase model is derived and

combined with the impact model to achieve the dynamic model of the successive

phases of motion. In the case of switching between these phases, the transition from

one phase to the next is assumed to take place in an infinitesimal amount of time

[50].

The outline of this chapter is as follows. First, the swing phase model is presented

with the standard models for underactuated systems in Section 2.1. Then, the

impact model is explained in Section 2.2. In Section 2.3, the complete equations

of motion of the system with impacts are derived. Sections 2.4 and 2.5 cover two

examples of underactuated systems.

2.1 Swing phase model

The swing phase model consists of an open kinematic chain with single point

contact with the ground. The equations of motion are derived by applying the

Kane’s method. The state space of the model is n dimensional and the state vector
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is q = (q1, . . . , qn). The equations of motion for an underactuated mechanical system

are as follows

M(q)q̈ + C(q, q̇)q̇ + G(q) = Bu, (2.1)

where M is the mass matrix, C is the Coriolis matrix, G is the gravity matrix, B is

the linear mapping from torques to configurations and u is the control input. The

second order system is written in state space form as

ẋ =


 q̇

M−1(q)[−C(q, q̇)q̇ −G(q) + Bu]


 (2.2)

where x = (q′, q̇′)′.

2.2 Impact model

The impact occurs when the swing leg touches the ground. After the collision

with the ground, the legs swap their coordinates and velocities under the rigid

contact model. The old stance leg becomes the new swing leg, while the old swing leg

becomes the new stance leg. In Appendix B, the conservation of angular momentum

equations are derived. The result of the impact is

x+ = ∆x−, (2.3)

where x+ and x− represent the state values just after and just before impact and

the ∆ is the function that describes the impact event.

2.3 Switching model

The swing phase model is combined with the impact model to introduce a non-

linear system with impulse effects [28], [21]

ẋ = f(x) + g(x)u x− /∈ S (2.4)

x+ = ∆x− x− ∈ S (2.5)

where the switching condition is set as

S = {(q, .
q) ∈ X | h = 0, L > 0}. (2.6)
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The swing phase model undergoes impact when the states reach the set S. X cor-

responds to the physically reasonable configurations of the robot. At the switching

surface, the value of h, defining the swing leg end-point height from ground, is equal

to zero and the value of L, corresponding to the swing leg end-point distance from

the contact-point, needs to be positive. The symbol te defines the time of the im-

pact. The solution of the hybrid model exists if there is a finite time te > 0 where

δ ∈ X is the solution of the swing phase dynamics.

To produce one complete motion, the robot starts from an impact phase (double

support) and ends in an impact phase. The legs swap their configurations and

only one impact with the ground occurs through this cycle with the non-physical

assumption that the swing foot can pass through ground when the stance leg is near

vertical.

2.4 Case Study 1: The two-link planar robot, Acrobot

The model used here is a representative of the Acrobot [5], [51]. A rigid two-

link planar robot with revolute joints and a single actuator at the hip is shown in

Figure 2.1. The connections between the links are assumed to be implemented using

frictionless hinges. The motion of the model is governed by the classical laws of rigid

body dynamics. The parameter values used in simulations are given in Table 2.1.

Parameter Label Value Unit

point mass M1 7 kg

point mass M2 7 kg

leg length l1 0.5 m

leg length l2 0.75 m

center of mass length lc1 0.5 m

center of mass length lc2 0.75 m

gravity g 9.8 m
s2

Table 2.1: Design parameters for the two-link planar robot

Because of the point mass approximation of the links, the inertia of the links are

taken as I1 = 0, I2 = 0 and lc1 = l1, lc2 = l2.
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l1

lc1

l2

lc2

q1

q2

M1

M2

Figure 2.1: The two-link planar robot: parameters and configuration variables.

2.4.1 Configuration Variables

The definition of the parameters, configuration variables and masses of the two-

link model are indicated in Figure 2.1. The stance leg angle q1 is the angle of

the stance leg with respect to the ground and the swing leg angle q2 is the angle

of the swing leg with respect to the stance leg. The positive angles are taken in

counterclockwise direction. The swing phase of the model is holonomic.

The configuration of the system between the collisions can be defined by two in-

dependent generalized coordinates. The state space of the model is four dimensional

and the state vector is taken as

x = (q1, q2, q̇1, q̇2)
T . (2.7)

The orientation of the model is defined by the Newtonain frame N, stance leg frame

A and the swing leg frame B as in Figure 2.2.
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N1

N2

A1

A2

B1

B2

A

B

N

q1

q2

Figure 2.2: Notations for the two-link planar robot indicating the reference frames,

bodies points, and basis vectors.

2.4.2 Equations of motion

The second order differential equations of motion during swing phase are given

below

M(q)q̈ + C(q, q̇)q̇ + G(q) = Bu, (2.8)

where q = (q1, q2). The derivation of the equations are presented in Appendix A.

The matrices M, C, G and B are calculated as

M =


 M1l

2
c1 + I1 + I2 + M2(l

2
1 + 2cos(q2)l1lc2 + l2c2) I2 + M2lc2(lc2 + l1cos(q2))

I2 + M2lc2(lc2 + l1cos(q2)) M2l
2
c2 + I2


 ,

(2.9)

C =


 0 −M2l1lc2sin(q2)q̇2 − 2M2q̇1l1lc2sin(q2)

M2l1lc2sin(q2)q̇1 0


 , (2.10)

G =


 gM2(lc2cos(q1 + q2) + l1cos(q1)) + gM1lc1cos(q1)

gM2lc2cos(q1 + q2)


 , (2.11)
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B =


 0

1


 . (2.12)

2.5 Case Study 2: The three-link planar robot

The robot used in here corresponds to the model presented in [21]. This is a rigid

three-link planar robot with revolute joints and two actuators at the hip as shown in

Figure 2.3. The parameter values are given in Table 2.2. Because of the point mass

Parameter Label Value Unit

leg mass M1 5 kg

leg mass M2 5 kg

hip mass Mh 15 kg

torso mass M3 10 kg

leg length l1 1 m

leg length l2 1 m

torso length l3 0.5 m

center of mass length lc1 0.5 m

center of mass length lc2 0.5 m

center of mass length lc3 0.5 m

gravity g 9.8 m
s2

Table 2.2: Design parameters for the three-link planar robot

approximation of the links, the inertia of the links are taken as I1 = 0, I2 = 0, I3 = 0.

The connections between the links are assumed to be implemented by frictionless

hinges. The system of links moves on a rigid surface. The stance leg is assumed not

to slip due to enough friction with the ground. The motion of the model is governed

by the classical laws of rigid body dynamics.

2.5.1 Configuration Variables

The definition of the parameters, configuration variables and masses of the three-

link model are indicated in Figure 2.3. q1 parameterizes the stance leg, q2 the swing

leg, and q3 the torso. The positive angles are taken in counterclockwise direction.
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l1

lc1

lc2

l2

M1 M2

M3

lc3

l3

q1 
q2 

q3 

Mh

Figure 2.3: The three-link planar robot: parameters and configuration variables.

The swing phase of the model is holonomic. The position between the collisions

is defined by three generalized coordinates. The state space of the model is six

dimensional and the state vector is taken as

x = (q1, q2, q3, q̇1, q̇2, q̇3)
T . (2.13)

The orientation of model is defined by the Newtonian frame N, stance leg frame A,

the swing leg frame B and the torso frame C as in Figure 2.4.

2.5.2 Equations of motion

The second order differential equations of motion during swing phase is given

below

M(q)q̈ + C(q, q̇)q̇ + G(q) = Bu, (2.14)

where q = (q1, q2, q3). The derivation of the equations is detailed in Appendix A.

The matrices M, C, G and B are calculated as
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N1

N2

A1

A2

B1

B2

A

B

C2

C1
C

N

q1
q2

q3

Figure 2.4: Notations for the three-link planar robot indicating the reference frames,

bodies, points and basis vectors.

M =




I1 + M2l
2
1 + M3l

2
1 + M1l

2
c1 + Mhl

2
1 −M2l1lc2cos(q1 − q2) M3l1lc3cos(q1 − q3)

−M2l1lc2cos(q1 − q2) M2l
2
c2 + I2 0

M3l1lc3cos(q1 − q3) 0 M3l
2
c3 + I3


 ,

(2.15)

C =




0 −l1M2q̇2lc2sin(q1 − q2) −l1M3q̇3lc3sin(q1 − q3)

M2l1lc2sin(q1 − q2)q̇1 0 0

−M3l1lc3sin(q1 − q3)q̇1 0 0


 ,

(2.16)

G =




−M2gl1sin(q1)−M3gl1sin(q1)−M1glc1sin(q1)−Mhgl1sin(q1)

M2glc2sin(q2)

−M3glc3sin(q3)


 , (2.17)

B =




−1 0

0 −1

1 1


 . (2.18)
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2.5.3 Impact

An impact occurs when the geometric impact conditions are satisfied such that

q1 = qd
1 (2.19)

h = l1cos(q1)− l2cos(q2) = 0 (2.20)

where qd
1 is the desired stance angle and h is the distance of the swing leg end from

ground. When the swing leg collides with the ground stance leg switches to the

swing leg and the legs reset at each impact



q+
1

q+
2

q+
3


 = s




q−1

q−2

q−3


 , where s =




0 1 0

1 0 0

0 0 1


 . (2.21)

According to the notation, the ’+’ superscript means ’after impact’ and ’-’ super-

script means ’before impact’.

The swing foot receives an impulse when impact occurs and this impulse is

also transmitted to the swing leg at the hip joint. The swing leg does not slip or

rebound during the impact. During the impact, the other forces such as gravity

are considered to be smaller with respect to the impulsive forces and are neglected.

Additionally, no impulsive ground contact torques act and the actuators can not

generate impulses. These assumptions imply that the total angular momentum is

conserved [28] for the entire system about the swing leg contact point. Angular

momentum is also conserved for the new swing leg and torso about the hip joint.

Referring to Figure B.1, the conservation equations for the entire system is

H−
E = H+

E (2.22)

and for the new swing leg and torso is

H−
H = H+

H . (2.23)

The conservation equations are explained in detail in Appendix B and are given as

Q+




q̇+
1

q̇+
2

q̇+
3


 = Q−




q̇−1

q̇−2

q̇−3


 (2.24)

where Q+ and Q− are presented in Appendix B.
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Chapter 3

Set Point Control

The adopted mechanical systems demonstrate complex internal dynamics and

inherent underactuation which restricts full-state linearization. Some commonly

used methods for nonlinear control design include backstepping [29], sliding mode

control [32], feed forwarding [35], and high-gain methods [35]. However, these meth-

ods usually are not directly applicable to the underactuated systems due to the lack

of any method, that transforms the underactuated systems into cascade nonlinear

forms with triangular and nontriangular structures.

In [51], [52], Spong showed that partial feedback linearization can be used for

controlling either configuration variable of the underactuated mechanical system Ac-

robot. By a suitable nonlinear feedback, partially linear response can be achieved on

this system. Linearization of the unactuated configuration dynamic can be achieved

with the method called noncollocated partial feedback linearization [51].

In this chapter, the commonly used underactuated system example, Acrobot is

studied to illustrate the underactuation problem. Acrobot is a planar robot with

revolute joints and one actuator at the second joint which makes the system un-

deractuated because there is less actuation than its configuration variables. Thus,

Acrobot dynamics are not feedback linearizable with static state feedback and non-

linear coordinate transformation. In order to control Acrobot dynamics, set-point

control method is designed. The control task is to stabilize the Acrobot at the un-

stable upright position from an initial condition. The task covers swinging up the

two-link robot from an initial position and bringing the links close to their inverted

equilibrium condition. Then, the controller switches to a linear controller to bal-

ance the system around this position where the robot can be locally asymptotically
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stabilized. The defined task will be achieved by first partially linearizing the system

with feedback and then the system will switch to a linear controller near upright

equilibrium as the system gets into the basin of attraction of the linear controller.

3.1 Partial feedback linearization of a two-link planar robot

In this chapter, the two-link robot with two degrees of freedom as a simple

example of an underactuated system is studied. The dynamic model of the robot is

explained in Section 2.4. The equations of motion of the system can be rewritten

as follows

M11q̈1 + M12q̈2 + C1 + G1 = 0 (3.1)

M21q̈1 + M22q̈2 + C2 + G2 = u (3.2)

where

C1 = C11q̇1 + C12q̇2 (3.3)

C2 = C21q̇1 + C22q̇2. (3.4)

In order to apply partial feedback linearization, q̈2 is solved for from (3.1) and

replaced in equation (3.2) so that the second equation will be feedback linearizable

for q̈1

q̈2 = − 1

M12

(M11q̈1 + C11q̇1 + C12q̇2 + G1) (3.5)

assuming that M12 is nonzero for all values of q2. Substituting q̈2 into (3.2) the

following is obtained

M̄ q̈1 + C̄ + Ḡ = u (3.6)

where

M̄ = M21 − M22M11

M12

(3.7)

C̄ = C2 − M22C1

M12

(3.8)

Ḡ = G2 − M22G1

M12

. (3.9)

Therefore, the feedback linearizing controller can be designed as follows

u = M̄ν + C̄ + Ḡ, (3.10)
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resulting in linear system dynamics of

q̈1 = ν. (3.11)

A linear controller is designed as

ν = q̈d
1 −Kd(q̇1 − q̇d

1)−Kp(q1 − qd
1), (3.12)

where ν is the input term with qd
1 as the desired angle, Kp and Kd are the positive

gains and q̈d
1 and q̇d

1 are set to zero for set-point tracking.

With partial feedback linearization, the first link angle is decoupled from the

second link angle and the desired input is obtained while the second link oscillates

around the equilibrium point. The dynamics of the second link is crucial in order to

realize the oscillations. By substituting the reference variables q1 = π
2
, q̇1 = 0, and

q̈ = 0 into the equation (3.1), the following equation is obtained

q̈2 = −(glc2M2 cos(
π

2
+ q2)− l1lc2M2q̇

2
2 sin(q2))/(I2 + lc2M2(lc2 + l1 cos(q2))) (3.13)

which has its equilibrium points at (0, 0), (π, 0). The oscillations take place around

these points depending on the tuning of the gains.

3.2 Linear control law

After achieving the steady state behavior for the first link and the second link

gets close to the desired upright equilibrium point, the system switches from the

nonlinear controller to the linear controller in order to stabilize the second link

around the unstable inverted equilibrium point. The two-link system is linearized

around the upright equilibrium point x = 0 to obtain a controllable linear system

ẋ = Ax + Bu (3.14)

with the state vector x = (q1 − qd
1 , q2, q̇1, q̇2) and control input u. The A and B

matrices are

A =




0 0 1 0

0 0 0 1

19.6000 −19.6000 0 0

−19.6000 45.7333 0 0




, (3.15)
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B =




0

0

−0.9524

1.8413




. (3.16)

For this problem, the reference angle is set as qd
1 = π

2
and the state feedback is

assigned as u = Kx.

The linear approximation of the system depends on the pair (A,B) to be con-

trollable. In that case, the linear approximation is asymptotically stabilizable and

A+BK has all eigenvalues with negative real part where the feedback asymptotically

stabilizes the nonlinear system. The poles of the linearized open-loop system are at

−7.4982,−3.0183, 7.4982, 3.0183, showing that the equilibrium position is unstable.

A linear quadratic regulator (LQR), that is an optimal state-feedback controller

that minimizes the quadratic cost criterion,

J =

∫ ∞

0

(xT Qx + τT Rτ)dt (3.17)

is designed to move the poles to the stable region. The matrices Q and R are used

to weight the states and the input in the cost function. The LQR is designed with

the weighting matrices

Q =




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1




(3.18)

R = [1]. (3.19)

The corresponding state-feedback, K, values are

K = [−1360.7− 438.9− 583.2− 215.5]. (3.20)

The poles of the linearized system are placed at−8.5979,−6.5436,−3.0322,−3.0045.

With the designed state feedback, the system can be stabilized at the inverted

equilibrium point.

3.3 Simulation results

The two-link robot model is simulated in Matlab. The nonlinear equations of

motion are integrated with the ode45 function, a 4th − 5th order automatic step-
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Figure 3.1: The simulation results of the two-link robot for the joint angles q1 and

q2 versus time. q1 sets to the desired position qd
1 = π/2 and q2 oscillates around the

equilibrium point.

sizing routine. An integration tolerance of 10−5 is used.

The response of the partial feedback controller can be observed from the Fig-

ure 3.1 where the first link converges to the desired configuration and the second

link oscillates around its equilibrium point (π, 0). The second link’s trajectory is

plotted as module 2π which resulted in jumps in the figure.

The inverted equilibrium state space for the two-link robot is x = (π
2
, 0, 0, 0).

The controller is switched to the balancing controller when the pendulum is brought

near the inverted equilibrium point such that q2 < π
6
. Figures 3.2 and 3.3 show the

simulation results of swinging up and balancing with partial feedback linearization

and then with state feedback around the equilibrium. Tuning of the LQR gains

is crucial for obtaining the desired motion as the linear approximation has a small

basin of attraction. The positive gains of the nonlinear feedback controller are tuned

as Kp = 16 and Kd = 8. The simulation results demonstrate a set-point control

method for the underactuated system where the angular coordinates converge to

the desired positions and the angular velocities become zero.
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Figure 3.2: The simulation results of the two-link robot for the joint angles q1 and

q2 versus time. q1 sets to the desired position qd
1 = π/2 and q2 converges to zero.
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Figure 3.3: The simulation results of the two-link robot for the joint velocities q̇1

and q̇2. Both q̇1 and q̇2 converge to zero.
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Chapter 4

Trajectory Tracking Control

In this chapter, the trajectory tracking control method is investigated to realize

dynamic motions in underactuated systems with a control design procedure for

achieving a continuous trajectory via assigning a set of outputs to zero. When these

outputs are identically zero, the resulting dynamics of the system are called the

zero dynamics. The analysis of zero dynamics is crucial to the understanding of the

behavior of the complete system.

In Chapter 3, a set-point controller is obtained by switching between the swing

up and balancing controllers. In the set-point control method, the task is the asymp-

totic convergence to an equilibrium point which has its drawback on demonstrating

poor performance in terms of time (slow) and it lacks tracking periodic orbits to

reach dynamically balanced motions. This initiated designing a controller that mo-

tivates tracking closed-loop motions by coordinating the relation among the config-

uration variables.

In the trajectory tracking controller, a feedback is designed to track time-invariant

trajectories only depending on the system states. A set of outputs are defined and

imposed on the system by the feedback controller where the control input partially

linearizes the system. The resulting dynamics of the system are called the zero

dynamics which can be shaped according to the choice of the outputs. Imposing

the outputs on the system is restricting the system to move in the determined path

such that the system is in a sense virtually constrained. The shaped zero dynamics

is used to observe the stability of the complete system. The trajectory tracking

controller is covered by considering the two-link planar robot, Acrobot.
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4.1 Zero dynamics

In input-output feedback linearization method, a set of outputs equal in number

with the inputs are defined and the feedback controller asymptotically drives the

outputs to zero. These outputs can consist of holonomic constraints which are

parameterized by the system states. Imposing the set of outputs encodes the robot’s

task such that nulling of these is equivalent to achieving the desired task. When

the outputs are identically zero, the internal dynamics of the system is called the

zero dynamics [29]. Because in underactuated systems the dimension of the zero

dynamics is less than the dimension of the model, the robot task is implicitly encoded

into a lower dimensional system. The notation is taken from [29].

Consider a nonlinear system

ẋ = f(x) + g(x)u (4.1)

y = h(x) (4.2)

with n degrees of freedom and r relative degree which is the number of times the

output is differentiated to reach the input explicitly. With the introduction of

local coordinate transformation, the system is transformed into a cascade nonlinear

system. Then, a proper state feedback is designed to linearize this system. If for

example r < n for the given output, rather then exact linearization, the system is

partially linearized. By defining the new coordinates the nonlinear system becomes

y = z1 (4.3)

ż1 = z2

ż2 = z3

· · ·
żr−1 = zr

żr = b(z) + a(z)u (4.4)

żr+1 = q1(z) + p1(z)u

· · ·
żn = qn−r(z) + pn−r(z)u.

With a state feedback, the system is turned into a partially linear model where the
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nonlinear part does not affect the output. Define the new state vectors

ξ =




z1

· · ·
zr


 , (4.5)

η =




zr+1

· · ·
zn


 . (4.6)

The output is forced to be zero which implies ξ = 0, and

0 = b(ξ, η) + a(ξ, η)u (4.7)

with the feedback

u = − b(ξ, η)

a(ξ, η)
. (4.8)

The zero dynamics of the system is described as

η̇ = q(0, η)− p(0, η)
b(0, η)

a(0, η)
. (4.9)

The dynamics turn into the partially linear system

ξ̇ = Aξ (4.10)

η̇ = q(ξ, η) + p(ξ, η)u (4.11)

y = Cξ, (4.12)

where

A =




0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · ·
0 0 0 · · · 1

0 0 0 0 0




C =
[

1 0 0 · · · 0
]
. (4.13)

4.2 Swing phase zero dynamics

In order to construct feedback controllers for the presented robots, swing phase

zero dynamics are defined in the original coordinates. The output y = h(x) depends
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only on the configuration variables. But its derivative does not depend directly on

the inputs due to the second order nature of the robots.

Given the state vector is x = (q, q̇).

dy

dt
=

∂h

∂x
ẋ (4.14)

=
[

∂h
∂q

∂h
∂q̇

]





 q̇

M−1[−Cq̇ −G]


 +


 0

M−1B


 u



 (4.15)

=
[

∂h
∂q

0
]

 q̇

M−1[−Cq̇ −G]


 +

[
∂h
∂q

0
]

 0

M−1B


 u (4.16)

= Lfh(x) (4.17)

Lgh(x) = 0 so it is differentiated again.

d2y

dt2
=

[
∂
∂q

(∂h
∂q

q̇) ∂h
∂q

]





 q̇

M−1[−Cq̇ −G]


 +


 0

M−1B


 u



 (4.18)

=
[

∂
∂q

(∂h
∂q

q̇) ∂h
∂q

]

 q̇

M−1[−Cq̇ −G]


 +

∂h

∂q
M−1Bu (4.19)

= L2
fh(q) + LgLfh(q)u (4.20)

It is assumed then, that the matrix LgLfh(q) is invertible to have the existence and

uniqueness property of the zero dynamics [29]. It is also assumed that LgLfh(q) is

square and invertible for the given open set.

Then, the zero dynamics manifold is defined as

Z = {x ∈ Rn : h(x) = Lfh(x) = 0} (4.21)

and the feedback

u(x) = −(LgLfh(x))−1L2
fh(x) (4.22)

is applied to render Z invariant under the zero dynamics manifold.

4.3 Stabilization

In this section, a locally stabilizing feedback for the nonlinear model will be

defined. The nonlinear control law is also given in [29]. The zero dynamics are

locally asymptotically stabilized at equilibrium (ξ, η) = (0, 0).
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Setting the state feedback to

u =
1

a(z)
(−b(z) + ν), (4.23)

the new equations become

y = z1 (4.24)

ż1 = z2

ż2 = z3

· · ·
żr−1 = zr (4.25)

żr = ν

· · ·
η̇ = q(z) + p(z)u

selecting

ν = −k0z1 − k2z2 − · · · − kr−1zr (4.26)

with k0, . . . , kr−1 are positive real numbers. The closed loop system becomes

ξ̇ = Aξ (4.27)

η̇ = Q(ξ, η),

with

A =




0 1 0 · · · 0

0 0 1 · · · 0

· · · · · · ·
0 0 0 · · · 1

−k0 −k1 −k2 · · · −kr−1




. (4.28)

The matrix A has the characteristic polynomial

p(s) = k0 + k1s + · · ·+ kr−1s
r−1 + sr. (4.29)

When the equilibrium point η = 0 of the zero dynamics is locally asymptotically

stable and the roots of the polynomial have negative real part then the feedback law

locally asymptotically stabilizes the equilibrium (ξ, η) = (0, 0).
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4.4 Case study: Two-link planar robot

This section presents the feedback controller for the two-link planar robot. The

equations of motion of the two-link planar robot are stated in Section 2.4 and derived

in Appendix A.

Virtual Constraints

This part develops the virtual constraints for the two-link planar robot to have

periodic motions. For the desired trajectory q1 and q2 express the desired motion.

Instead of setting the system to an equilibrium point, it is enforced to oscillate

around the equilibrium point. The simplest way to achieve this is to relate these to

each other so that the motion is symmetric around the equilibrium point.

The virtual constraint that is enforced on the system is selected as

y = 2q1 + q2 − π. (4.30)

Following the procedure discussed above, the feedback is calculated and fed into the

robot to track the desired trajectory. Since the system has relative degree of two,

the output is differentiated twice. The input is derived as

u =

(
∂h(q)

∂q
M−1B

)−1 (
∂h(q)

∂q
M−1(Cq̇ + G)− ∂

∂q
(
∂h(q)

∂q
)q̇2

)
(4.31)

where the M, C, G and B matrices are given in (2.4.2) and

h = 2q1 + q2 − π (4.32)

∂h(q)

∂q
= 2q̇1 + q̇2 (4.33)

∂

∂q
(
∂h(q)

∂q
) = 0. (4.34)

Controller

The system is transformed into cascade form, to study the stabilizing dynamics

of the output. The local coordinate transformation is defined as

ξ1 = y

ξ2 = ẏ

η1 = q2

η2 = q̇2,
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where the closed loop equations become

ξ̇1 = ξ2 (4.35)

ξ̇2 = ν (4.36)

η̇1 = η2 (4.37)

η̇2 = P (ξ, η). (4.38)

Thus, the system is transformed into cascade form. With the feedback

u = (LgLfh(x))−1(ν − L2
fh(x)), (4.39)

the surface ξ = 0 becomes an invariant manifold for the system. Because of the

enforced output, q1 = π−q2

2
, q̇1 = −q̇2

2
and q̈1 = −q̈2

2
. Substituting these into P (ξ, η)

results in η̇2 = (2glc1M1 sin( q2

2
) + 2gl1M2 sin( q2

2
) + 2glc2M2 sin( q2

2
))/(M2l

2
1 + M1l

2
c1 −

M2l
2
c2 + I1 − I2).

The feedback is imposed on the system so that the system is locally asymptoti-

cally stabilized. The stabilizing control law is in the form

ν = −k0ξ1 − k1ξ2. (4.40)

The linear feedback gains are chosen as k0 = 10, k1 = 1. The stability of the zero

dynamics is analyzed by studying the behavior of zero dynamics η̇ = Q(ξ, η) around

the equilibrium point η = 0.

η̇ =
∂Q(ξ, η)

∂η
|(ξ,η)=(0,0) (4.41)

has its eigenvalues at (6.2610i,−6.2610i) which shows that the chosen equilibrium

point is a center. This shows that the system is locally asymptotically stabilized

with the given feedback.

Simulation results

The two-link model is simulated and the nonlinear equations of motion are in-

tegrated with a 4th − 5th order automatic step-sizing Runge-Kutta routine. An

integration tolerance of 10−5 is used. The initial conditions for the two-link robot
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are defined as

q1 =
π

3
(4.42)

q2 =
π

3
(4.43)

q̇1 = 0 (4.44)

q̇2 = 0. (4.45)

Figure 4.1: Stick figure of the robot shows the constrained motion. The robot starts

from the right configuration then moves to the left and oscillates around the upright

position.

The stick figure of the robot in Figure 4.1 illustrates the motion of the system.

The robot starts from the right configuration and moves to the left. The simulation

results of the Acrobot under the imposed control law are presented. In Figure 4.2

the configuration trajectories of the Acrobot are shown where the solid line presents

the first link’s trajectory and the dashed line is the second link’s trajectory. The

first link oscillates around q1 = π/2 and the second link oscillates around q2 = 0.

The Figure 4.3 shows the velocity trajectories of the Acrobot. It is observed that

the system oscillates around the desired velocity trajectories. Figure 4.4 shows the

configuration trajectories under disturbance. With the outer control loop, the target

manifold namely the desired orbit is rendered invariant and system converges to the

desired orbit.

Additional to the inverted oscillations, the robot can have trajectories around

other set of equilibrium points. The motion of the robot is limited to move around

the specific equilibrium conditions because of the chosen physical parameters of the

robot. As the parameters are varied new stable trajectories can be obtained and also

with the definition of new virtual constrains, different set of orbits can be achieved.
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This study has provided a starting point for deriving periodic orbits leading to

dynamic walking. The virtual constraints and the control law can be shaped to

obtain a walking motion.
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Figure 4.2: The simulation results of the two-link robot showing the joint angles q1

(straight line) and q2 (dashed line). The robot is on the desired trajectory which is

enforced by the output.
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Figure 4.3: The simulation results of the two-link robot showing the joint velocities

q̇1 (straight line) and q̇2 (dashed line).
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Figure 4.4: The simulation results of the two-link robot showing the joint angles

under disturbance q̇1 (straight line) and q̇2 (dashed line).
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Chapter 5

Trajectory Tracking Control with Impacts

Walking is a cyclic movement of the legs to translate the body from one place

to the next. While the body is balanced on the stance leg, the swing leg moves

from the back to forward. This cycle ends with the impact of the swing leg with

the ground. The impacts give rise to discrete events where the system becomes

piecewise holonomic and in the global case, non-conservative due to the energy loss

during inelastic foot collision.

Walking control is similar to the previous study of balancing. In this case, the

closed loop dynamics are completed with a discreet impact map. With the trajectory

tracking controller, the hybrid system is controlled to achieve the desired periodic

behavior of walking. The virtual constraints are designed leading to a stable periodic

orbit together with the impact map.

In this section, the two-link model is evolved to simulate human walking con-

sidering a additional leg and the impacts with the ground. The analysis of walking

mechanism start with the investigation of the multi-link kinematic chain with in-

termittent contacts. The presented walking robot has two legs and a torso. This

dynamic model has been previously studied in literature [59], [21], [62]. The model

presented in here is discussed in [21].

The analytical procedure of finding a walking gait can be summarized as follows:

1. The mechanical model is defined. Assumptions are made. Constraints and

kinematical descriptions are determined.

2. The equations of motion between the impacts are derived.

3. The impact condition is defined. Then, the reset rule for the states during
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impact is derived.

4. The controller is designed to regulate the system trajectory.

5. The dynamical equations are calculated numerically by integrating the equa-

tions of motion between impacts until the impact and the impact rule is ap-

plied.

6. Validity of the motion is examined to reapply the same procedure with updated

parameters and initial conditions until a valid walking motion is achieved.

7. The condition for cyclic motion is imposed and solved for a steady gait.

5.1 Stability analysis: Poincaré map

Walking is a combination of discrete and continuous events and in this sense it

is an example of a switching system. In order to study the stability of system’s

limit cycle, a Poincaré section is used. The Poincaré section S is defined at the

impact. The Poincaré map P takes the system from this section to the next section,

P : S → S, meaning that, the mapping P takes the state of the system from just

after an impact to the next state just after the impact. The mapping is presented

x+
n+1 = P (x+

n ), (5.1)

where n corresponds to the step, P to the return map, the ’+’ signifies just after

the impact. In order to have a steady motion, fixed points of the return map should

be determined. The periodic motion depends on the fixed points of the return map.

x∗ corresponds to a fixed point of P if

P (x∗) = x∗. (5.2)

Periodic motion appears on a Poincaré section with a fixed point.

Fixed point of P (x∗) corresponds to a zero of the function g(x) = P (x)−x. When

a solution is found, the exponential orbital stability of this solution is determined by

finding the analytic Jacobian J of the map P . The Jacobian J is derived numerically

by evaluating the return map a number of times in the neighborhood of the fixed

point. By studying the the evolution of small perturbations from the fixed point, the
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stability of the periodic motions can be examined. The linearization of the return

map around the fixed point is given as

x∗ + ∆P = P (x∗ + ∆x) (5.3)

∼= P (x∗) + DP (x∗)∆x (5.4)

where DP (x∗) , J . Hence, noting x∗ is a fixed point, set of linear equations is

obtained

∆xn+1 = J∆xn (5.5)

where ∆ denotes a small deviation from this fixed point. If all the eigenvalues of the

Jacobian are strictly inside the unit circle the asymptotic stability can be claimed

[23]. Control design exploiting Poincaré map analysis is used in [20], [9] where by

using a feedback control law the stability analysis is reduced to a lower dimensional

Poincaré map.

5.2 Case study: Three-link planar robot

The equations of motion of the robot are those of a three-link open kinematic

chain. Derivations are straightforward and explained in Section 2.5.2. The deriva-

tion of the impact condition is given in Section 2.5.3. The complete model of robot

in closed form is expressed in Section 2.5.

The procedure to achieve a stable periodic motion is explained as follows:

1. The initial state x+
n for the post-impact condition is set, where n corresponds

to the number of steps.

2. The virtual constraints and the corresponding feedback controller are defined.

3. The equations of motion are integrated until the impact condition is met

resulting in pre-impact state x−n .

4. Under the impact function post-impact state x+
n+1 is determined.

5. The new post-impact state is compared with the old post-impact with the

error x+
n − x+

n+1 = 0.

6. In case of error, new initial state is attained until a stable periodic motion is

reached.
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Virtual Constraints

The swing phase zero dynamics are applied on the three-link planar robot to

construct a walking motion. For each actuator a holonomic constraint is defined.

The motion of the robot is encoded into the dynamics by defining the outputs with

the feedback control which drives the outputs to zero. Driving the outputs to zero

enforces the joint angles converge to the desired path.

Commonly, during walking the body is maintained at a desired position, and

the swing leg moves from back to forward. Then, the swing leg contacts with the

ground. Considering this, the virtual constraints are designed with an intuitive

approach. So in the desired walking control, the legs move in symmetric manner

and the torso maintains a constant motion [21]. The constraints are taken in the

form of the output

y =


 y1

y2


 =


 q3 − qd

3

q2 + q1


 . (5.6)

where y1 regulates the position of the torso by setting to a reference angle and y2

implies symmetric walking.

Controller

The relative degree of the system with the outputs defined is two as discussed in

Section 4.2. After defining the system in partially linear form [29], a feedback con-

troller is imposed on the system. With the feedback controller the system becomes

stabilized. The input

u = (LgLfh(x))−1(ν − L2
fh(x)) (5.7)

is fed into the system which results in the double integrator,

ÿ = ν. (5.8)

With the addition of impacts, the system becomes hybrid and stability of zero

dynamics does not guarantee to achieve a periodic trajectory. After each impact

condition, the system needs to stay on the desired trajectory to obtain a stable and

periodic motion. So an outer feedback loop needs to be defined to realize periodic

motions under impacts. With the definition of outer feedback controllers, finite-
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time stabilizing controller [4] and high-gain control, tracking errors are imposed to

be zero in finite-time and the errors due to impacts are recovered.

The continuous feedback control law is designed such that finite-time stabilizes

the double integrator system

ẋ1 = x2 (5.9)

ẋ2 = ν (5.10)

is designed as

ν = ψa(x1, x2) (5.11)

= −sign(x2)|x2|α − sign(φα(x1, x2))|φα(x1, x2)|
α

2−α , (5.12)

for all 0 < α < 1 and φα(x1, x2) = x1 + 1
2−α

sign(x2)|x2|2−α. The feedback satisfies

that ν is continuous, (5.10) with (5.11) is globally finite-time stable and the time of

impact depends on the initial condition. The feedback can be applied to the double

integrator such that ν = ψ(y, ẏ).

Additionally, the high-gain controller is applied to render the zero dynamics

invariant under impact with ε that defines a time-scale argument such that for any

ε > 0 results in high speed disturbance rejection

ψ(y, ẏ) =




1
ε2

ψα(y1, εẏ1)

1
ε2

ψα(y2, εẏ2)


 . (5.13)

Simulation results

The three-link planar robot is simulated in Matlab and the nonlinear equations

of motion are integrated with the ode45 function, a 4th− 5th order automatic step-

sizing routine. An integration tolerance of 10−5 is used. The robot is started from

initial condition

q1 =
π

8
(5.14)

q2 = −π

8
(5.15)

q3 = −0.9774 (5.16)

q̇1 = −1.6 (5.17)

q̇2 = 1.6 (5.18)

q̇3 = −0.9 (5.19)
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and integrated until the switching condition

S := {(q, q̇) ∈ X | h = 0, L > 0} (5.20)

is met where

h = l1cos(q1)− l2cos(q2) and L = −l1sin(q1) + l2sin(q2) (5.21)

and the desired angle at the impact for the swing leg is qd
1 = π

8
. The feedback is

selected as

ψ(y, ẏ) =




1
ε2

ψα(y1, εẏ1)

1
ε2

ψα(y2, εẏ2)


 (5.22)

with ε = 0.1 and α = 0.9, as proposed in the literature [21]. The finite-time

convergence controller and high gain controller are combined to form the control

law to ensure that the periodic motions occur in finite time.

The fixed point of this motion is found at

x∗ = [ π
8
−π

8
−0.9774 −1.6 1.6 −0.9 ]. (5.23)

The computed eigenvalues of the linearized Poincaré map are

σ = [ 1 0.5492 −0.0027 0 0 0 ]. (5.24)

If the eigenvalues have magnitude less than 1, the orbit corresponding to the fixed

point is locally asymptotically stable. When one of the eigenvalues is exactly equal

to one and rest of them have magnitude strictly less than one, the periodic motion

is asymptotically stable. That is, under small disturbance the system can exponen-

tially converge to a nearby periodic motion.

The stick figure of the robot shown in Figure 5.1 illustrates the motion of the

system for one step. The model’s angular coordinates for the leg trajectories over 3

steps are illustrated in Figure 5.2. The solid line represents the first link’s trajectory

and the dashed line represents the second link’s trajectory. The straight lines in the

configuration coordinates correspond to the impact condition. The Figure 5.3 shows

the trajectory of the torso. In the Figure 5.4, the angular velocities of the legs for

3 steps are illustrated. The solid line corresponds to the stance leg’s trajectory

while the dashed line corresponds to the swing leg’s trajectory. The instantaneous

velocity changes happen while the positions remain the same. The phase portrait

38



Figure 5.1: Stick figure of the robot.

of the stance leg is shown in Figure 5.6. It is seen that the trajectory converges to

the orbit. If the robot starts slightly away from its limit cycle, it will converge to

the limit cycle within a few steps.
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Figure 5.2: The simulation result of the robot showing the leg angles q1 (straight

line) and q2 (dashed line) versus time for 3 steps. The straight lines corresponds to

the impacts.
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Figure 5.3: The simulation result of the robot showing the torso angle q3 versus

time for 3 steps.

0 0.2 0.4 0.6 0.8 1 1.2 1.4
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

t(sec)

(r
ad

/s
ec

)

Figure 5.4: The simulation result of the robot showing the joint velocities q̇1 (straight

line) and q̇2 (dashed line) versus time.

5.3 Trajectory tracking control with impacts: Bezier approximations

The section 5.2 provided the concept of zero dynamics including the impact

condition and the determination of the output functions. In this section, a closed
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Figure 5.5: The simulation result of the three-link robot for q̇3 versus time.
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Figure 5.6: Phase portrait of the motion, q1 versus q̇1. The limit cycle converges to

the periodic gait after 10 steps.

from representation of the zero dynamics will be defined and the shaping of the

zero dynamics are done by optimization. For achieving this, the output function

is parameterized with Bézier polynomials [3]. Rather then tracking an Ad hoc

output (5.6) as in the previous case, the outputs are shaped to obtain a stable

walking motion. A Bézier polynomial is a smooth curve having control points and
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by modifying the control points and the polynomial order, a desired trajectory can

be achieved. The output shaping with optimization that is adopted in here, is

suggested in [61].

5.3.1 Defining output functions with Bezier polynomials

A class of output functions in a closed-form representation is derived. The output

function is defined as

y = h(q) = h0(q)− hd(θ) (5.25)

where h0(q) corresponds to the independent controllable variables and hd(θ) corre-

sponds to their evolution as a function of θ(q), with

h0(q) = qa (5.26)

θ(q) = cq. (5.27)

Different from the case of trajectory tracking, θ(q) is used to replace time in pa-

rameterizing the motion of the robot. The walking motion is slaved to θ(q) which is

monotonic along its motion. The objective is to determine the hd(θ) that is compat-

ible with a periodic motion. Enforcing the virtual constraints to zero y = h(q) = 0,

results in qa = hd(θ). The virtual constraints are parameterized by Bezier polyno-

mials of order M ,

bi(s) =
M∑

k=0

p(i, k)
M !

k!(M − k)!
sk(1− s)M−k (5.28)

where p(i, k) are the M + 1 coefficients.

Bezier polynomial is a smooth curve and its first derivative is derived as

∂bi(s)

∂s
=

M−1∑

k=0

(p(i, k + 1)− p(i, k))
M !

k!(M − k − 1)!
sk(1− s)M−k−1. (5.29)

Its values at the initial and final points can be computed as

bi(0) = p(i, 0) and bi(1) = p(i,M), (5.30)

∂bi(0)

∂s
= M(p(i, 1)− p(i, 0)) (5.31)

∂bi(1)

∂s
= M(p(i,M)− p(i,M − 1)). (5.32)
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where s is the normalized variable s(q) = θ(q)−θ+

θ−+θ+ and θ− is the value of θ(q) just be-

fore impact, and θ+ is the value just after impact. Define hd(θ) = [b1(s)b2(s) · · · bN−1(s)]

where N is the degrees of freedom of the system.

To have a periodic motion, the first and last coefficients of the Bezier polynomials

need to satisfy the following equations

p(0) = hd(θ
+) = q+

a (5.33)

p(M) = hd(θ
−) = q−a . (5.34)

Taking the partial derivatives

∂hd(θ)

∂θ
=

∂bi(s)

∂s

∂s

∂θ
(5.35)

=

[
M−1∑

k=0

(p(i, k + 1)− p(i, k))
M !

k!(M − k − 1)!
sk(1− s)M−k−1

]
1

θ− − θ+

∂hd(θ
+)

∂θ
=

M

θ− − θ+
(p(1)− p(0)) (5.36)

∂hd(θ
−)

∂θ
=

M

θ− − θ+
(p(M)− p(M − 1)) (5.37)

p(1) = p(0) +
θ− − θ+

M

q̇+
a

θ̇+
(5.38)

p(M − 1) = p(M)− θ− − θ+

M

q̇−a
θ̇−

(5.39)

and the parameters p2, . . . , pM−2 are the free variables that need to be chosen to

obtain a periodic motion.

5.3.2 Parametrization of output functions by optimization

An automated method of searching for periodic gaits is developed to search

for the fixed points with an optimization technique. The optimization method is

adopted to design trajectories with a minimum cost. It is used to design the desired

motion with the selection of the initial conditions, output function parameters and

control gains. The goal is to minimize the cost function subject to the following

nonlinear inequality and equality constraints:

• The swing foot is above the ground

• θ should be monotonic (θ̇ is not zero)

• An impact occurs
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• There exists a fixed point (the solution is periodic)

• There exists a stable fixed point

• The solution is symmetric (with respect to the leg positions)

The cost function is

J =
1

L

∫

0

T 1

2
u∗

T

u∗dt (5.40)

where T is the period and L is the step length. This optimization problem is solved

using constrained nonlinear optimization tool fmincon.

The optimization problem is posed as explained above. In order to execute the

optimization cycle, an initial guess for the state is set for the before impact condition,

x−. Then, the impact model is applied to x− to compute x+. The output function

parameters are set and the robot with the controller is integrated until the impact

condition to obtain the new state configuration x−. Finally, the cost function J is

computed. This routine is simulated until a fixed point of the solution is obtained

by assigning new initial conditions as the constraints are satisfied with the minimum

cost function.

5.3.3 Case study: Three-link planar robot

In this section, simulation results of the three-link planar robot are presented.

The equations of motion of the robot are those of a three-link open kinematic chain.

Derivations are provided in Section 2.5.2. The derivation of the impact condition is

given in Section 2.5.3. The complete model of robot in closed form is expressed in

Section 2.5.

The procedure to achieve a stable periodic motion is explained as follows:

1. The initial state x−n for the pre-impact condition is set, where n corresponds

to the number of steps.

2. Under the impact function post-impact model state is determined.

3. With the definition of the Bézier polynomials, virtual constraints are set and

the corresponding feedback controller is designed.
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4. The equations of motion are integrated until the impact condition is met

resulting in new pre-impact state x−n+1 while satisfying the optimality criterion.

5. The new pre-impact state is compared with the old pre-impact state with the

error x−n − x−n+1 = 0.

6. If the error can not converge to zero, new initial state is attained while satis-

fying the constraints of the optimization.

Virtual Constraints

The swing phase zero dynamics are applied on the three-link robot to construct

a walking motion. The style of walking is discussed in section 5.3.2. The output is

defined as

y = qa − hd(θ), (5.41)

where θ = q1. The qa defines the actuated coordinates, q2 and q3. The outputs are

parameterized by Bezier polynomials of order 3.

Controller

A control law for exactly tracking the output functions is investigated. The

nonlinear model can be locally asymptotically stabilized with the definition of output

feedback as an inner feedback loop control. The effectiveness of the controller relies

on eliminating errors due to impacts during subsequent steps. High-gain approach

ensures convergence and is robust to noise and uncertainty. Thus, the high-gain

controller is used as proposed in [29]. The feedback is defined as

u(x) = −(LgLfh(x))−1(ν − L2
fh(x)), (5.42)

with

ν =
Kp

ε2
y +

Kd

ε
ẏ. (5.43)

Simulation results

The three-link model is simulated and the nonlinear equations of motion are

integrated with a 4th − 5th order automatic step-sizing routine. An integration

tolerance of 10−5 is used.
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The robot’s initial conditions are

q1 = −0.3927 (5.44)

q2 = 0.3927 (5.45)

q3 = −0.5236 (5.46)

q̇1 = −1.5044 (5.47)

q̇2 = 1.1069 (5.48)

q̇3 = −0.0618. (5.49)

The equations are integrated until the switching condition

S = {(q, q̇) ∈ X | h = 0, L > 0} (5.50)

is met where

h = l1cos(q1)− l2cos(q2) and L = −l1sin(q1) + l2sin(q2). (5.51)

The feedback is assigned as

ν =
Kp

ε2
y +

Kd

ε
ẏ. (5.52)

with ε = 0.1, Kp = −149.9846 and Kd = 0. The fixed point for the periodic and

symmetric walking cycle is obtained as

x∗ = [q∗, q̇∗] (5.53)

= [ −0.3927 0.3927 −0.5236 −1.5044 1.1069 −0.0618 ]. (5.54)

The computed eigenvalues of the linearized Poincaré map are

σ = [ 0 0.6916 + 0.4393i 0.6916− 0.4393i 0.8657 1.0000 0.9907 ]. (5.55)

One of the eigenvalues is exactly equal to one and others have magnitude strictly

less than one. The orbit corresponding to the fixed point is asymptotically stable.

The stick figure of the robot shown in Figure 5.7 illustrates the motion of the

system for one step. The model’s angular coordinates for the leg trajectories over

3 steps are shown in Figure 5.8. The straight lines in the configuration coordinates

correspond to the impact condition. Figure 5.9 presents the configuration trajectory

of the torso.
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Figure 5.7: Stick figure of the robot.

The feedback control method is applied on the three-link planar robot which

resulted in a locally asymptotically stable walking motion. Periodic motions around

a specific equilibrium point is formulated with the addition of impacts to ensure

that walking is achieved. Existence of these periodic motions and their stability are

provided with Poincaré mapping. The choice of the control method is crucial in the

design process. The stability of walking motion heavily relies on the effectiveness of

the controller to compensate for the effects of impact.

Although this model does not have a very human-like architecture, it highlights

the possibility of dynamic walking. This model can be extended to include knees

and feet to obtain a general walking model. Achieving dynamic walking without

falling under tolerable disturbances can be next considered to resemble human like

motion. The tracking errors in control can lead to stable trajectories whereas they

are different than the intended motion. The parameter space can be partitioned to

overcome this difficulty where the control action chooses the closest stable trajectory.
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Figure 5.8: The simulation result of the robot showing the leg angles q1 (straight

line) and q2 (dashed line) for 3 steps. The straight lines corresponds to the impacts.
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Figure 5.9: The simulation result of the robot showing the torso angle q3.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

Stability is one of the major concepts in biped locomotion since an unstable

biped has the risk of falling during its motion. The biped’s high center of mass

position needs to be maintained well enough over its relatively small support area.

Flat-footed robots can achieve this by keeping their center of mass within their

support foot area, however, in the case of single point contact with the ground, the

balance control of biped becomes complex. Static stability is no longer desirable as

the center of mass leaves the contact point during its motion. In order to address

this dynamic stability problem, a class of underactuated mechanical systems are

studied that are chosen simple enough to cast the dynamic stability problem in

robot balancing and walking.

A two-link robot and a three-link robot are controlled to track stable periodic

orbits for achieving the dynamic balancing and walking tasks. The two-link robot

with only one actuation at the hip and the links representing the lower and upper

bodies of a biped, is adopted to simulate the balancing control with torso rotation.

In the case of small disturbances, balancing the two-link robot with hip actuation is

presented. Walking is a type of balancing task with support changes and impacts.

The robot is assumed to have three links with two legs, a torso and point feet

without any actuation at the contact between the feet and the ground. The planar

biped is studied for casting the essential points in walking with the problem of

underactuation, impact condition and dynamic stability.

In this thesis, stable periodic orbits are tracked by developing feedback con-

trollers for the treated models. In particular, periodic trajectories of these sys-
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tems are shaped by designing output functions to encode the robot’s posture using

Bézier polynomial approximations and parameter optimization techniques. The out-

put functions that are named as virtual constraints are imposed on the system by

feedback. Feedback controllers with partial feedback linearization and high-gain

approaches are derived to satisfy the virtual constraints. Then, stability of the

closed-loop systems are analyzed. Finally, the control method implementations are

presented with simulations.

The summary of this thesis is as follows.

In Chapter 1, an introduction over the underactuated mechanical systems and

biped locomotion are provided.

In Chapter 2, the dynamics of the two-link and three-link planar robots are

defined using Kane’s method.

The control of the underactuated mechanical systems with partial feedback lin-

earization are introduced in Chapters 3-5. These examples are provided with de-

tailed control design and simulation results. In Chapter 3, the swing-up and bal-

ancing control problem of the two-link planar robot is studied with noncollocated

feedback linearization method. The robot is stabilized around its inverted condition.

In Chapter 4, with the introduction of an output function, a trajectory is ad-

dressed for the two-link planar robot. The behavior of the system is realized accord-

ing to the enforced output and zeroing the output results in zero dynamics. The

stability of the system is analyzed by studying the zero dynamics stability.

In Chapter 5, partial feedback linearization method is applied on the three-link

planar robot to achieve walking motion. This motion is encoded into the system by

defining a set of outputs and zeroing these outputs enforces the system to attain

the gait coordination. The defined trajectory is parameterized by the system states

rather than by time such that a time-independent motion is designed. Additional to

the Ad hoc output design, a new set of outputs are defined that are parameterized

with Bézier approximations. The output function is optimized by using the param-

eter optimization techniques. Stability of periodic motions of the switching model

is analyzed with the Poincaré mapping.

50



6.2 Future Work

The principles discussed in this thesis are applicable to a large class of biped robot

control problems. In this section, the potential future research topics as extensions

to this work are provided.

A new stable and periodic walking structure has been investigated and yet to

be developed. One step cycle is divided into phases where the robot can switch

between them in the case of balance loss. With the modification in gait shaping

stage, one step will be divided into phases to realize the switching property within

gaits. The robot can keep its balance under disturbances by switching to the closest

stable trajectory or converge to a closest point in its equilibrium manifold. This

idea is still under investigation.

The biped robot that is treated in this thesis does not have flat feet and respec-

tively there is no actuation at the ankles. Additional to dynamic walking, biped

robots may also need to demonstrate static stability in necessary conditions and

structured environments. Considering that, with the addition of feet, the robust-

ness of the biped will be improved.

The control problem of biped walking is studied for planar bipeds. For real life

robots, the results may be generalized to three-dimensional biped models.
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Appendix A

Derivation of the Equations of

Motion

The equations of motion for the two-link planar robot are derived by the Kane’s

method [30]. The three-link planar robot’s equations can be derived with the same

method as explained below.

A.1 Definitions

In order to formulate the equations of motion, the symbols for bodies, points,

constants, variables, basis vectors and generalized coordinates are defined. The

Figure 2.2 shows the two-link robot defining the symbols. The robot consists of two

rigid links A and B with masses M1, M2. The point O is the center of the fixed

horizontal axis where the body A rotates about and the body B rotates about the

horizontal axis fixed in A. The point Ao, representing the mass center of A, lies a

distance lc1 from O. The mass center of B, Bo, is located a distance lc2 from the

point AB, the joint connection of A and B. The end point of the body B is E.

The length of bodies are represented by l1 and l2. The variable is the torque TA/B,

applied to link B by an actuator attached to A. The unit vectors are Ni (i = 1, 2, 3),

fixed in an inertial reference frame N . Respectively, Ai and Bi are fixed in A and

B.
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A.2 Generalized coordinates and speeds

The generalized coordinates describe the configuration of the system as the gen-

eralized speeds describe the motion of the system. Generalized coordinates for the

system are chosen in joint space as q1 and q2. q1 is the angle between N2 and A1

and q2 is the angle between A1 and B1. The generalized speeds are introduced as

the first time derivative of the corresponding generalized coordinate. The general-

ized coordinate derivatives represented with the generalized speeds are called the

kinematical differential equations are defined as

q̇1 = u1 (A.1)

q̇2 = u2. (A.2)

A.3 Velocities

The angular velocities of bodies A and B and the translational velocities of the

points Ao, Bo, AB,E are derived in reference frame N . The angular velocities are

ωA = u1A3 (A.3)

ωB = u1A3 + u2B3. (A.4)

The translational velocities are derived by relating the velocities of two points fixed

on a single rigid body. The velocities of points Ao, Bo, AB,E are

vAo = lc1u1A2 (A.5)

vBo = l1u1A2 + lc2(u1 + u2)B2 (A.6)

vAB = l1u1A2 (A.7)

vE = l1u1A2 + l2(u1 + u2)B2 (A.8)

(A.9)

A.4 Partial Velocities

Partial velocities are developed from the angular velocities of the nonmassless

bodies and the bodies that contribute to the equations of motions which are acted
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by torques. Additionally it is derived from the translational velocities of of the

nonmassless particles and the particles that contribute to the equations of motions

where forces are applied. These partial velocities are the coefficients of the general-

ized speeds. .

x r=1 r=2

ωA
r A3 0

ωB
r 0 B3

vAo
r lc1A2 0

vBo
r l1A2 + lc2B2 lc2B2

vAB
r l1A2 0

vE
r l1A2 + l2B2 l2B2

Table A.1: Partial velocities

A.5 Accelerations

The accelerations are derived by direct differentiation or applying the kinematic

formula. The angular accelerations are derived by differentiating the angular veloc-

ities

αA = u̇1A3 (A.10)

αB = (u̇1 + u̇2)B3. (A.11)

The translational accelerations of the particles and body mass centers are

aAo
r = −lc1u

2
1A1 + lc1u̇1A2 (A.12)

aBo
r = −l1u

2
1A1 + l1u̇1A2 − lc2(u1 + u2)

2B1 + lc2(u̇1 + u̇2)B2 (A.13)

aAB
r = −l1u

2
1A1 + l1u̇1A2 (A.14)

aE
r = −l1u

2
1A1 + l1u̇1A2 − l2(u1 + u2)

2B1 + l2(u̇1 + u̇2)B2. (A.15)

A.6 Generalized Inertia Forces

The generalized inertia forces F ∗
r in a reference frame N is defined as

F ∗
r = −

n∑
i=1

vPi
r ·mia

Pi (r = 1, . . . , n). (A.16)
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vPi
r is the rth partial velocity of particle Pi. The generalized inertia forces for the

system are

F ∗
1 = −l1lc2M2 sin(q2)(u

2
1 − (u1 + u2)

2)− (lc2M2(lc2 + l1 cos(q2)))u̇2 (A.17)

−(M1l
2
c1 + M2(l

2
1 + l2c2 + 2l1lc2 cos(q2)))u̇1

F ∗
2 = −l1lc2M2 sin(q2)u

2
1 − (M2l

2
c2)u̇2 − (lc2M2(lc2 + l1 cos(q2)))u̇1 (A.18)

A.7 Generalized Active Forces

The non-working forces or torques are orthogonal to the tangent space of the

configuration or motion manifold and thus they do no work on the system. The

gravitational force and the torque are active forces acting on the system. Because

of that reason the generalized active forces are introduced. The generalized active

forces are determined by multiplying the contributing forces and torques with partial

velocities of the points and bodies that are applied to and are given as

F1 = −g(lc1M1 cos(q1) + M2(l1 cos(q1) + lc2 + cos(q1 + q2))) (A.19)

F2 = TA/B − glc2M2 cos(q1 + q2). (A.20)

A.8 Equations of Motion

The dynamical differential equations of the system can be determined by

Fr + F ∗
r = 0 (r = 1, 2). (A.21)

55



Appendix B

Conservation of Angular

Momentum

In this appendix, the conservation of angular momentum for the three-link planar

robot at the impact is explained.

The kinematic chain is shown in Figure B.1. When the swing foot touches the

ground, the impact occurs. Based on the assumptions clarified previously

1. Ground contact generates jumps in the velocity vector, while position remains

constant,

2. no rebound and no slipping of the swing leg

3. The double support phase is instantaneous

the angular momentum is conserved for the entire system about the swing foot

contact point, for the new swing leg about the hip joint and for the torso about the

hip joint. These conservation equations can be written as

H−
E = H+

E (B.1)

H−st
H = H+sw

H (B.2)

H−torso
H = H+torso

H . (B.3)

According to the notation, the + superscript means post-impact and − superscript

means pre-impact.
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In order to formulate the equations of motion, the symbols for bodies, points,

constants, variables, basis vectors and generalized coordinates are denoted as ex-

plained in Appendix A. The linear velocities are determined. With these notations,

the conservation of angular momentum equations are written as follows,

M1v
−Ao × ~PE/Ao + M2v

−Bo × ~PE/Bo + M3v
−Co × ~PE/Co + Mhv

−H × ~PE/H (B.4)

= M1v
+Ao × ~PE/Ao + M2v

+Bo × ~PE/Bo + M3v
+Co × ~PE/Co + Mhv

+H × ~PE/H

M2v
−Bo × ~PH/Bo = M2v

+Bo × ~PH/Bo (B.5)

M3v
−Co × ~PH/Co = M3v

+Co × ~PH/Co . (B.6)

The center of mass positions are named by denoting the endpoints for example

~PE/Ao corresponds to the distance connecting the point E to the point mass Ao.

The center of mass velocities are denoted according to their corresponding bodies

and points. The superscripts + and − mean pre- and post- collision velocities.

stance leg

swing leg new swing leg new stance leg

q1
- 

q2
- q2

+ 
q1

+ 

H H

E

E

Figure B.1: Conservation of the angular momentum: pre- and post- collision config-

urations. The angular momentum is conserved around the contact point E for the

entire system and around hip joint H for the new swing leg and torso.
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The matrices Q+ and Q− of the conservation equations have entries

Q−(1, 1) = I1 + l1l2Mhcos(q1 − q2) + l1M2(l2 − lc2)cos(q1 − q2)+

l1M3(l2cos(q1 − q2) + lc3cos(q1 − q3))− lc1M1(l1 − lc1 − l2cos(q1 − q2))

Q−(1, 2) = I2 − lc2M2(l2 − lc2)

Q−(1, 3) = I3 + lc3M3(lc3 + l2cos(q2 − q3))

Q−(2, 1) = I1 − lc1M1(l1 − lc1)

Q−(2, 1) = 0

Q−(2, 3) = 0

Q−(3, 1) = l1lc3M3cos(q1 − q3)

Q−(3, 2) = 0

Q−(3, 3) = I3 + M3l
2
c3

Q+(1, 1) = I1 + M1l
2
c1 + Mhl

2
1 + l1M3(l1 + lc3cos(q1 − q3)) + l1M2(l1 − lc2cos(q1 − q2))

Q+(2, 1) = I2 + lc2M2(lc2 − l1cos(q1 − q2))

Q+(3, 1) = I3 + lc3M3(lc3 + l1cos(q1 − q3))

Q+(2, 1) = −l1lc2M2cos(q1 − q2)

Q+(2, 2) = I2 + M2l
2
c2

Q+(2, 3) = 0

Q+(3, 1) = l1lc3M3cos(q1 − q3)

Q+(3, 2) = 0

Q+(3, 3) = I3 + M3l
2
c3
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